collective.py 68.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
17
from datetime import timedelta
18
from ..fluid.layer_helper import LayerHelper
19
from ..fluid.framework import Variable
20
from ..fluid.framework import in_dygraph_mode
21
from ..fluid.framework import OpProtoHolder
J
Jiabin Yang 已提交
22
from ..fluid.framework import _non_static_mode
23
from ..fluid.framework import _in_legacy_dygraph
24
from ..fluid.framework import convert_np_dtype_to_dtype_
J
Jiangxinz 已提交
25
from ..fluid.framework import _varbase_creator
26 27 28 29
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
30 31
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
B
Baibaifan 已提交
32
from ..fluid.dygraph import layers
33 34 35 36
from ..fluid.dygraph.parallel import prepare_context
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
W
wanghuancoder 已提交
37
from paddle import _C_ops
J
Jiangxinz 已提交
38
import paddle.fluid.dygraph_utils as dygraph_utils
39

40
__all__ = []
41 42 43


class ReduceOp:
L
lilong12 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
75 76 77 78
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3
79
    AVG = 4
80 81


K
kuizhiqing 已提交
82 83 84 85
class Group():
    """
    The abstract representation of group.
    """
86

87
    def __init__(self, rank, rank_num, id=0, ranks=[], pg=None, name=None):
88 89
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
90 91
        self.id = id
        self.ranks = ranks
92 93
        self.pg = pg
        self.name = name
K
kuizhiqing 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1

108 109 110 111
    @property
    def process_group(self):
        return self.pg

112 113 114 115
    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
            self.rank, self.nranks, self.id)
        debug_str += ", ".join(map(str, self.ranks))
116 117
        debug_str += "; name: "
        debug_str += self.name if self.name else "None"
118 119
        return debug_str

K
kuizhiqing 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}

135 136 137 138 139 140 141
# group map by name : the map of all groups from their names
# Dict[name, Group]
_group_map_by_name = {}

# Name of the default group for init_parallel_env
_default_group_name = "_default_pg"

142
_valid_backend_list = ['nccl', 'gloo', 'hccl', 'heter']
143 144 145
_default_store = None  # the default tcp store
_default_backend = None

K
kuizhiqing 已提交
146

L
lilong12 已提交
147 148 149 150 151 152 153 154 155 156
def _set_default_backend(backend):
    global _default_backend
    _default_backend = backend


def _set_default_store(store):
    global _default_store
    _default_store = store


K
kuizhiqing 已提交
157 158 159 160
def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
161 162
        _group_map[0] = Group(
            genv.rank, genv.world_size, ranks=list(range(genv.world_size)))
K
kuizhiqing 已提交
163 164 165 166 167 168 169
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


170 171 172 173 174 175
def _get_group_map_by_name():
    global _group_map_by_name
    return _group_map_by_name


def _get_default_group():
L
lilong12 已提交
176
    global _group_map_by_name
177 178 179 180 181 182
    assert _default_group_name in _group_map_by_name, (
        "Call paddle.distributed.init_parallel_env first "
        "to initialize the distributed environment.")
    return _get_group_map_by_name()[_default_group_name]


L
lilong12 已提交
183 184 185 186 187 188 189 190 191 192 193 194
def _set_group_map(gid, group):
    global _group_map
    assert gid not in _group_map
    _group_map[gid] = group


def _set_group_map_by_name(name, group):
    global _group_map_by_name
    assert name not in _group_map_by_name
    _group_map_by_name[name] = group


K
kuizhiqing 已提交
195 196 197 198 199 200 201 202 203 204
def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
205
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
J
Jiangxinz 已提交
220
    return gm[id] if id in gm else None
K
kuizhiqing 已提交
221 222


