Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
632b320e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
632b320e
编写于
8月 14, 2017
作者:
D
dongzhihong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"refine argument with new style "
上级
426d7328
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
66 addition
and
36 deletion
+66
-36
paddle/operators/math/math_function.h
paddle/operators/math/math_function.h
+9
-0
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+11
-9
paddle/operators/mul_op.h
paddle/operators/mul_op.h
+34
-26
python/paddle/v2/framework/tests/test_mul_op.py
python/paddle/v2/framework/tests/test_mul_op.py
+12
-1
未找到文件。
paddle/operators/math/math_function.h
浏览文件 @
632b320e
...
...
@@ -77,6 +77,15 @@ void matmul(const framework::Tensor& matrix_a, bool trans_a,
framework
::
Tensor
*
matrix_out
,
T
beta
,
platform
::
DeviceContext
*
context
);
// // matrix multiply with continuous memory
// template <typename Place, typename T>
// void matmul(const framework::Tensor& matrix_a, bool trans_a,
// const framework::Tensor& matrix_b, bool trans_b,
// framework::Tensor* matrix_out,
// platform::DeviceContext* context) {
// matmul(matrix_a, matrix_b, trans_a, trans_b, 1, matrix_out, 0, context);
// }
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/mul_op.cc
浏览文件 @
632b320e
...
...
@@ -18,6 +18,8 @@
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
MulOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -60,19 +62,19 @@ class MulOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
.
InputSize
(),
3UL
,
"Input of MulOpGrad should be 3, X, Y, Out@GRAD"
);
PADDLE_ENFORCE_EQ
(
ctx
.
OutputSize
(),
2UL
,
"Output of MulOpGrad should be 2, X@GRAD, Y@GRAD"
);
//
PADDLE_ENFORCE_EQ(ctx.InputSize(), 3UL,
//
"Input of MulOpGrad should be 3, X, Y, Out@GRAD");
//
PADDLE_ENFORCE_EQ(ctx.OutputSize(), 2UL,
//
"Output of MulOpGrad should be 2, X@GRAD, Y@GRAD");
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y) should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
dim0
=
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
();
auto
dim1
=
ctx
.
Input
<
Tensor
>
(
1
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
2
)
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
dim0
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"X"
)
)
->
dims
();
auto
dim1
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
)
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
)
)
->
dims
();
PADDLE_ENFORCE
(
dim0
[
0
]
*
dim1
[
0
]
==
out_dims
[
0
],
"Out@GRAD[0] must equal to X[0] * Y[0]"
);
PADDLE_ENFORCE
(
dim0
[
1
]
*
dim1
[
1
]
==
out_dims
[
1
],
...
...
paddle/operators/mul_op.h
浏览文件 @
632b320e
...
...
@@ -31,18 +31,22 @@ template <typename Place, typename T>
class
MulKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
Eigen
::
array
<
Eigen
::
IndexPair
<
Eigen
::
DenseIndex
>
,
1
>
dim_pair
=
{
{
Eigen
::
IndexPair
<
Eigen
::
DenseIndex
>
(
1
,
0
)}};
auto
*
input0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input1
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
X
=
EigenMatrix
<
T
>::
From
(
*
input0
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
input1
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
output
);
auto
&
place
=
context
.
GetEigenDevice
<
Place
>
();
Z
.
device
(
place
)
=
X
.
contract
(
Y
,
dim_pair
);
// Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> dim_pair = {
// {Eigen::IndexPair<Eigen::DenseIndex>(1, 0)}};
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
Z
=
context
.
Output
<
Tensor
>
(
"Out"
);
Z
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
device_context
=
const_cast
<
platform
::
DeviceContext
*>
(
context
.
device_context_
);
math
::
matmul
<
Place
,
T
>
(
*
X
,
false
,
*
Y
,
false
,
1
,
Z
,
0
,
device_context
);
// auto X = EigenMatrix<T>::From(*input0);
// auto Y = EigenMatrix<T>::From(*input1);
// auto Z = EigenMatrix<T>::From(*output);
// auto& place = context.GetEigenDevice<Place>();
// Z.device(place) = X.contract(Y, dim_pair);
}
};
...
...
@@ -50,27 +54,31 @@ template <typename Place, typename T>
class
MulGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input0
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input1
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
input2
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
Y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dOut
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output0
=
ctx
.
Output
<
Tensor
>
(
0
);
auto
*
output1
=
ctx
.
Output
<
Tensor
>
(
1
);
output0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
output1
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dY
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
// auto* dXdata = dX->template mutable_data<T>(ctx.GetPlace());
// auto* dYdata = dY->template mutable_data<T>(ctx.GetPlace());
auto
*
device_context
=
const_cast
<
platform
::
DeviceContext
*>
(
ctx
.
device_context_
);
math
::
matmul
<
Place
,
T
>
(
*
dOut
,
false
,
*
Y
,
true
,
1
,
dX
,
0
,
device_context
);
math
::
matmul
<
Place
,
T
>
(
*
X
,
true
,
*
dOut
,
false
,
1
,
dY
,
0
,
device_context
);
auto
X
=
EigenMatrix
<
T
>::
From
(
*
input0
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
input1
);
auto
dOut
=
EigenMatrix
<
T
>::
From
(
*
input2
);
auto
dX
=
EigenMatrix
<
T
>::
From
(
*
output0
);
auto
dY
=
EigenMatrix
<
T
>::
From
(
*
output1
);
//
auto X = EigenMatrix<T>::From(*input0);
//
auto Y = EigenMatrix<T>::From(*input1);
//
auto dOut = EigenMatrix<T>::From(*input2);
//
auto dX = EigenMatrix<T>::From(*output0);
//
auto dY = EigenMatrix<T>::From(*output1);
// dX = Out@G * Y'
// dY = X' * Out@G
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
//
auto place = ctx.GetEigenDevice<Place>();
// TODO(dzh,qijun) : need transpose feature of blas library
// Eigen Tensor does not support it very well
// dX.device(place) =
dOut.contract(dOut, transpose
)
// dX.device(place) =
matmul(input2,
)
}
};
...
...
python/paddle/v2/framework/tests/test_mul_op.py
浏览文件 @
632b320e
import
unittest
from
op_test_util
import
OpTestMeta
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
class
TestMulOp
(
unittest
.
TestCase
):
...
...
@@ -15,6 +16,16 @@ class TestMulOp(unittest.TestCase):
self
.
outputs
=
{
'Out'
:
np
.
dot
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
MulGradOpTest
(
GradientChecker
):
def
test_mul
(
self
):
op
=
create_op
(
"mul"
)
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
84
,
100
)).
astype
(
"float32"
)
}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
)
# TODO(dzh,qijun) : mulgrad test case need transpose feature of blas library
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录