collective.py 36.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
from ..fluid.dygraph.parallel import prepare_context
import paddle
24
from .fleet import fleet
25 26 27 28
import paddle.fluid as fluid
import paddle.fluid.core as core

__all__ = [
K
kuizhiqing 已提交
29 30 31
    'wait',
    'new_group',
    'get_group',
32 33 34 35 36 37
    'broadcast',
    'all_reduce',
    'reduce',
    'all_gather',
    'scatter',
    'barrier',
38
    'split',
39 40 41 42 43
    'ReduceOp',
]


class ReduceOp:
L
lilong12 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
75 76 77 78 79 80
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3


K
kuizhiqing 已提交
81 82 83 84
class Group():
    """
    The abstract representation of group.
    """
85

K
kuizhiqing 已提交
86
    def __init__(self, rank, rank_num, id=0, ranks=[]):
87 88
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        self.id = id
        self.ranks = ranks

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.id == 0:
            return rank
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1


_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}


def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
        _group_map[0] = Group(genv.rank, genv.world_size, 0)
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
145
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
    return gm[group] if group in gm else None


def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
166
    Creates a new distributed communication group.
K
kuizhiqing 已提交
167 168

    Args:
K
kuizhiqing 已提交
169
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
170 171 172
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
173
        Group: The group instance.
K
kuizhiqing 已提交
174 175 176 177 178 179 180

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
181 182 183
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

    """

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    global _group_map
    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
        return gp

    ranks = sorted(ranks)
    group_rank = ranks.index(global_rank)
    group_size = len(ranks)
    gp = Group(group_rank, group_size, ring_id, ranks)
    _group_map[ring_id] = gp

    if group_size < 2:
        return gp

    strategy = core.ParallelStrategy()
    strategy.nranks = group_size
    strategy.local_rank = group_rank
    strategy.trainer_endpoints = [genv.trainer_endpoints[i] for i in ranks]
    strategy.current_endpoint = genv.current_endpoint
    strategy.nrings = 1

    if core.is_compiled_with_cuda():
        place = core.CUDAPlace(genv.device_id)
        core.NCCLParallelContext(strategy, place).init_with_ring_id(ring_id)
    else:
K
kuizhiqing 已提交
222
        assert False, ("no cuda device found")
K
kuizhiqing 已提交
223 224 225

    return gp

226

K
kuizhiqing 已提交
227 228 229 230 231 232 233 234
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
235 236
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
237 238 239 240 241 242 243 244 245 246

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
247
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

    if in_dygraph_mode():
        return core.ops.c_sync_calc_stream(tensor, tensor)

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
276

277

K
kuizhiqing 已提交
278
def _sync_comm_stream(tensor, ring_id=0):
279

K
kuizhiqing 已提交
280 281 282
    if in_dygraph_mode():
        return core.ops.c_sync_comm_stream([tensor], [tensor], 'ring_id',
                                           ring_id)
283

K
kuizhiqing 已提交
284
    op_type = 'c_sync_comm_stream'
285

K
kuizhiqing 已提交
286 287 288 289 290 291 292 293 294
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
295 296 297 298 299 300 301 302
    """

    Broadcast a tensor from the source to all others.

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
303
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
304 305
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
306 307 308 309 310 311 312

    Returns:
        None.

    Examples:
        .. code-block:: python

313 314 315 316 317 318 319 320 321 322 323 324 325 326
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
327
    """
K
kuizhiqing 已提交
328 329 330 331 332 333 334 335 336

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
337
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
338

339
    if in_dygraph_mode():
K
kuizhiqing 已提交
340 341 342
        return core.ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                    'use_calc_stream', use_calc_stream,
                                    'ring_id', ring_id)
343 344 345 346 347 348 349 350 351 352 353 354

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
355 356 357
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
358 359 360
        })


K
kuizhiqing 已提交
361
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
362 363 364 365 366 367 368
    """

    Reduce a tensor over all ranks so that all get the result.

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
369
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
370
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
371 372
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
373 374 375 376 377 378 379

    Returns:
        None.

