Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
42c1297e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
42c1297e
编写于
6月 09, 2021
作者:
W
WangXi
提交者:
GitHub
6月 09, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[HybridParallel] update collective split to use c_embedding and mp_allreduce (#33411)
上级
9cda9ec2
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
84 addition
and
136 deletion
+84
-136
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+62
-45
python/paddle/fluid/tests/unittests/parallel_embedding_api.py
...on/paddle/fluid/tests/unittests/parallel_embedding_api.py
+9
-5
python/paddle/fluid/tests/unittests/parallel_embedding_api_none_divisible.py
.../tests/unittests/parallel_embedding_api_none_divisible.py
+0
-76
python/paddle/fluid/tests/unittests/test_collective_api_base.py
.../paddle/fluid/tests/unittests/test_collective_api_base.py
+1
-2
python/paddle/fluid/tests/unittests/test_collective_split_embedding_none_divisible.py
...ittests/test_collective_split_embedding_none_divisible.py
+12
-8
未找到文件。
python/paddle/distributed/collective.py
浏览文件 @
42c1297e
...
...
@@ -894,8 +894,25 @@ def _mp_allreduce(tensor,
"use_model_parallel"
,
use_model_parallel
)
else
:
raise
ValueError
(
"Unknown parameter: {}."
.
format
(
op
))
else
:
raise
NotImplementedError
(
"No support _mp_allreduce in dygraph mode."
)
op_type
=
'c_allreduce_sum'
helper
=
LayerHelper
(
op_type
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
tensor
.
dtype
)
check_variable_and_dtype
(
tensor
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
op_type
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
tensor
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
use_calc_stream
,
'use_model_parallel'
:
use_model_parallel
,
})
return
out
def
_c_lookup_table
(
table
,
index
,
start_index
=
0
,
name
=
None
):
...
...
@@ -915,6 +932,19 @@ def _c_lookup_table(table, index, start_index=0, name=None):
if
in_dygraph_mode
():
return
core
.
ops
.
c_embedding
(
table
,
index
,
"start_index"
,
start_index
)
op_type
=
'c_embedding'
helper
=
LayerHelper
(
op_type
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'table'
)
check_variable_and_dtype
(
index
,
'input'
,
[
'int32'
,
'int64'
],
op_type
)
tmp
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'c_embedding'
,
inputs
=
{
'Ids'
:
index
,
'W'
:
table
},
outputs
=
{
'Out'
:
tmp
},
attrs
=
{
"start_index"
:
start_index
})
return
tmp
class
_Linear
(
layers
.
Layer
):
"""
...
...
@@ -1136,47 +1166,34 @@ def _parallel_embedding(x,
return
ring_id
=
0
if
group
is
None
else
group
.
id
origin_num_embeddings
=
origin_size
[
0
]
embedding
=
paddle
.
nn
.
Embedding
(
per_part_embeddings
,
origin_size
[
1
],
padding_idx
=
per_part_embeddings
-
1
,
sparse
=
False
,
weight_attr
=
param_attr
,
name
=
name
)
origin_input_shape
=
x
.
shape
if
len
(
origin_input_shape
)
==
2
:
x
=
paddle
.
unsqueeze
(
x
,
axis
=-
1
)
else
:
assert
origin_input_shape
[
-
1
]
==
1
,
(
"The last dimension size of x must be 1."
)
x_shard
=
paddle
.
shard_index
(
x
,
origin_num_embeddings
,
num_partitions
,
inner_rank
,
per_part_embeddings
-
1
)
if
len
(
origin_input_shape
)
==
2
:
x_shard
=
paddle
.
squeeze
(
x_shard
,
axis
=-
1
)
emb_out
=
embedding
(
x_shard
)
helper
=
LayerHelper
(
"_parallel_embedding"
,
**
locals
())
per_part_size
=
per_part_embeddings
rank
=
inner_rank
vocab_start_index
=
rank
*
per_part_size
dtype
=
helper
.
get_default_dtype
()
size
=
[
per_part_size
,
origin_size
[
1
]]
weight
=
helper
.
create_parameter
(
attr
=
param_attr
,
shape
=
size
,
dtype
=
dtype
,
is_bias
=
False
)
if
num_partitions
==
1
:
return
paddle
.
nn
.
functional
.
embedding
(
x
,
weight
=
weight
,
padding_idx
=
None
,
sparse
=
False
,
name
=
name
)
startup_block
=
paddle
.
static
.
default_startup_program
().
global_block
()
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
startup_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
out
=
main_block
.
create_var
(
shape
=
emb_out
.
shape
,
dtype
=
emb_out
.
dtype
,
type
=
emb_out
.
type
,
lod_level
=
emb_out
.
lod_level
,
persistable
=
False
,
is_data
=
False
,
need_check_feed
=
emb_out
.
desc
.
need_check_feed
())
main_block
.
append_op
(
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
emb_out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
})
startup_block
.
vars
[
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
weight
.
name
].
is_distributed
=
True
output_parallel
=
paddle
.
distributed
.
collective
.