223 224 225 226 227 228
def _new_process_group_impl(backend,
                            store,
                            rank,
                            world_size,
                            group_name,
                            pg_options,
L
lilong12 已提交
229 230 231
                            group_id=0,
                            src_rank=None,
                            dst_rank=None):
232
    pg = None
233
    genv = _get_global_env()
L
lilong12 已提交
234 235 236 237
    if backend != 'heter':
        assert src_rank is None and dst_rank is None, (
            "src_rank and dst_rank "
            "can only be set for heter backend.")
L
lilong12 已提交
238
    assert backend in _valid_backend_list, "Unsupported backend: %s." % backend
239
    if backend == "gloo":
240 241
        place = core.CPUPlace()
        pg = core.ProcessGroupGloo(store, rank, world_size, place, group_id)
242
    elif backend == "nccl":
243 244
        place = core.CUDAPlace(genv.device_id)
        pg = core.ProcessGroupNCCL(store, rank, world_size, place, group_id)
245
    elif backend == "hccl":
246 247
        place = core.NPUPlace(genv.device_id)
        pg = core.ProcessGroupHCCL(store, rank, world_size, place, group_id)
248
    elif backend == "heter":
249 250 251 252 253
        place = None
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(genv.device_id)
        elif core.is_compiled_with_npu():
            place = core.NPUPlace(genv.device_id)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        cluster_id = int(os.getenv("CLUSTER_ID", "-1"))
        assert cluster_id >= 0, "please set the CLUSTER_ID variable."
        cluster_size = os.getenv("CLUSTER_SIZE", None)
        assert cluster_size, "please set the CLUSTER_SIZE variable."
        cluster_size = cluster_size.split(",")
        cluster_size = [int(s) for s in cluster_size]
        switch_ep = os.getenv("CLUSTER_SWITCH", None)
        assert switch_ep, "please set the CLUSTER_SWITCH variable."
        cluster_size_cumsum = np.cumsum(cluster_size)
        cluster_offset = 0 if cluster_id == 0 else cluster_size_cumsum[
            cluster_id - 1]
        global_rank = cluster_offset + rank
        global_world_size = cluster_size_cumsum[-1]
        pg = core.ProcessGroupHeter(
            store,
            rank=global_rank,
            world_size=global_world_size,
271
            place=place,
272
            gid=group_id,
273 274 275 276 277
            local_rank=rank,
            local_size=world_size,
            gloo_rank=cluster_id,
            gloo_size=len(cluster_size),
            with_switch=True,
L
lilong12 已提交
278 279 280
            switch_endpoint=switch_ep,
            src_rank=src_rank,
            dst_rank=dst_rank)
281 282 283 284

    return pg


S
ShenLiang 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
309
    if in_dygraph_mode():
310 311 312 313 314
        group = _get_default_group() if group is None else group
        task = group.process_group.barrier()
        task.wait()
        return

S
ShenLiang 已提交
315 316 317
    ring_id = 0 if group is None else group.id

    temp = fill_constant([1], dtype="int32", value="1")
J
Jiabin Yang 已提交
318
    if _non_static_mode():
W
wanghuancoder 已提交
319
        return _C_ops.barrier(temp, temp, 'ring_id', ring_id)
W
wanghuancoder 已提交
320 321 322

    op_type = 'barrier'

S
ShenLiang 已提交
323 324 325 326 327 328 329 330 331 332
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


L
lilong12 已提交
333 334 335 336 337 338 339
# _custom_gid provides a way for users to
# set the group id, which is usually useful
# to be compatible with the static mode.
_custom_gid = None


def _set_custom_gid(gid):
340
    global _custom_gid
L
lilong12 已提交
341 342 343
    _custom_gid = gid


K
kuizhiqing 已提交
344 345 346
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
347
    Creates a new distributed communication group.
K
kuizhiqing 已提交
348 349

    Args:
K
kuizhiqing 已提交
350
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
351 352 353
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
354
        Group: The group instance.
K
kuizhiqing 已提交
355 356 357 358 359 360 361

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
362 363 364
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
365 366

    """
367
    global _custom_gid
368
    global _group_map
L
lilong12 已提交
369
    if in_dygraph_mode():
370
        global _default_group_name
L
lilong12 已提交
371
        gid = _custom_gid if _custom_gid else _new_ring_id()
372
        group_name = _default_group_name + str(gid)
L
lilong12 已提交
373
        if backend != 'heter' and (ranks is None or len(ranks) > 1):
374 375 376 377 378 379 380 381 382
            global_group = _get_default_group()
            global_rank = global_group.rank
            global_ranks = global_group.ranks
            backend = _default_backend if backend is None else backend
            if ranks is None:
                ranks = global_ranks
            assert len(ranks) <= len(global_ranks), (
                "Size of new group must be less than or "
                "equal to that of the default global group.")
383 384
        size = len(ranks)
        ranks = sorted(ranks)
L
lilong12 已提交
385 386 387 388
        if backend == 'heter' or (size > 1 and global_rank in ranks):
            rank = 0 if backend == 'heter' else ranks.index(global_rank)
            src_rank = ranks[0] if backend == 'heter' else None
            dst_rank = ranks[1] if backend == 'heter' else None
389 390 391 392 393 394 395
            pg = _new_process_group_impl(
                backend,
                _default_store,
                rank,
                size,
                group_name,
                pg_options=None,
L
lilong12 已提交
396 397 398
                group_id=gid,
                src_rank=src_rank,
                dst_rank=dst_rank)
399 400 401 402 403 404 405 406
        else:
            rank = -1
            pg = None
        group = Group(rank, size, id=gid, ranks=ranks, pg=pg, name=group_name)
        _group_map_by_name[group_name] = group
        _group_map[gid] = group

        return group
K
kuizhiqing 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
    else:
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        ranks = sorted(ranks)
        group_rank = ranks.index(global_rank)
        group_size = len(ranks)
        gp = Group(group_rank, group_size, ring_id, ranks)
        _group_map[ring_id] = gp

        if group_size >= 2:
            strategy = core.ParallelStrategy()
            strategy.nranks = group_size
            strategy.local_rank = group_rank
            strategy.trainer_endpoints = [
                genv.trainer_endpoints[i] for i in ranks
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
441 442 443 444
            elif core.is_compiled_with_npu():
                place = core.NPUPlace(genv.device_id)
                core.HCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
445 446 447 448
            elif core.is_compiled_with_mlu():
                place = core.MLUPlace(genv.device_id)
                core.CNCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
449 450 451 452 453 454 455
            else:
                assert False, ("no cuda device found")
        else:
            return gp

    # TODO(shenliang03): This is a temporary solution to solve the problem of 
    # hang caused by cross-creation of new_group
456
    tmp = paddle.to_tensor(
J
Jiabin Yang 已提交
457
        [1], dtype="int32") if _non_static_mode() else fill_constant(
458
            [0], dtype="int32", value="1")
459 460
    paddle.distributed.all_reduce(tmp, use_calc_stream=True)
    paddle.distributed.wait(tmp)
K
kuizhiqing 已提交
461 462
    return gp

463

K
kuizhiqing 已提交
464 465 466 467 468 469 470 471
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
472 473
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
474 475 476 477 478 479 480 481 482 483

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
484
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

J
Jiabin Yang 已提交
503
    if _non_static_mode():
W
wanghuancoder 已提交
504
        return _C_ops.c_sync_calc_stream(tensor, tensor)
K
kuizhiqing 已提交
505 506 507 508 509 510 511 512

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
513

514

K
kuizhiqing 已提交
515
def _sync_comm_stream(tensor, ring_id=0):
516

J
Jiabin Yang 已提交
517
    if _non_static_mode():
W
wanghuancoder 已提交
518
        return _C_ops.c_sync_comm_stream([tensor], [tensor], 'ring_id', ring_id)
519

K
kuizhiqing 已提交
520
    op_type = 'c_sync_comm_stream'
521

K
kuizhiqing 已提交
522 523 524 525 526 527 528 529 530
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
531 532 533
    """

    Broadcast a tensor from the source to all others.
534 535 536 537 538 539 540
    As shown below, 4 GPUs each start 4 processes and GPU0 owns data 0. Through broadcast operator,
    the data 0 will be sent to all GPUs from GPU0.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png
        :width: 800
        :alt: broadcast
        :align: center
541 542 543 544 545

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
546
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
547 548
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
549 550 551 552 553 554 555

    Returns:
        None.

