mul_op.cc 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19

20
#include "paddle/fluid/framework/op_registry.h"
P
Physher 已提交
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24

C
Chen Weihang 已提交
25 26 27 28
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
29 30 31
namespace paddle {
namespace operators {

32
using framework::OpKernelType;
D
dongzhihong 已提交
33

34
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
35
 public:
36 37
  using framework::OperatorWithKernel::OperatorWithKernel;

P
Physher 已提交
38 39
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
40
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
J
jiahongyu 已提交
41
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
P
Physher 已提交
42
  }
43 44
};

D
dongzhihong 已提交
45
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
46
 public:
Y
Yu Yang 已提交
47
  void Make() override {
C
caoying03 已提交
48 49 50
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
F
WIP  
fengjiayi 已提交
51
    AddAttr<int>(
F
fengjiayi 已提交
52
        "x_num_col_dims",
C
caoying03 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
68
        )DOC")
F
WIP  
fengjiayi 已提交
69
        .SetDefault(1)
F
fengjiayi 已提交
70
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
71
    AddAttr<int>(
F
fengjiayi 已提交
72
        "y_num_col_dims",
C
caoying03 已提交
73 74 75 76
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
77
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
78
        )DOC")
F
WIP  
fengjiayi 已提交
79
        .SetDefault(1)
F
fengjiayi 已提交
80
        .EqualGreaterThan(1);
81
    AddComment(R"DOC(
C
caoying03 已提交
82
Mul Operator.
K
kexinzhao 已提交
83

C
caoying03 已提交
84
This operator is used to perform matrix multiplication for input $X$ and $Y$.
85

86 87
The equation is:

C
caoying03 已提交
88
$$Out = X * Y$$
89

C
caoying03 已提交
90 91
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
92

93 94 95 96
)DOC");
  }
};

C
chengduo 已提交
97 98
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
99
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
100
      const override {
101 102
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
103 104 105
  }
};

106
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
107 108 109
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

110 111 112
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
J
jiahongyu 已提交
113
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
114
  }
D
dongzhihong 已提交
115 116
};

H
hong 已提交
117 118
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
119
 public:
H
hong 已提交
120
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
121 122

 protected:
123
  void Apply(GradOpPtr<T> retv) const override {
S
sneaxiy 已提交
124
    retv->SetType("mul_grad");
H
hong 已提交
125 126 127 128 129 130
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
131 132 133
  }
};

134 135 136 137 138
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
139 140 141
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
142

L
lvmengsi 已提交
143 144
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
145 146 147
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
148 149
      ctx->ShareDim("X", "DX");
    }
150
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
151 152 153 154 155
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
156 157
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
158
 public:
H
hong 已提交
159
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
160 161

 protected:
162
  void Apply(GradOpPtr<T> retv) const override {
163 164
    retv->SetType("mul_grad_grad");

H
hong 已提交
165 166 167 168 169
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
170

H
hong 已提交
171 172
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
173

L
lvmengsi 已提交
174
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
175
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
176
    }
177 178 179 180
    retv->SetOutput(
        "DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
181

H
hong 已提交
182
    retv->SetAttrMap(this->Attrs());
183 184 185
  }
};

186 187 188
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
189
namespace ops = paddle::operators;
190 191
DECLARE_INFER_SHAPE_FUNCTOR(mul,
                            MulInferShapeFunctor,
C
Chen Weihang 已提交
192
                            PD_INFER_META(phi::MatmulWithFlattenInferMeta));
193 194 195 196
REGISTER_OPERATOR(mul,
                  ops::MulOp,
                  ops::MulOpMaker,
                  ops::MulOpInferVarType,
H
hong 已提交
197
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
198 199
                  ops::MulOpGradMaker<paddle::imperative::OpBase>,
                  MulInferShapeFunctor);
P
Physher 已提交
200

201 202
DECLARE_INFER_SHAPE_FUNCTOR(mul_grad,
                            MulGradInferShapeFunctor,
C
Chen Weihang 已提交
203
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
204 205
REGISTER_OPERATOR(mul_grad,
                  ops::MulGradOp,
H
hong 已提交
206
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
207 208
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>,
                  MulGradInferShapeFunctor);
P
Physher 已提交
209

210
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);