    Examples:
        .. code-block:: python

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
395
    """
K
kuizhiqing 已提交
396 397 398 399 400
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

401 402 403
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_allreduce_sum(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
404
                                            use_calc_stream, 'ring_id', ring_id)
405 406
        elif op == ReduceOp.MAX:
            return core.ops.c_allreduce_max(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
407
                                            use_calc_stream, 'ring_id', ring_id)
408 409
        elif op == ReduceOp.MIN:
            return core.ops.c_allreduce_min(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
410
                                            use_calc_stream, 'ring_id', ring_id)
411 412
        elif op == ReduceOp.PROD:
            return core.ops.c_allreduce_prod(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
413 414
                                             use_calc_stream, 'ring_id',
                                             ring_id)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for all_reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
432 433
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
434 435 436 437 438
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
439 440
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
441 442


K
kuizhiqing 已提交
443
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
444 445 446 447 448 449 450 451
    """

    Reduce a tensor to the destination from all others.

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
452
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
453
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
454 455
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
456 457 458 459 460 461 462

    Returns:
        None.

    Examples:
        .. code-block:: python

463 464 465 466 467 468 469 470 471 472 473 474 475 476
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
477
    """
K
kuizhiqing 已提交
478 479 480 481 482 483 484 485
    if group is not None and not group.is_member():
        return

    if not isinstance(dst, int):
        raise ValueError("dst should be int.")

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
486
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
487

488 489 490
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
491 492
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
493 494
        elif op == ReduceOp.MAX:
            return core.ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
495 496
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
497 498
        elif op == ReduceOp.MIN:
            return core.ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
499 500
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
501 502
        elif op == ReduceOp.PROD:
            return core.ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
503 504
                                          use_calc_stream, 'ring_id', ring_id,
                                          'root_id', gdst)
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
531 532 533
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
534 535 536
        })


K
kuizhiqing 已提交
537
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
538 539 540 541 542 543 544 545 546
    """

    Gather tensors from all participators and all get the result.

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
547
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
548 549
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
550 551 552 553 554 555 556

    Returns:
        None.

    Examples:
        .. code-block:: python

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
576
    """
K
kuizhiqing 已提交
577 578 579 580 581 582
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

583 584 585
    op_type = 'c_allgather'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
K
kuizhiqing 已提交
586

587
    if in_dygraph_mode():
K
kuizhiqing 已提交
588 589
        core.ops.c_allgather(tensor, out, 'use_calc_stream', use_calc_stream,
                             'ring_id', ring_id, 'nranks', nranks)
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
    else:
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
607 608 609
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
610 611
            })

K
kuizhiqing 已提交
612
    tensor_list.extend(paddle.split(out, nranks, 0))
613 614


K
kuizhiqing 已提交
615
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
616 617 618 619 620 621 622 623
    """

    Scatter a tensor to all participators.

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        tensor_list (list): A list of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
624 625
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
626
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
627 628
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
629 630 631 632 633 634 635

    Returns:
        None.

    Examples:
        .. code-block:: python

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
655
    """
K
kuizhiqing 已提交
656 657 658 659 660 661 662 663
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
664
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
665 666 667
    rank = _get_global_group().rank if group is None else group.rank
    nranks = _get_global_group().nranks if group is None else group.nranks

668
    op_type = 'c_scatter'
K
kuizhiqing 已提交
669 670

    if rank != gsrc:
671 672 673 674 675
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
    if in_dygraph_mode():
K
kuizhiqing 已提交
676 677 678
        return core.ops.c_scatter(temp, tensor, 'use_calc_stream',
                                  use_calc_stream, 'ring_id', ring_id, 'nranks',
                                  nranks, 'root', gsrc)
679 680 681 682 683 684 685 686 687
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
688 689 690
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
691 692 693 694
            'nranks': nranks,
        })


L
lilong12 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
def _c_identity(tensor, group=0):
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
    if in_dygraph_mode():
        return core.ops.c_identity(out, tensor, 'use_calc_stream', True,
                                   'ring_id', group, 'use_model_parallel', True)
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
    if not isinstance(group, int):
        raise ValueError("The type of 'group' for _c_identity should be int.")
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': group,
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


def _c_split(tensor, rank, nranks, group=0):
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
    if in_dygraph_mode():
        return core.ops.c_split(out, tensor, 'use_calc_stream', True, 'ring_id',
                                group, 'rank', rank, 'use_model_parallel', True)
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
    if not isinstance(group, int):
        raise ValueError("The type of 'group' for _identity should be int.")
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': group,
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


K
kuizhiqing 已提交
768
def barrier(group=None):
769 770 771 772 773
    """

    Barrier among all participators in the group.

    Args:
K
kuizhiqing 已提交
774
        group (Group): The group instance return by new_group or None for global default group.
775 776 777 778 779 780 781

    Returns:
        None.

    Examples:
        .. code-block:: python

782 783
            import paddle
            from paddle.distributed import init_parallel_env
784

785 786 787
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
788
    """
K
kuizhiqing 已提交
789 790 791 792 793
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

794
    op_type = 'barrier'
795
    temp = fill_constant([1], dtype="int32", value="1")
796
    if in_dygraph_mode():
K
kuizhiqing 已提交
797 798
        return core.ops.barrier(temp, temp, 'ring_id', ring_id)
    if not isinstance(ring_id, int):
799 800 801 802 803 804
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
K
kuizhiqing 已提交
805
        attrs={'ring_id': ring_id})
806 807


L
lilong12 已提交
808 809 810 811 812 813 814 815 816 817 818 819
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
                     group=0):
820 821 822
    """
    Parallel Linear
    """
L
lilong12 已提交
823 824 825
    if axis == 0:
        if split_tensor:
            x = _c_split(x, inner_rank, nranks, group=group)
826
    else:
L
lilong12 已提交
827 828
        x = _c_identity(x, group=group)

829 830 831 832 833 834 835 836 837 838
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    linear_out = linear(x)
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
L
lilong12 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    startup_block.vars[linear.weight.name].is_distributed = True
    main_block.vars[linear.weight.name].is_distributed = True

    if not gather_out: return linear_out

    op_type = 'c_allreduce_sum' if axis == 0 else 'c_concat'
    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
                'ring_id': group,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
                'ring_id': group,
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
877 878


L
lilong12 已提交
879 880 881 882 883 884 885 886
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
                        group=0):
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
    """
    Parallel Embedding
    """
    origin_num_embeddings = origin_size[0]
    embedding = paddle.nn.Embedding(
        per_part_embeddings,
        origin_size[1],
        padding_idx=per_part_embeddings - 1,
        sparse=False,
        weight_attr=param_attr,
        name=name)

    origin_input_shape = x.shape
    if len(origin_input_shape) == 2:
        x = paddle.unsqueeze(x, axis=-1)
    else:
        assert origin_input_shape[-1] == 1, (
            "The last dimension size of x must be 1.")
    x_shard = paddle.shard_index(x, origin_num_embeddings, num_partitions,
                                 inner_rank, per_part_embeddings - 1)
    if len(origin_input_shape) == 2:
        x_shard = paddle.squeeze(x_shard, axis=-1)
    emb_out = embedding(x_shard)
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
    startup_block.vars[embedding.weight.name].is_distributed = True
    main_block.vars[embedding.weight.name].is_distributed = True
L
lilong12 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
    out = main_block.create_var(
        shape=emb_out.shape,
        dtype=emb_out.dtype,
        type=emb_out.type,
        lod_level=emb_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=emb_out.desc.need_check_feed())
    main_block.append_op(
        type='c_allreduce_sum',
        inputs={'X': emb_out},
        outputs={'Out': out},
        attrs={
            'ring_id': group,
            'use_calc_stream': True,
            'use_model_parallel': True
        })
    return out
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            data = paddle.randint(0, 8, shape=[10,4])
            emb_out = padle.distributed.split(
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
    if in_dygraph_mode():
L
lilong12 已提交
1024 1025 1026 1027
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    else:
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
        per_part_size = (size[0] + num_partitions - 1) // num_partitions
        last_part_size = size[0] - per_part_size * (num_partitions - 1)
        if inner_rank == num_partitions - 1: per_part_size = last_part_size
        per_part_size += 1  # make the last row as the padding index

L
lilong12 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=0)
1054 1055
        return emb_out
    else:
L
lilong12 已提交
1056
        should_split = False
1057 1058 1059 1060 1061 1062 1063
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1064
            if x.shape[-1] == size[0]: should_split = True
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1086 1087 1088 1089
            num_partitions,
            should_split,
            name=name,
            group=0)
1090
        return linear_out