_c_lookup_table
(
weight
,
x
,
start_index
=
vocab_start_index
,
name
=
name
)
out
=
paddle
.
distributed
.
collective
.
_mp_allreduce
(
output_parallel
,
group
=
group
,
use_calc_stream
=
True
,
use_model_parallel
=
True
)
return
out
...
...
@@ -1288,11 +1305,11 @@ def split(x,
if
operation
==
"embedding"
:
assert
axis
==
0
,
(
"We only support to split the weight of embedding "
"along the first axis now."
)
per_part_size
=
(
size
[
0
]
+
num_partitions
-
1
)
//
num_partitions
last_part_size
=
size
[
0
]
-
per_part_size
*
(
num_partitions
-
1
)
if
inner_rank
==
num_partitions
-
1
:
per_part_size
=
last_part_size
per_part_size
+=
1
# make the last row as the padding index
assert
size
[
0
]
%
num_partitions
==
0
,
\
"The length of the vocabulary must be divisible by num_partitions "
\
"but received vocabulary={} num_partitions={}"
.
format
(
size
[
0
],
num_partitions
)
per_part_size
=
size
[
0
]
//
num_partitions
emb_out
=
_parallel_embedding
(
x
,
per_part_size
,
...
...
python/paddle/fluid/tests/unittests/parallel_embedding_api.py
浏览文件 @
42c1297e
...
...
@@ -48,23 +48,27 @@ class TestParallelEmbeddingAPI(TestCollectiveAPIRunnerBase):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
10
,
8
)
# (num_embeddings, embedding_dim) = (12, 8)
size
=
(
12
,
8
)
np_array
=
np
.
random
.
rand
(
size
[
0
],
size
[
1
])
paddle
.
seed
(
2020
)
data_in
=
paddle
.
randint
(
0
,
8
,
shape
=
(
10
,
4
))
data_in
=
paddle
.
randint
(
0
,
size
[
0
]
,
shape
=
(
10
,
4
))
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
per_part_size
=
size
[
0
]
//
2
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
0
:
5
,
:]),
)
np_array
[
0
:
per_part_size
,
:]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
5
:
10
,
:]),
)
np_array
[
per_part_size
:
size
[
0
]
,
:]),
)
emb_out
=
paddle
.
distributed
.
split
(
data_in
,
(
8
,
8
),
data_in
,
size
,
operation
=
"embedding"
,
num_partitions
=
2
,
weight_attr
=
param_attr
)
...
...
python/paddle/fluid/tests/unittests/parallel_embedding_api_none_divisible.py
已删除
100644 → 0
浏览文件 @
9cda9ec2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base
import
TestCollectiveAPIRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestParallelEmbeddingAPINoneDivisible
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
9
,
8
)
paddle
.
seed
(
2020
)
data_in
=
paddle
.
randint
(
0
,
7
,
shape
=
(
10
,
4
))
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
0
:
5
,
:]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
5
:
9
,
:]),
)
emb_out
=
paddle
.
distributed
.
split
(
data_in
,
(
7
,
8
),
operation
=
"embedding"
,
num_partitions
=
2
,
weight_attr
=
param_attr
)
return
[
data_in
,
emb_out
]
if
__name__
==
"__main__"
:
runtime_main
(
TestParallelEmbeddingAPINoneDivisible
,
"parallel_embedding"
)
python/paddle/fluid/tests/unittests/test_collective_api_base.py
浏览文件 @
42c1297e
...
...
@@ -257,11 +257,10 @@ class TestDistBase(unittest.TestCase):
elif
col_type
==
"parallel_embedding"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
need_result
=
np
.
random
.
rand
(
1
0
,
8
)
need_result
=
np
.
random
.
rand
(
1
2
,
8
)
for
i
in
range
(
result_data
.
shape
[
0
]):
for
j
in
range
(
result_data
.
shape
[
1
]):
data
=
result_data
[
i
][
j
]
if
data
>=
4
:
data
+=
1
assert
np
.
allclose
(
tr0_out
[
1
][
i
][
j
],
need_result
[
data
],
atol
=
1e-08
)
elif
col_type
==
"row_parallel_linear"
:
...
...
python/paddle/fluid/tests/unittests/test_collective_split_embedding_none_divisible.py
浏览文件 @
42c1297e
...
...
@@ -16,20 +16,24 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base
import
TestDistBase
from
paddle.distributed
import
fleet
paddle
.
enable_static
()
class
TestParallelEmbeddingNoneDivisibleAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
class
TestCollectiveSplitAssert
(
unittest
.
TestCase
):
def
network
(
self
):
fleet
.
init
()
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
emb_out
=
paddle
.
distributed
.
split
(
data
,
(
7
,
8
),
operation
=
"embedding"
,
num_partitions
=
2
)
def
test_
parallel_embedding_none_divisible
(
self
):
self
.
check_with_place
(
"parallel_embedding_api_none_divisible.py"
,
"parallel_embedding"
,
"nccl"
)
def
test_
assert
(
self
):
with
self
.
assertRaises
(
AssertionError
):
self
.
network
(
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录