collective.py 42.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
from ..fluid.dygraph.parallel import prepare_context
import paddle
24
from .fleet import fleet
25 26 27 28
import paddle.fluid as fluid
import paddle.fluid.core as core

__all__ = [
K
kuizhiqing 已提交
29 30 31
    'wait',
    'new_group',
    'get_group',
32 33 34 35 36 37
    'broadcast',
    'all_reduce',
    'reduce',
    'all_gather',
    'scatter',
    'barrier',
38
    'split',
39
    'ReduceOp',
L
lilong12 已提交
40 41
    'send',
    'recv',
42 43 44 45
]


class ReduceOp:
L
lilong12 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
77 78 79 80 81 82
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3


K
kuizhiqing 已提交
83 84 85 86
class Group():
    """
    The abstract representation of group.
    """
87

K
kuizhiqing 已提交
88
    def __init__(self, rank, rank_num, id=0, ranks=[]):
89 90
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        self.id = id
        self.ranks = ranks

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.id == 0:
            return rank
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1


_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}


def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
        _group_map[0] = Group(genv.rank, genv.world_size, 0)
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
147
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
    return gm[group] if group in gm else None


S
ShenLiang 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    op_type = 'barrier'
    temp = fill_constant([1], dtype="int32", value="1")
    if in_dygraph_mode():
        return core.ops.barrier(temp, temp, 'ring_id', ring_id)
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


K
kuizhiqing 已提交
205 206 207
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
208
    Creates a new distributed communication group.
K
kuizhiqing 已提交
209 210

    Args:
K
kuizhiqing 已提交
211
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
212 213 214
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
215
        Group: The group instance.
K
kuizhiqing 已提交
216 217 218 219 220 221 222

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
223 224 225
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

    """

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    global _group_map
    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
        return gp

    ranks = sorted(ranks)
    group_rank = ranks.index(global_rank)
    group_size = len(ranks)
    gp = Group(group_rank, group_size, ring_id, ranks)
    _group_map[ring_id] = gp

    if group_size < 2:
        return gp

    strategy = core.ParallelStrategy()
    strategy.nranks = group_size
    strategy.local_rank = group_rank
    strategy.trainer_endpoints = [genv.trainer_endpoints[i] for i in ranks]
    strategy.current_endpoint = genv.current_endpoint
    strategy.nrings = 1

    if core.is_compiled_with_cuda():
        place = core.CUDAPlace(genv.device_id)
        core.NCCLParallelContext(strategy, place).init_with_ring_id(ring_id)
    else:
K
kuizhiqing 已提交
264
        assert False, ("no cuda device found")
S
ShenLiang 已提交
265 266
    # need to barrier to construct group
    barrier(gp)
K
kuizhiqing 已提交
267 268
    return gp

269

K
kuizhiqing 已提交
270 271 272 273 274 275 276 277
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
278 279
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
280 281 282 283 284 285 286 287 288 289

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
290
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

    if in_dygraph_mode():
        return core.ops.c_sync_calc_stream(tensor, tensor)

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
319

320

K
kuizhiqing 已提交
321
def _sync_comm_stream(tensor, ring_id=0):
322

K
kuizhiqing 已提交
323 324 325
    if in_dygraph_mode():
        return core.ops.c_sync_comm_stream([tensor], [tensor], 'ring_id',
                                           ring_id)
326

K
kuizhiqing 已提交
327
    op_type = 'c_sync_comm_stream'
328

K
kuizhiqing 已提交
329 330 331 332 333 334 335 336 337
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
338 339 340 341 342 343 344 345
    """

    Broadcast a tensor from the source to all others.

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
346
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
347 348
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
349 350 351 352 353 354 355

    Returns:
        None.

    Examples:
        .. code-block:: python

356 357 358 359 360 361 362 363 364 365 366 367 368 369
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
370
    """
K
kuizhiqing 已提交
371 372 373 374 375 376 377 378 379

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
380
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
381

382
    if in_dygraph_mode():
K
kuizhiqing 已提交
383 384 385
        return core.ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                    'use_calc_stream', use_calc_stream,
                                    'ring_id', ring_id)
386 387 388 389 390 391 392 393 394 395 396 397

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
398 399 400
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
401 402 403
        })


K
kuizhiqing 已提交
404
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
405 406 407 408 409 410 411
    """

    Reduce a tensor over all ranks so that all get the result.

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
412
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
413
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
414 415
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
416 417 418 419 420 421 422

    Returns:
        None.

    Examples:
        .. code-block:: python

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
438
    """
K
kuizhiqing 已提交
439 440 441 442
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
443 444
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
445 446
            return core.ops.c_allreduce_sum_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
447
        elif op == ReduceOp.MAX:
448 449
            return core.ops.c_allreduce_max_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
450
        elif op == ReduceOp.MIN:
451 452
            return core.ops.c_allreduce_min_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
453
        elif op == ReduceOp.PROD:
454 455
            return core.ops.c_allreduce_prod_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
456 457
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
458
        return out
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for all_reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
474 475
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
476 477 478 479 480
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
481 482
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
483 484


K
kuizhiqing 已提交
485
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
486 487 488 489 490 491 492 493
    """

    Reduce a tensor to the destination from all others.