    Examples:
        .. code-block:: python

556
            # required: distributed
557 558 559 560 561 562 563 564 565 566 567 568 569 570
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
571
    """
K
kuizhiqing 已提交
572 573 574 575 576 577 578

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
579
    if in_dygraph_mode():
580 581 582 583 584 585 586 587 588 589 590
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        assert gsrc >= 0, ("src rank out of group, need global rank")
        task = group.process_group.broadcast(tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

    ring_id = ring_id = 0 if group is None else group.id
K
kuizhiqing 已提交
591
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
592
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
593

J
Jiabin Yang 已提交
594
    if _non_static_mode():
W
wanghuancoder 已提交
595 596 597
        return _C_ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                  'use_calc_stream', use_calc_stream, 'ring_id',
                                  ring_id)
598 599 600 601 602 603 604 605 606 607 608 609

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
610 611 612
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
613 614 615
        })


K
kuizhiqing 已提交
616
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
617 618 619
    """

    Reduce a tensor over all ranks so that all get the result.
620 621 622 623 624 625 626 627
    As shown below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. The reduce operator is sum. Through all_reduce operator, 
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center
628 629 630 631

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
632
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
633
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
634 635
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
636 637 638 639 640 641 642

    Returns:
        None.

    Examples:
        .. code-block:: python

643
            # required: distributed
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
659
    """
K
kuizhiqing 已提交
660 661 662
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
663
    if in_dygraph_mode():
664 665 666 667 668 669
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
670 671
        elif op == ReduceOp.PROD:
            op_type = core.ReduceOp.PRODUCT
672 673 674 675 676 677 678 679 680 681
        else:
            raise ValueError("Unknown reduce_op type for allreduce.")
        group = _get_default_group() if group is None else group
        task = group.process_group.allreduce(tensor, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

K
kuizhiqing 已提交
682
    ring_id = 0 if group is None else group.id
J
Jiabin Yang 已提交
683
    if _non_static_mode():
684
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
685 686
            return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
687
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
688 689
            return _C_ops.c_allreduce_max_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
690
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
691 692
            return _C_ops.c_allreduce_min_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
693
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
694 695
            return _C_ops.c_allreduce_prod_(tensor, 'use_calc_stream',
                                            use_calc_stream, 'ring_id', ring_id)
696 697 698 699 700 701 702 703 704 705 706 707 708 709
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
710 711
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
712 713 714 715 716
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
717 718
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
719 720


K
kuizhiqing 已提交
721
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
722 723
    """

724 725 726 727 728 729 730 731
    Reduce a tensor to the destination from all others. As shown below, 4 GPUs each start 4 processes and the data on each GPU is respresnted
    by the GPU number. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
    the GPU0 will owns the sum of all data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png
        :width: 800
        :alt: reduce
        :align: center
732 733 734 735 736

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
737
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
738
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
739 740
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
741 742 743 744 745 746 747

    Returns:
        None.

    Examples:
        .. code-block:: python

748
            # required: distributed
749 750 751 752 753 754 755 756 757 758 759 760 761 762
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
763
    """
K
kuizhiqing 已提交
764 765 766
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
767
    if in_dygraph_mode():
768 769 770 771 772 773
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
774 775
        elif op == ReduceOp.PROD:
            op_type = core.ReduceOp.PRODUCT
776 777 778 779 780 781 782 783 784 785 786
        else:
            raise ValueError("Unknown reduce_op type for reduce.")
        group = _get_default_group() if group is None else group
        gdst = group.get_group_rank(dst)
        assert gdst >= 0, ("dst rank out of group, need global rank")
        task = group.process_group.reduce(tensor, gdst, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task
K
kuizhiqing 已提交
787 788 789

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
790
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
791

J
Jiabin Yang 已提交
792
    if _non_static_mode():
793
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
794 795 796
            return _C_ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
797
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
798 799 800
            return _C_ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
801
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
802 803 804
            return _C_ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
805
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
806 807 808
            return _C_ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
                                        use_calc_stream, 'ring_id', ring_id,
                                        'root_id', gdst)
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
832 833 834
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
835 836 837
        })


K
kuizhiqing 已提交
838
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
839 840
    """

841 842 843 844 845 846 847 848 849
    Gather tensors from all participators and all get the result. As shown
    below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. Through the all_gather operator, each GPU will have data
    from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png
        :width: 800
        :alt: all_gather
        :align: center
850 851 852 853 854 855

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
856
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
857 858
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
859 860 861 862 863 864 865

    Returns:
        None.

    Examples:
        .. code-block:: python

866
            # required: distributed
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
886
    """
K
kuizhiqing 已提交
887 888 889
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
890
    if in_dygraph_mode():
891
        group = _get_default_group() if group is None else group
892 893 894 895 896 897
        if len(tensor_list) == 0:
            tensor_shape = list(tensor.shape)
            tensor_shape[0] *= group.nranks
            out = paddle.empty(tensor_shape, tensor.dtype)
        else:
            out = paddle.concat(tensor_list, axis=0)
898 899 900 901 902 903
        task = group.process_group.all_gather(tensor, out)
        task.wait()
        tensor_list.clear()
        tensor_list.extend(paddle.split(out, group.nranks, 0))
        return

K
kuizhiqing 已提交
904 905 906
    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

J
Jiabin Yang 已提交
907
    if _non_static_mode():
908 909
        out = _C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream,
                                 'ring_id', ring_id, 'nranks', nranks)
910
    else:
911 912 913
        op_type = 'c_allgather'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
930 931 932
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
933 934
            })

K
kuizhiqing 已提交
935
    tensor_list.extend(paddle.split(out, nranks, 0))
936 937


K
kuizhiqing 已提交
938
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
939 940
    """

941 942 943 944 945 946 947
    Scatter a tensor to all participators. As shown below, 4 GPUs each start 4 processes and the source of the scatter
    is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
        :width: 800
        :alt: scatter
        :align: center
948 949 950 951

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
952
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
953 954
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
955
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
956 957
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
958 959 960 961 962 963 964

    Returns:
        None.

    Examples:
        .. code-block:: python

965
            # required: distributed
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
985
    """
K
kuizhiqing 已提交
986 987 988 989 990 991
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
992
    if in_dygraph_mode():
993 994 995 996 997 998 999 1000 1001
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        rank = group.rank
        nranks = group.nranks
    else:
        ring_id = 0 if group is None else group.id
        gsrc = src if group is None else group.get_group_rank(src)
        rank = _get_global_group().rank if group is None else group.rank
        nranks = _get_global_group().nranks if group is None else group.nranks
K
kuizhiqing 已提交
1002
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
1003 1004

    if rank != gsrc:
1005 1006 1007 1008
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
L
lilong12 已提交
1009
    if in_dygraph_mode():
1010 1011 1012 1013 1014 1015 1016
        task = group.process_group.scatter(temp, tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1017
    if _non_static_mode():
W
wanghuancoder 已提交
1018 1019 1020
        return _C_ops.c_scatter(temp, tensor, 'use_calc_stream',
                                use_calc_stream, 'ring_id', ring_id, 'nranks',
                                nranks, 'root', gsrc)
W
wanghuancoder 已提交
1021
    op_type = 'c_scatter'
1022 1023 1024 1025 1026 1027 1028 1029 1030
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
1031 1032 1033
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
1034 1035 1036 1037
            'nranks': nranks,
        })


1038
def _c_identity(tensor, group=None):
L
lilong12 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1050 1051 1052 1053
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1054
    if _non_static_mode():
W
wanghuancoder 已提交
1055 1056
        return _C_ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                 ring_id, 'use_model_parallel', True)
L
lilong12 已提交
1057 1058 1059
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1060

L
lilong12 已提交
1061 1062 1063
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
1064

L
lilong12 已提交
1065 1066 1067 1068 1069
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1070
            'ring_id': ring_id,
L
lilong12 已提交
1071 1072 1073 1074 1075 1076
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


1077
def _c_concat(tensor, group=None):
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
1091 1092
    group = _get_default_group() if group is None else group
    ring_id = group.id
1093

1094
    global_rank = _get_global_env().rank
1095 1096
    rank = group.rank
    nranks = group.nranks
1097

J
Jiabin Yang 已提交
1098
    if _non_static_mode():
W
wanghuancoder 已提交
1099 1100 1101
        return _C_ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                               True, 'rank', rank, 'nranks', nranks,
                               'use_model_parallel', True)
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
1119 1120
            'nranks': nranks,
            'rank': rank
1121 1122 1123 1124
        })
    return out


1125
def _c_split(tensor, group=None):
L
lilong12 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1138 1139 1140 1141
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1142 1143 1144 1145
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

J
Jiabin Yang 已提交
1146
    if _non_static_mode():
W
wanghuancoder 已提交
1147 1148 1149
        return _C_ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                              ring_id, 'rank', rank, 'nranks', nranks,
                              'use_model_parallel', True)
1150

L
lilong12 已提交
1151 1152 1153
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1154

L
lilong12 已提交
1155 1156 1157
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
1158

L
lilong12 已提交
1159 1160 1161 1162 1163
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1164
            'ring_id': ring_id,
L
lilong12 已提交
1165 1166 1167 1168 1169 1170 1171 1172
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


1173 1174 1175 1176 1177
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
1178
    """[it is same as allreduce above, but it supports model parallel. And it support inplace startegy]
1179 1180 1181 1182 1183
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    if in_dygraph_mode():
        assert op == ReduceOp.SUM, "Unknown parameter: {}.".format(op)

        from paddle.autograd import EagerPyLayer

        class mp_allreduce_eager(EagerPyLayer):
            @staticmethod
            def forward(ctx, tensor, use_calc_stream, ring_id,
                        use_model_parallel):
                ctx.ring_id = ring_id
                return _C_ops.c_allreduce_sum_(
                    tensor, 'use_calc_stream', use_calc_stream, 'ring_id',
                    ring_id, "use_model_parallel", use_model_parallel)

            @staticmethod
            def backward(ctx, dy):
                return _C_ops.c_identity(dy, 'use_calc_stream', True, 'ring_id',
                                         ctx.ring_id, 'use_model_parallel',
                                         True)

        return mp_allreduce_eager.apply(tensor, use_calc_stream, ring_id,
                                        use_model_parallel)

    elif _in_legacy_dygraph():
1208
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
1209
            return _C_ops.c_allreduce_sum_(
1210 1211 1212 1213
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

    op_type = 'c_allreduce_sum'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        op_type)

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'use_model_parallel': use_model_parallel,
        })
    return out
1233 1234


1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
J
Jiabin Yang 已提交
1249
    if _non_static_mode():
W
wanghuancoder 已提交
1250
        return _C_ops.c_embedding(table, index, "start_index", start_index)
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    op_type = 'c_embedding'
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name='table')
    check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='c_embedding',
        inputs={'Ids': index,
                'W': table},
        outputs={'Out': tmp},
        attrs={"start_index": start_index})
    return tmp

1265

B
Baibaifan 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
def _c_softmax_with_cross_entropy(logits,
                                  label,
                                  group=None,
                                  return_softmax=False):
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

J
Jiabin Yang 已提交
1324
    if _non_static_mode():
W
wanghuancoder 已提交
1325
        softmax, loss = _C_ops.c_softmax_with_cross_entropy(
1326 1327 1328 1329 1330 1331
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

W
WangXi 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    attrs = {
        'ring_id': ring_id,
        'rank': rank,
        'nranks': nranks,
    }
    helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    helper.append_op(
        type='c_softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs=attrs)

    if return_softmax:
        return loss, softmax

    return loss

1353

B
Baibaifan 已提交
1354 1355 1356 1357
def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
J
Jiabin Yang 已提交
1358
    if _non_static_mode():
B
Baibaifan 已提交
1359
        pre_bias = _varbase_creator(dtype=x.dtype)
W
wanghuancoder 已提交
1360 1361
        _C_ops.matmul(x, weight, pre_bias, 'transpose_X', False, 'transpose_Y',
                      False, "alpha", 1)
B
Baibaifan 已提交
1362 1363 1364 1365 1366
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1)
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
B
Baibaifan 已提交
1367 1368
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."
B
Baibaifan 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs)
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res


1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


L
lilong12 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
1420
                     group=None):
1421 1422
    """
    Parallel Linear
1423 1424 1425

    axis the dimension of the parameter of linear layer. 
    axis = 0: the row dimension
1426
    axis = 1: the col dimension
1427
    
1428
    """
1429 1430 1431 1432
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
1433 1434
    if axis == 0:
        if split_tensor:
1435
            x = _c_split(x, group=group)
1436
    else:
L
lilong12 已提交
1437 1438
        x = _c_identity(x, group=group)

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    # NOTE: npu linear function use matmul_v2 but linear use matmul
    linear_function = _linear if core.is_compiled_with_npu()\
        else paddle.nn.functional.linear
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
        linear.name)

    _set_var_distributed(linear.weight)
1457 1458 1459 1460
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
1461
        _set_var_distributed(linear.bias)
L
lilong12 已提交
1462 1463 1464 1465 1466

    if not gather_out: return linear_out

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
1467
    main_block = paddle.static.default_main_program().current_block()
L
lilong12 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1482
                'ring_id': ring_id,
L
lilong12 已提交
1483 1484 1485
                'use_calc_stream': True,
                'use_model_parallel': True
            })
1486 1487
        if linear.bias is not None:
            out = out + linear.bias
L
lilong12 已提交
1488 1489 1490 1491 1492 1493
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1494
                'rank': inner_rank,
1495
                'ring_id': ring_id,
L
lilong12 已提交
1496 1497 1498 1499 1500
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
1501 1502


L
lilong12 已提交
1503 1504 1505 1506 1507 1508 1509
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
1510
                        group=None):
1511 1512 1513
    """
    Parallel Embedding
    """
1514 1515 1516 1517
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

    weight = helper.create_parameter(
        attr=param_attr, shape=size, dtype=dtype, is_bias=False)

    if num_partitions == 1:
        return paddle.nn.functional.embedding(
            x, weight=weight, padding_idx=None, sparse=False, name=name)

1534 1535
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

    output_parallel = paddle.distributed.collective._c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name)
    out = paddle.distributed.collective._mp_allreduce(
        output_parallel,
        group=group,
        use_calc_stream=True,
        use_model_parallel=True)
L
lilong12 已提交
1546
    return out
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

1595 1596 1597 1598 1599
    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is 
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

1618 1619 1620 1621 1622
    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and 
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output. 

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center
    
    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python
1660

1661
            # required: distributed
1662
            import paddle
1663
            import paddle.distributed.fleet as fleet
1664

1665
            paddle.enable_static()
1666
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
1667
            fleet.init(is_collective=True)
1668
            data = paddle.randint(0, 8, shape=[10,4])
1669
            emb_out = paddle.distributed.split(
1670 1671 1672 1673
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
J
Jiabin Yang 已提交
1691
    if _non_static_mode():
L
lilong12 已提交
1692 1693 1694 1695
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1696
    else:
1697
        from .fleet import fleet
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
1709 1710 1711
        assert size[0] % num_partitions == 0, \
            "The length of the vocabulary must be divisible by num_partitions " \
            "but received vocabulary={} num_partitions={}".format(size[0], num_partitions)
1712

1713
        per_part_size = size[0] // num_partitions
B
Baibaifan 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=None)
        return emb_out
1724
    else:
L
lilong12 已提交
1725
        should_split = False
1726 1727 1728 1729 1730 1731 1732
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1733
            if x.shape[-1] == size[0]: should_split = True
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1755 1756 1757
            num_partitions,
            should_split,
            name=name,
1758
            group=None)
1759
        return linear_out
L
lilong12 已提交
1760 1761


L
lilong12 已提交
1762 1763
def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
    """
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
    Scatter tensors in in_tensor_list to all participators averagely and gather the result tensors in out_tensor_list.
    As shown below, the in_tensor_list in GPU0 includes 0_0 and 0_1, and GPU1 includes 1_0 and 1_1.
    Through alltoall operator, the 0_0 in GPU0 will be sent to GPU0 and 0_1 to GPU1, 1_0 in GPU1 sent to GPU0 and 1_1 to GPU1.
    Finally the out_tensor_list in GPU0 includes 0_0 and 1_0, and GPU1 includes 0_1 and 1_1.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/alltoall.png
        :width: 800
        :alt: alltoall
        :align: center

L
lilong12 已提交
1774 1775 1776 1777 1778 1779 1780
    Args:
        in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        out_tensor_list (Tensor): A list of output Tensors. The data type of its elements should be the same as the
            data type of the input Tensors.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
1781
    
L
lilong12 已提交
1782 1783
    Returns:
        None.
1784
    
L
lilong12 已提交
1785 1786
    Examples:
        .. code-block:: python
1787

L
lilong12 已提交
1788 1789 1790 1791
            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
1792
            
L
lilong12 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
            init_parallel_env()
            out_tensor_list = []
            if paddle.distributed.ParallelEnv().rank == 0:
                np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
                np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
            else:
                np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
                np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
李季 已提交
1803
            paddle.distributed.alltoall([data1, data2], out_tensor_list)
L
lilong12 已提交
1804 1805 1806 1807 1808 1809
            # out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
            # out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
1810
    if in_dygraph_mode():
1811 1812 1813 1814
        group = _get_default_group() if group is None else group
    else:
        ring_id = 0 if group is None else group.id

L
lilong12 已提交
1815
    temp = paddle.concat(in_tensor_list, axis=0)
李季 已提交
1816
    nranks = len(in_tensor_list)
L
lilong12 已提交
1817
    if in_dygraph_mode():
1818 1819 1820 1821 1822 1823
        if len(out_tensor_list) == 0:
            tensor_shape = list(in_tensor_list[0].shape)
            tensor_shape[0] *= nranks
            out = paddle.empty(tensor_shape, in_tensor_list[0].dtype)
        else:
            out = paddle.concat(out_tensor_list, axis=0)
1824 1825 1826 1827 1828 1829
        task = group.process_group.alltoall(temp, out)
        task.wait()
        out_tensor_list.clear()
        out_tensor_list.extend(paddle.split(out, nranks, 0))
        return

J
Jiabin Yang 已提交
1830
    if _non_static_mode():
李季 已提交
1831 1832
        out = _C_ops.alltoall(temp, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id)
L
lilong12 已提交
1833
    else:
W
wanghuancoder 已提交
1834 1835 1836 1837 1838
        op_type = 'alltoall'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(
            dtype=in_tensor_list[0].dtype)

L
lilong12 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        if not isinstance(in_tensor_list, list):
            raise ValueError("The type of 'in_tensor_list' for all_to_all "
                             "should be list.")
        for elem in in_tensor_list:
            check_variable_and_dtype(
                elem, 'in_tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_to_all')
        if not isinstance(out_tensor_list, list):
            raise ValueError("The type of 'out_tensor_list' for all_to_all "
                             "should be list.")
        if len(out_tensor_list) != 0:
            raise ValueError("The 'out_tensor_list' for all_to_all "
                             "must be an empty list.")
        helper.append_op(
            type=op_type,
            inputs={'X': [temp]},
            outputs={'Out': [out]},
            attrs={
L
lilong12 已提交
1858
                'ring_id': ring_id,
L
lilong12 已提交
1859 1860 1861 1862 1863
                'use_calc_stream': use_calc_stream,
            })
    out_tensor_list.extend(paddle.split(out, nranks, 0))


L
lilong12 已提交
1864 1865 1866 1867 1868 1869 1870 1871
def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
1872 1873
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1874
    
L
lilong12 已提交
1875 1876 1877 1878 1879
    Returns:
        None.

    Examples:
        .. code-block:: python
1880

L
lilong12 已提交
1881
            # required: distributed
L
lilong12 已提交
1882
            import paddle
L
lilong12 已提交
1883
            from paddle.distributed import init_parallel_env
1884

L
lilong12 已提交
1885 1886 1887 1888 1889 1890 1891 1892
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1893 1894 1895
    """
    if group is not None and not group.is_member():
        return
1896

L
lilong12 已提交
1897
    if in_dygraph_mode():
1898 1899 1900 1901 1902 1903 1904 1905
        group = _get_default_group() if group is None else group
        task = group.process_group.send(tensor, dst)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1906 1907
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1908
    if _non_static_mode():
W
wanghuancoder 已提交
1909 1910
        return _C_ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', dst)
W
wanghuancoder 已提交
1911
    op_type = 'send_v2'
L
lilong12 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
1935 1936
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1937
    
L
lilong12 已提交
1938 1939 1940 1941 1942
    Returns:
        None.

    Examples:
        .. code-block:: python
1943

L
lilong12 已提交
1944
            # required: distributed
L
lilong12 已提交
1945
            import paddle
L
lilong12 已提交
1946
            from paddle.distributed import init_parallel_env
1947

L
lilong12 已提交
1948 1949 1950 1951 1952 1953 1954 1955
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1956 1957 1958
    """
    if group is not None and not group.is_member():
        return
1959

L
lilong12 已提交
1960
    if in_dygraph_mode():
1961 1962 1963 1964 1965 1966 1967 1968
        group = _get_default_group() if group is None else group
        task = group.process_group.recv(tensor, src)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1969 1970
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1971
    if _non_static_mode():
W
wanghuancoder 已提交
1972 1973 1974
        return _C_ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', src, 'dtype',
                              tensor.dtype, 'out_shape', tensor.shape)
W
wanghuancoder 已提交
1975
    op_type = 'recv_v2'
L
lilong12 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })