Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
df113208
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
df113208
编写于
5月 06, 2022
作者:
L
lilong12
提交者:
GitHub
5月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add send/recv for ProcessGroupHeter (#42318)
上级
a384828d
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
182 addition
and
9 deletion
+182
-9
CMakeLists.txt
CMakeLists.txt
+6
-2
cmake/flags.cmake
cmake/flags.cmake
+4
-0
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
+104
-2
paddle/fluid/distributed/collective/ProcessGroupHeter.h
paddle/fluid/distributed/collective/ProcessGroupHeter.h
+12
-1
paddle/fluid/operators/collective/recv_v2_op.cu.cc
paddle/fluid/operators/collective/recv_v2_op.cu.cc
+17
-0
paddle/fluid/operators/collective/recv_v2_op_npu.cc
paddle/fluid/operators/collective/recv_v2_op_npu.cc
+11
-0
paddle/fluid/operators/collective/send_v2_op.cu.cc
paddle/fluid/operators/collective/send_v2_op.cu.cc
+12
-0
paddle/fluid/operators/collective/send_v2_op_npu.cc
paddle/fluid/operators/collective/send_v2_op_npu.cc
+12
-0
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+3
-3
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+1
-1
未找到文件。
CMakeLists.txt
浏览文件 @
df113208
...
...
@@ -100,7 +100,11 @@ if(APPLE AND WITH_ARM)
endif
()
if
(
WITH_ASCEND_CL AND NOT WITH_ASCEND_CXX11
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-D_GLIBCXX_USE_CXX11_ABI=0"
)
if
(
WITH_ARM_BRPC
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-D_GLIBCXX_USE_CXX11_ABI=1"
)
else
()
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-D_GLIBCXX_USE_CXX11_ABI=0"
)
endif
()
endif
()
if
(
WIN32
)
...
...
@@ -386,7 +390,7 @@ if(WITH_DISTRIBUTE)
if
(
LINUX
)
set
(
WITH_GLOO ON CACHE STRING
"Enable GLOO when compiling WITH_DISTRIBUTE=ON."
FORCE
)
endif
()
if
(
WITH_ASCEND_CL
)
if
(
WITH_ASCEND_CL
AND NOT WITH_ARM_BRPC
)
# disable WITH_PSCORE for NPU before include third_party
MESSAGE
(
WARNING
"Disable WITH_PSCORE when compiling with NPU. Force WITH_PSCORE=OFF."
)
set
(
WITH_PSCORE OFF CACHE BOOL
"Disable WITH_PSCORE when compiling with NPU"
FORCE
)
...
...
cmake/flags.cmake
浏览文件 @
df113208
...
...
@@ -158,6 +158,10 @@ if(WITH_IPU)
)
endif
()
if
(
WITH_ASCEND_CL AND WITH_ARM_BRPC
)
set
(
COMMON_FLAGS
${
COMMON_FLAGS
}
-faligned-new
)
endif
()
if
(
NOT APPLE
)
if
((
${
CMAKE_CXX_COMPILER_VERSION
}
VERSION_GREATER 8.0
)
OR
(
WITH_ROCM
))
set
(
COMMON_FLAGS
...
...
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
100755 → 100644
浏览文件 @
df113208
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#include <chrono>
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
...
...
@@ -24,6 +25,8 @@ namespace paddle {
namespace
distributed
{
using
Place
=
paddle
::
platform
::
Place
;
int
ProcessGroupHeter
::
send_count
=
0
;
int
ProcessGroupHeter
::
recv_count
=
0
;
std
::
shared_ptr
<
ProcessGroupHeter
::
HeterTask
>
ProcessGroupHeter
::
CreateTask
(
int
rank
,
CommType
comm_type
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
)
{
...
...
@@ -47,7 +50,8 @@ bool ProcessGroupHeter::HeterTask::Wait(std::chrono::milliseconds timeout) {
ProcessGroupHeter
::
ProcessGroupHeter
(
const
std
::
shared_ptr
<
Store
>&
store
,
int
rank
,
int
size
,
const
platform
::
Place
&
place
,
int
gid
,
int
local_rank
,
int
local_size
,
int
gloo_rank
,
int
gloo_size
,
bool
with_switch
,
std
::
string
switch_endpoint
)
int
gloo_rank
,
int
gloo_size
,
bool
with_switch
,
std
::
string
switch_endpoint
,
int
src_rank
,
int
dst_rank
)
:
ProcessGroup
(
rank
,
size
,
place
,
gid
),
store_
(
store
),
local_rank_
(
local_rank
),
...
...
@@ -55,7 +59,10 @@ ProcessGroupHeter::ProcessGroupHeter(
gloo_rank_
(
gloo_rank
),
gloo_size_
(
gloo_size
),
with_switch_
(
with_switch
),
switch_endpoint_
(
switch_endpoint
)
{
switch_endpoint_
(
switch_endpoint
),
src_rank_
(
src_rank
),
dst_rank_
(
dst_rank
)
{
return
;
#if defined(PADDLE_WITH_NCCL)
inner_pg_
=
std
::
make_shared
<
ProcessGroupNCCL
>
(
store
,
local_rank
,
local_size
,
place_
,
IGNORE_ID
);
...
...
@@ -246,5 +253,100 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupHeter::Broadcast(
return
CreateTask
(
rank_
,
CommType
::
BROADCAST
,
in_tensors
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHeter
::
Send
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
int
peer
)
{
#if defined(PADDLE_WITH_NCCL)
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
#endif
PADDLE_ENFORCE_EQ
(
in_tensors
.
size
(),
1
,
platform
::
errors
::
PreconditionNotMet
(
"For each send operation, there can only be one tensor to send."
));
// Copy Tensor to cpu
auto
start
=
std
::
chrono
::
high_resolution_clock
::
now
();
phi
::
DenseTensor
cpu_tensor
;
auto
&
gpu_tensor
=
in_tensors
[
0
];
framework
::
TensorCopySync
(
gpu_tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
PADDLE_ENFORCE_EQ
(
with_switch_
,
true
,
platform
::
errors
::
PreconditionNotMet
(
"Gloo does not support the send operation."
));
auto
end
=
std
::
chrono
::
high_resolution_clock
::
now
();
std
::
chrono
::
duration
<
double
>
diff
=
end
-
start
;
VLOG
(
2
)
<<
"Time to copy tensor of dims("
<<
cpu_tensor
.
dims
()
<<
") from gpu to cpu for send "
<<
std
::
setw
(
9
)
<<
" is: "
<<
diff
.
count
()
<<
" s"
<<
std
::
endl
;
// Send to switch
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
int64_t
tensor_size
=
cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
cpu_tensor
.
dtype
());
std
::
vector
<
int64_t
>
send_size
;
send_size
.
push_back
(
tensor_size
);
auto
id
=
src_rank_
*
10000
+
dst_rank_
;
std
::
string
tensor_name
=
std
::
to_string
(
gid_
)
+
"_id_"
+
std
::
to_string
(
id
)
+
std
::
string
(
"_"
)
+
std
::
to_string
(
send_count
++
);
VLOG
(
2
)
<<
"tensor_name:"
<<
tensor_name
;
int
ret
=
client_
->
Send
(
gid_
,
{
tensor_name
},
send_size
,
cpu_tensor
.
data
(),
tensor_size
);
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
return
CreateTask
(
rank_
,
CommType
::
SEND
,
in_tensors
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHeter
::
Recv
(
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
int
peer
)
{
#if defined(PADDLE_WITH_NCCL)
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
#endif
PADDLE_ENFORCE_EQ
(
out_tensors
.
size
(),
1
,
platform
::
errors
::
PreconditionNotMet
(
"For each rece operation, there can only be one tensor to receive."
));
// Copy Tensor to cpu
phi
::
DenseTensor
cpu_tensor
;
auto
&
gpu_tensor
=
out_tensors
[
0
];
cpu_tensor
.
Resize
(
gpu_tensor
.
dims
());
cpu_tensor
.
set_layout
(
gpu_tensor
.
layout
());
cpu_tensor
.
mutable_data
(
platform
::
CPUPlace
(),
gpu_tensor
.
dtype
());
PADDLE_ENFORCE_EQ
(
with_switch_
,
true
,
platform
::
errors
::
PreconditionNotMet
(
"Gloo does not support the send operation."
));
// recv from switch
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
auto
id
=
src_rank_
*
10000
+
dst_rank_
;
std
::
string
tensor_name
=
std
::
to_string
(
gid_
)
+
"_id_"
+
std
::
to_string
(
id
)
+
std
::
string
(
"_"
)
+
std
::
to_string
(
recv_count
++
);
VLOG
(
2
)
<<
"tensor_name: "
<<
tensor_name
;
auto
start
=
std
::
chrono
::
high_resolution_clock
::
now
();
int
ret
=
client_
->
Recv
(
gid_
,
{
tensor_name
},
cpu_tensor
.
data
(),
cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
cpu_tensor
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"receive to the switch module error."
));
auto
end
=
std
::
chrono
::
high_resolution_clock
::
now
();
std
::
chrono
::
duration
<
double
>
diff
=
end
-
start
;
double
goodput
=
cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
cpu_tensor
.
dtype
())
/
diff
.
count
();
VLOG
(
2
)
<<
"Goodput: "
<<
goodput
<<
"B/s"
<<
std
::
endl
;
start
=
std
::
chrono
::
high_resolution_clock
::
now
();
framework
::
TensorCopySync
(
cpu_tensor
,
gpu_tensor
.
place
(),
&
gpu_tensor
);
end
=
std
::
chrono
::
high_resolution_clock
::
now
();
diff
=
end
-
start
;
VLOG
(
2
)
<<
"Time to copy tensor of dims("
<<
cpu_tensor
.
dims
()
<<
") from gpu to cpu for recv "
<<
std
::
setw
(
9
)
<<
" is: "
<<
diff
.
count
()
<<
" s"
<<
std
::
endl
;
return
CreateTask
(
rank_
,
CommType
::
RECV
,
out_tensors
);
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupHeter.h
浏览文件 @
df113208
...
...
@@ -83,7 +83,8 @@ class ProcessGroupHeter : public ProcessGroup {
ProcessGroupHeter
(
const
std
::
shared_ptr
<
Store
>&
store
,
int
rank
,
int
size
,
const
platform
::
Place
&
place
,
int
gid
,
int
local_rank
,
int
local_size
,
int
gloo_rank
,
int
gloo_size
,
bool
with_switch
,
std
::
string
switch_endpoints
);
bool
with_switch
,
std
::
string
switch_endpoints
,
int
src_rank
,
int
dst_rank
);
const
std
::
string
GetBackendName
()
const
override
{
return
std
::
string
(
HETER_BACKEND_NAME
);
...
...
@@ -97,6 +98,12 @@ class ProcessGroupHeter : public ProcessGroup {
std
::
vector
<
phi
::
DenseTensor
>&
,
std
::
vector
<
phi
::
DenseTensor
>&
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
int
peer
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
int
peer
)
override
;
protected:
virtual
std
::
shared_ptr
<
ProcessGroupHeter
::
HeterTask
>
CreateTask
(
int
rank
,
CommType
opType
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
);
...
...
@@ -112,6 +119,10 @@ class ProcessGroupHeter : public ProcessGroup {
int
gloo_size_
;
bool
with_switch_
;
std
::
string
switch_endpoint_
;
int
src_rank_
;
int
dst_rank_
;
static
int
send_count
;
static
int
recv_count
;
};
}
// namespace distributed
...
...
paddle/fluid/operators/collective/recv_v2_op.cu.cc
浏览文件 @
df113208
...
...
@@ -19,6 +19,9 @@ limitations under the License. */
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/phi/api/include/tensor.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -42,6 +45,20 @@ class RecvOpV2CUDAKernel : public framework::OpKernel<T> {
gpuStream_t
stream
=
nullptr
;
auto
place
=
ctx
.
GetPlace
();
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
std
::
vector
<
phi
::
DenseTensor
>
out_tensor
;
auto
out_shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"out_shape"
);
auto
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
out_dims
=
out
->
dims
();
out
->
mutable_data
<
T
>
(
out_dims
,
place
);
out_tensor
.
emplace_back
(
*
out
);
auto
task
=
pg
->
Recv
(
out_tensor
,
peer
);
return
;
}
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
...
...
paddle/fluid/operators/collective/recv_v2_op_npu.cc
浏览文件 @
df113208
...
...
@@ -18,6 +18,8 @@ limitations under the License. */
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/npu/hccl_helper.h"
#endif
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/phi/api/include/tensor.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -35,6 +37,15 @@ class CRecvOpASCENDKernel : public framework::OpKernel<T> {
platform
::
ToHCCLDataType
(
framework
::
TransToProtoVarType
(
out
->
dtype
()));
int
ring_id
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
ring_id
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
ring_id
);
std
::
vector
<
phi
::
DenseTensor
>
out_tensor
;
out_tensor
.
emplace_back
(
*
out
);
auto
task
=
pg
->
Recv
(
out_tensor
,
0
);
return
;
}
auto
place
=
ctx
.
GetPlace
();
auto
comm
=
paddle
::
platform
::
HCCLCommContext
::
Instance
().
Get
(
ring_id
,
place
);
...
...
paddle/fluid/operators/collective/send_v2_op.cu.cc
浏览文件 @
df113208
...
...
@@ -18,6 +18,8 @@ limitations under the License. */
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/phi/api/include/tensor.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -39,6 +41,16 @@ class SendOpV2CUDAKernel : public framework::OpKernel<T> {
peer
,
0
,
platform
::
errors
::
InvalidArgument
(
"The peer (%d) for send_v2 op must be non-negative."
,
peer
));
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
std
::
vector
<
phi
::
DenseTensor
>
in_tensor
;
auto
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
in_tensor
.
push_back
(
*
x
);
auto
task
=
pg
->
Send
(
in_tensor
,
peer
);
return
;
}
gpuStream_t
stream
=
nullptr
;
auto
place
=
ctx
.
GetPlace
();
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
...
...
paddle/fluid/operators/collective/send_v2_op_npu.cc
浏览文件 @
df113208
...
...
@@ -18,6 +18,8 @@ limitations under the License. */
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/npu/hccl_helper.h"
#endif
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/phi/api/include/tensor.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -34,6 +36,16 @@ class CSendOpASCENDKernel : public framework::OpKernel<T> {
platform
::
ToHCCLDataType
(
framework
::
TransToProtoVarType
(
x
->
dtype
()));
int
ring_id
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
ring_id
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
ring_id
);
std
::
vector
<
phi
::
DenseTensor
>
in_tensor
;
auto
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
in_tensor
.
push_back
(
*
x
);
auto
task
=
pg
->
Send
(
in_tensor
,
1
);
return
;
}
auto
place
=
ctx
.
GetPlace
();
auto
comm
=
paddle
::
platform
::
HCCLCommContext
::
Instance
().
Get
(
ring_id
,
place
);
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
df113208
...
...
@@ -258,13 +258,13 @@ void BindDistributed(py::module *m) {
#else
const
platform
::
CUDAPlace
&
,
#endif
int
,
int
,
int
,
int
,
int
,
bool
,
std
::
string
>
(),
int
,
int
,
int
,
int
,
int
,
bool
,
std
::
string
,
int
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"gid"
)
=
0
,
py
::
arg
(
"local_rank"
)
=
0
,
py
::
arg
(
"local_size"
)
=
1
,
py
::
arg
(
"gloo_rank"
)
=
0
,
py
::
arg
(
"gloo_size"
)
=
1
,
py
::
arg
(
"with_switch"
)
=
false
,
py
::
arg
(
"switch_endpoint"
)
=
""
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
py
::
arg
(
"switch_endpoint"
)
=
""
,
py
::
arg
(
"src_rank"
)
=
""
,
py
::
arg
(
"dst_rank"
)
=
""
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
...
...
python/paddle/distributed/collective.py
浏览文件 @
df113208
...
...
@@ -263,7 +263,7 @@ def _new_process_group_impl(backend,
rank
=
global_rank
,
world_size
=
global_world_size
,
place
=
place
,
gid
=
0
,
gid
=
group_id
,
local_rank
=
rank
,
local_size
=
world_size
,
gloo_rank
=
cluster_id
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录