mul_op.cc 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19

C
Chen Weihang 已提交
20
#include "paddle/fluid/framework/infershape_utils.h"
H
HongyuJia 已提交
21
#include "paddle/fluid/framework/op_registry.h"
C
Chen Weihang 已提交
22 23 24
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
25 26 27
namespace paddle {
namespace operators {

28
using framework::OpKernelType;
D
dongzhihong 已提交
29

30
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31
 public:
32 33
  using framework::OperatorWithKernel::OperatorWithKernel;

P
Physher 已提交
34 35
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
36
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
J
jiahongyu 已提交
37
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
P
Physher 已提交
38
  }
39 40
};

D
dongzhihong 已提交
41
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
42
 public:
Y
Yu Yang 已提交
43
  void Make() override {
C
caoying03 已提交
44 45 46
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
F
WIP  
fengjiayi 已提交
47
    AddAttr<int>(
F
fengjiayi 已提交
48
        "x_num_col_dims",
C
caoying03 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
64
        )DOC")
F
WIP  
fengjiayi 已提交
65
        .SetDefault(1)
F
fengjiayi 已提交
66
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
67
    AddAttr<int>(
F
fengjiayi 已提交
68
        "y_num_col_dims",
C
caoying03 已提交
69 70 71 72
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
73
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
74
        )DOC")
F
WIP  
fengjiayi 已提交
75
        .SetDefault(1)
F
fengjiayi 已提交
76
        .EqualGreaterThan(1);
77
    AddComment(R"DOC(
C
caoying03 已提交
78
Mul Operator.
K
kexinzhao 已提交
79

C
caoying03 已提交
80
This operator is used to perform matrix multiplication for input $X$ and $Y$.
81

82 83
The equation is:

C
caoying03 已提交
84
$$Out = X * Y$$
85

C
caoying03 已提交
86 87
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
88

89 90 91 92
)DOC");
  }
};

C
chengduo 已提交
93 94
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
95
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
96
      const override {
97 98
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
99 100 101
  }
};

102
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
103 104 105
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

106 107 108
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
J
jiahongyu 已提交
109
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
110
  }
D
dongzhihong 已提交
111 112
};

H
hong 已提交
113 114
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
115
 public:
H
hong 已提交
116
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
117 118

 protected:
119
  void Apply(GradOpPtr<T> retv) const override {
S
sneaxiy 已提交
120
    retv->SetType("mul_grad");
H
hong 已提交
121 122 123 124 125 126
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
127 128 129
  }
};

130 131 132 133 134
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
135 136 137
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
138

L
lvmengsi 已提交
139 140
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
141 142 143
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
144 145
      ctx->ShareDim("X", "DX");
    }
146
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
147 148 149 150 151
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
152 153
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
154
 public:
H
hong 已提交
155
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
156 157

 protected:
158
  void Apply(GradOpPtr<T> retv) const override {
159 160
    retv->SetType("mul_grad_grad");

H
hong 已提交
161 162 163 164 165
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
166

H
hong 已提交
167 168
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
169

L
lvmengsi 已提交
170
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
171
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
172
    }
173 174 175 176
    retv->SetOutput(
        "DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
177

H
hong 已提交
178
    retv->SetAttrMap(this->Attrs());
179 180 181
  }
};

182 183 184
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
185
namespace ops = paddle::operators;
186 187
DECLARE_INFER_SHAPE_FUNCTOR(mul,
                            MulInferShapeFunctor,
C
Chen Weihang 已提交
188
                            PD_INFER_META(phi::MatmulWithFlattenInferMeta));
189 190 191 192
REGISTER_OPERATOR(mul,
                  ops::MulOp,
                  ops::MulOpMaker,
                  ops::MulOpInferVarType,
H
hong 已提交
193
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
194 195
                  ops::MulOpGradMaker<paddle::imperative::OpBase>,
                  MulInferShapeFunctor);
P
Physher 已提交
196

197 198
DECLARE_INFER_SHAPE_FUNCTOR(mul_grad,
                            MulGradInferShapeFunctor,
C
Chen Weihang 已提交
199
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
200 201
REGISTER_OPERATOR(mul_grad,
                  ops::MulGradOp,
H
hong 已提交
202
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
203 204
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>,
                  MulGradInferShapeFunctor);
P
Physher 已提交
205

206
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);