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
494
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
495
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
496 497
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
498 499 500 501 502 503 504

    Returns:
        None.

    Examples:
        .. code-block:: python

505 506 507 508 509 510 511 512 513 514 515 516 517 518
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
519
    """
K
kuizhiqing 已提交
520 521 522 523 524 525 526 527
    if group is not None and not group.is_member():
        return

    if not isinstance(dst, int):
        raise ValueError("dst should be int.")

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
528
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
529

530 531 532
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
533 534
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
535 536
        elif op == ReduceOp.MAX:
            return core.ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
537 538
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
539 540
        elif op == ReduceOp.MIN:
            return core.ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
541 542
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
543 544
        elif op == ReduceOp.PROD:
            return core.ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
545 546
                                          use_calc_stream, 'ring_id', ring_id,
                                          'root_id', gdst)
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
573 574 575
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
576 577 578
        })


K
kuizhiqing 已提交
579
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
580 581 582 583 584 585 586 587 588
    """

    Gather tensors from all participators and all get the result.

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
589
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
590 591
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
592 593 594 595 596 597 598

    Returns:
        None.

    Examples:
        .. code-block:: python

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
618
    """
K
kuizhiqing 已提交
619 620 621 622 623 624
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

625 626 627
    op_type = 'c_allgather'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
K
kuizhiqing 已提交
628

629
    if in_dygraph_mode():
K
kuizhiqing 已提交
630 631
        core.ops.c_allgather(tensor, out, 'use_calc_stream', use_calc_stream,
                             'ring_id', ring_id, 'nranks', nranks)
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    else:
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
649 650 651
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
652 653
            })

K
kuizhiqing 已提交
654
    tensor_list.extend(paddle.split(out, nranks, 0))
655 656


K
kuizhiqing 已提交
657
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
658 659 660 661 662 663 664 665
    """

    Scatter a tensor to all participators.

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        tensor_list (list): A list of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
666 667
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
668
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
669 670
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
671 672 673 674 675 676 677

    Returns:
        None.

    Examples:
        .. code-block:: python

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
697
    """
K
kuizhiqing 已提交
698 699 700 701 702 703 704 705
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
706
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
707 708 709
    rank = _get_global_group().rank if group is None else group.rank
    nranks = _get_global_group().nranks if group is None else group.nranks

710
    op_type = 'c_scatter'
K
kuizhiqing 已提交
711 712

    if rank != gsrc:
713 714 715 716 717
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
    if in_dygraph_mode():
K
kuizhiqing 已提交
718 719 720
        return core.ops.c_scatter(temp, tensor, 'use_calc_stream',
                                  use_calc_stream, 'ring_id', ring_id, 'nranks',
                                  nranks, 'root', gsrc)
721 722 723 724 725 726 727 728 729
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
730 731 732
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
733 734 735 736
            'nranks': nranks,
        })


737
def _c_identity(tensor, group=None):
L
lilong12 已提交
738 739 740 741 742 743 744 745 746 747 748
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
749 750 751 752 753 754 755
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                   ring_id, 'use_model_parallel', True)
L
lilong12 已提交
756 757 758
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
759

L
lilong12 已提交
760 761 762
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
763

L
lilong12 已提交
764 765 766 767 768
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
769
            'ring_id': ring_id,
L
lilong12 已提交
770 771 772 773 774 775
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
def _c_concat(tensor, nranks, group=None):
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                                 True, 'nranks', nranks, 'use_model_parallel',
                                 True)

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
            'nranks': nranks
        })
    return out


def _c_split(tensor, rank, nranks, group=None):
L
lilong12 已提交
819 820 821 822 823 824 825 826 827 828 829 830
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
831 832 833 834 835 836 837 838 839
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                                ring_id, 'rank', rank, 'nranks', nranks,
                                'use_model_parallel', True)

L
lilong12 已提交
840 841 842
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
843

L
lilong12 已提交
844 845 846
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
847

L
lilong12 已提交
848 849 850 851 852
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
853
            'ring_id': ring_id,
L
lilong12 已提交
854 855 856 857 858 859 860 861
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it suuports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_allreduce_sum_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
    else:
        raise NotImplementedError("No support _mp_allreduce in dygraph mode.")


L
lilong12 已提交
884 885 886 887 888 889 890 891 892 893 894
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
895
                     group=None):
896 897 898
    """
    Parallel Linear
    """
899 900 901 902
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
903 904 905
    if axis == 0:
        if split_tensor:
            x = _c_split(x, inner_rank, nranks, group=group)
906
    else:
L
lilong12 已提交
907 908
        x = _c_identity(x, group=group)

909 910 911 912 913 914 915 916 917 918
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    linear_out = linear(x)
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
L
lilong12 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    startup_block.vars[linear.weight.name].is_distributed = True
    main_block.vars[linear.weight.name].is_distributed = True

    if not gather_out: return linear_out

    op_type = 'c_allreduce_sum' if axis == 0 else 'c_concat'
    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
941
                'ring_id': ring_id,
L
lilong12 已提交
942 943 944 945 946 947 948 949 950
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
951
                'ring_id': ring_id,
L
lilong12 已提交
952 953 954 955 956
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
957 958


L
lilong12 已提交
959 960 961 962 963 964 965
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
966
                        group=None):
967 968 969
    """
    Parallel Embedding
    """
970 971 972 973
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
    origin_num_embeddings = origin_size[0]
    embedding = paddle.nn.Embedding(
        per_part_embeddings,
        origin_size[1],
        padding_idx=per_part_embeddings - 1,
        sparse=False,
        weight_attr=param_attr,
        name=name)

    origin_input_shape = x.shape
    if len(origin_input_shape) == 2:
        x = paddle.unsqueeze(x, axis=-1)
    else:
        assert origin_input_shape[-1] == 1, (
            "The last dimension size of x must be 1.")
    x_shard = paddle.shard_index(x, origin_num_embeddings, num_partitions,
                                 inner_rank, per_part_embeddings - 1)
    if len(origin_input_shape) == 2:
        x_shard = paddle.squeeze(x_shard, axis=-1)
    emb_out = embedding(x_shard)
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
    startup_block.vars[embedding.weight.name].is_distributed = True
    main_block.vars[embedding.weight.name].is_distributed = True
L
lilong12 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    out = main_block.create_var(
        shape=emb_out.shape,
        dtype=emb_out.dtype,
        type=emb_out.type,
        lod_level=emb_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=emb_out.desc.need_check_feed())
    main_block.append_op(
        type='c_allreduce_sum',
        inputs={'X': emb_out},
        outputs={'Out': out},
        attrs={
1011
            'ring_id': ring_id,
L
lilong12 已提交
1012 1013 1014 1015
            'use_calc_stream': True,
            'use_model_parallel': True
        })
    return out
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            data = paddle.randint(0, 8, shape=[10,4])
            emb_out = padle.distributed.split(
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
    if in_dygraph_mode():
L
lilong12 已提交
1108 1109 1110 1111
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    else:
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
        per_part_size = (size[0] + num_partitions - 1) // num_partitions
        last_part_size = size[0] - per_part_size * (num_partitions - 1)
        if inner_rank == num_partitions - 1: per_part_size = last_part_size
        per_part_size += 1  # make the last row as the padding index

L
lilong12 已提交
1129 1130 1131 1132 1133 1134 1135 1136
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
1137
            group=None)
1138 1139
        return emb_out
    else:
L
lilong12 已提交
1140
        should_split = False
1141 1142 1143 1144 1145 1146 1147
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1148
            if x.shape[-1] == size[0]: should_split = True
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1170 1171 1172
            num_partitions,
            should_split,
            name=name,
1173
            group=None)
1174
        return linear_out
L
lilong12 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274


def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
        group (Group): The group instance return by new_group or None for global default group.
        use_calc_stream (bool): Whether to use calculate stream or communication stream.
    Returns:
        None.

    Examples:
        .. code-block:: python
            import paddle
            #from paddle.distributed import init_parallel_env
            #init_parallel_env()
            #if paddle.distributed.ParallelEnv().rank == 0:
            #    data = paddle.to_tensor([7, 8, 9])
            #    paddle.distributed.send(data, dst=1)
            #else:
            #    data = paddle.to_tensor([1,2,3])
            #    paddle.distributed.recv(data, src=0)
            #out = data.numpy()
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    op_type = 'send_v2'
    if in_dygraph_mode():
        return core.ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                                'ring_id', ring_id, 'peer', dst)
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
        group (Group): The group instance return by new_group or None for global default group.
        use_calc_stream (bool): Whether to use calculate stream or communication stream.
    Returns:
        None.

    Examples:
        .. code-block:: python
            import paddle
            #from paddle.distributed import init_parallel_env
            #init_parallel_env()
            #if paddle.distributed.ParallelEnv().rank == 0:
            #    data = paddle.to_tensor([7, 8, 9])
            #    paddle.distributed.send(data, dst=1)
            #else:
            #    data = paddle.to_tensor([1,2,3])
            #    paddle.distributed.recv(data, src=0)
            #out = data.numpy()
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    op_type = 'recv_v2'
    if in_dygraph_mode():
        return core.ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                                'ring_id', ring_id, 'peer', src, 'dtype',
                                tensor.dtype, 'out_shape', tensor.shape)
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })