mul_op.cc 10.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19
#include "paddle/fluid/framework/op_registry.h"
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23

C
Chen Weihang 已提交
24 25 26 27
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
28 29 30
namespace paddle {
namespace operators {

31
using framework::OpKernelType;
D
dongzhihong 已提交
32 33
using framework::Tensor;

34 35 36
constexpr int kMULMKLDNNINT8 = 1;
constexpr int kMULMKLDNNFP32 = 2;

37
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
38
 public:
39 40
  using framework::OperatorWithKernel::OperatorWithKernel;

P
Physher 已提交
41 42 43 44 45 46
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
47
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
48 49
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
50
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
P
Physher 已提交
51 52 53
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

54 55
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
56
        customized_type_value = kMULMKLDNNINT8;
57 58 59 60 61 62
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
P
Physher 已提交
63 64 65 66 67 68 69
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
70 71
};

D
dongzhihong 已提交
72
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
73
 public:
Y
Yu Yang 已提交
74
  void Make() override {
C
caoying03 已提交
75 76 77
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
78 79
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
80 81
        .SetDefault(false)
        .AsExtra();
F
WIP  
fengjiayi 已提交
82
    AddAttr<int>(
F
fengjiayi 已提交
83
        "x_num_col_dims",
C
caoying03 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
99
        )DOC")
F
WIP  
fengjiayi 已提交
100
        .SetDefault(1)
F
fengjiayi 已提交
101
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
102
    AddAttr<int>(
F
fengjiayi 已提交
103
        "y_num_col_dims",
C
caoying03 已提交
104 105 106 107
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
108
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
109
        )DOC")
F
WIP  
fengjiayi 已提交
110
        .SetDefault(1)
F
fengjiayi 已提交
111
        .EqualGreaterThan(1);
112 113 114 115 116
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
117 118
        .SetDefault(1.0f)
        .AsExtra();
119 120 121 122 123
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
124 125
        .SetDefault({1.0f})
        .AsExtra();
P
Physher 已提交
126 127 128
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
129 130
        .SetDefault(1.0f)
        .AsExtra();
P
Physher 已提交
131 132 133 134
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
135 136
        .SetDefault(false)
        .AsExtra();
137
    AddComment(R"DOC(
C
caoying03 已提交
138
Mul Operator.
K
kexinzhao 已提交
139

C
caoying03 已提交
140
This operator is used to perform matrix multiplication for input $X$ and $Y$.
141

142 143
The equation is:

C
caoying03 已提交
144
$$Out = X * Y$$
145

C
caoying03 已提交
146 147
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
148

149 150 151 152
)DOC");
  }
};

C
chengduo 已提交
153 154
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
155
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
156
      const override {
157 158
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
159 160 161
  }
};

162
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
163 164 165
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
        customized_type_value = kMULMKLDNNINT8;
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
D
dongzhihong 已提交
195 196
};

H
hong 已提交
197 198
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
199
 public:
H
hong 已提交
200
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
201 202

 protected:
203
  void Apply(GradOpPtr<T> retv) const override {
S
sneaxiy 已提交
204
    retv->SetType("mul_grad");
H
hong 已提交
205 206 207 208 209 210
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
211 212 213
  }
};

214 215 216 217 218
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
219 220 221
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
222

L
lvmengsi 已提交
223 224
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
225 226 227
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
228 229
      ctx->ShareDim("X", "DX");
    }
230
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
231 232 233 234 235
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
236 237
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
238
 public:
H
hong 已提交
239
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
240 241

 protected:
242
  void Apply(GradOpPtr<T> retv) const override {
243 244
    retv->SetType("mul_grad_grad");

H
hong 已提交
245 246 247 248 249
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
250

H
hong 已提交
251 252
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
253

L
lvmengsi 已提交
254
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
255
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
256
    }
257 258 259 260
    retv->SetOutput(
        "DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
261

H
hong 已提交
262
    retv->SetAttrMap(this->Attrs());
263 264 265
  }
};

266 267 268
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
269
namespace ops = paddle::operators;
C
Chen Weihang 已提交
270 271
DECLARE_INFER_SHAPE_FUNCTOR(mul, MulInferShapeFunctor,
                            PD_INFER_META(phi::MatmulWithFlattenInferMeta));
C
chengduo 已提交
272
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
H
hong 已提交
273
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
274 275
                  ops::MulOpGradMaker<paddle::imperative::OpBase>,
                  MulInferShapeFunctor);
P
Physher 已提交
276

C
Chen Weihang 已提交
277 278
DECLARE_INFER_SHAPE_FUNCTOR(mul_grad, MulGradInferShapeFunctor,
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
H
hong 已提交
279 280
REGISTER_OPERATOR(mul_grad, ops::MulGradOp,
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
281 282
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>,
                  MulGradInferShapeFunctor);
P
Physher 已提交
283

284
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);