mul_op.cc 13.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19
#include "paddle/fluid/framework/op_registry.h"
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27
using framework::OpKernelType;
D
dongzhihong 已提交
28 29
using framework::Tensor;

30 31 32
constexpr int kMULMKLDNNINT8 = 1;
constexpr int kMULMKLDNNFP32 = 2;

33
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
34
 public:
35 36 37
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
38 39 40
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "Mul");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Mul");
Q
Qiao Longfei 已提交
41 42 43

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
44

Q
Qiao Longfei 已提交
45 46
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
47

M
minqiyang 已提交
48 49 50
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
51

52
    PADDLE_ENFORCE_NE(phi::product(y_dims), 0,
53
                      platform::errors::PreconditionNotMet(
54
                          "The Input variable Y(%s) has not "
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
                          "been initialized. You may need to confirm "
                          "if you put exe.run(startup_program) "
                          "after optimizer.minimize function.",
                          ctx->Inputs("Y").front()));
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        platform::errors::InvalidArgument(
            "The input tensor X's dimensions of MulOp "
            "should be larger than x_num_col_dims. But received X's "
            "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
            x_dims.size(), x_dims, x_num_col_dims));
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        platform::errors::InvalidArgument(
            "The input tensor Y's dimensions of MulOp "
            "should be larger than y_num_col_dims. But received Y's "
            "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
            y_dims.size(), y_dims, y_num_col_dims));
73

74 75
    auto x_mat_dims = phi::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = phi::flatten_to_2d(y_dims, y_num_col_dims);
76

77 78
    PADDLE_ENFORCE_EQ(
        x_mat_dims[1], y_mat_dims[0],
79
        platform::errors::InvalidArgument(
80 81 82
            "After flatten the input tensor X and Y to 2-D dimensions matrix "
            "X1 and Y1, the matrix X1's width must be equal with matrix Y1's "
            "height. But received X's shape = [%s], X1's shape = [%s], X1's "
83 84 85 86
            "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = "
            "%s.",
            x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims,
            y_mat_dims[0]));
Y
Yu Yang 已提交
87 88 89 90 91 92 93 94 95 96 97 98
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

99
    ctx->SetOutputDim("Out", phi::make_ddim(output_dims));
Q
Qiao Longfei 已提交
100
    ctx->ShareLoD("X", /*->*/ "Out");
101
  }
P
Physher 已提交
102 103 104 105 106 107 108

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
109
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
110 111
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
112
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
P
Physher 已提交
113 114 115
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

116 117
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
118
        customized_type_value = kMULMKLDNNINT8;
119 120 121 122 123 124
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
P
Physher 已提交
125 126 127 128 129 130 131
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
132 133
};

D
dongzhihong 已提交
134
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
135
 public:
Y
Yu Yang 已提交
136
  void Make() override {
C
caoying03 已提交
137 138 139
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
140 141
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
142 143
        .SetDefault(false)
        .AsExtra();
F
WIP  
fengjiayi 已提交
144
    AddAttr<int>(
F
fengjiayi 已提交
145
        "x_num_col_dims",
C
caoying03 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
161
        )DOC")
F
WIP  
fengjiayi 已提交
162
        .SetDefault(1)
F
fengjiayi 已提交
163
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
164
    AddAttr<int>(
F
fengjiayi 已提交
165
        "y_num_col_dims",
C
caoying03 已提交
166 167 168 169
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
170
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
171
        )DOC")
F
WIP  
fengjiayi 已提交
172
        .SetDefault(1)
F
fengjiayi 已提交
173
        .EqualGreaterThan(1);
174 175 176 177 178
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
179 180
        .SetDefault(1.0f)
        .AsExtra();
181 182 183 184 185
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
186 187
        .SetDefault({1.0f})
        .AsExtra();
P
Physher 已提交
188 189 190
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
191 192
        .SetDefault(1.0f)
        .AsExtra();
P
Physher 已提交
193 194 195 196
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
197 198
        .SetDefault(false)
        .AsExtra();
199
    AddComment(R"DOC(
C
caoying03 已提交
200
Mul Operator.
K
kexinzhao 已提交
201

C
caoying03 已提交
202
This operator is used to perform matrix multiplication for input $X$ and $Y$.
203

204 205
The equation is:

C
caoying03 已提交
206
$$Out = X * Y$$
207

C
caoying03 已提交
208 209
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
210

211 212 213 214
)DOC");
  }
};

C
chengduo 已提交
215 216
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
217
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
218
      const override {
219 220
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
221 222 223
  }
};

224
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
225 226 227
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

228
  void InferShape(framework::InferShapeContext* ctx) const override {
229 230 231 232
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "mul");
Q
Qiao Longfei 已提交
233 234
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
235

Q
Qiao Longfei 已提交
236 237 238 239 240 241 242 243 244
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
245
  }
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
        customized_type_value = kMULMKLDNNINT8;
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
D
dongzhihong 已提交
276 277
};

H
hong 已提交
278 279
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
280
 public:
H
hong 已提交
281
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
282 283

 protected:
284
  void Apply(GradOpPtr<T> retv) const override {
S
sneaxiy 已提交
285
    retv->SetType("mul_grad");
H
hong 已提交
286 287 288 289 290 291
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
292 293 294
  }
};

295 296 297 298 299
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
300 301 302
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
303

L
lvmengsi 已提交
304 305
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
306 307 308
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
309 310
      ctx->ShareDim("X", "DX");
    }
311
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
312 313 314 315 316
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
317 318
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
319
 public:
H
hong 已提交
320
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
321 322

 protected:
323
  void Apply(GradOpPtr<T> retv) const override {
324 325
    retv->SetType("mul_grad_grad");

H
hong 已提交
326 327 328 329 330
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
331

H
hong 已提交
332 333
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
334

L
lvmengsi 已提交
335
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
336
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
337
    }
338 339 340 341
    retv->SetOutput(
        "DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
342

H
hong 已提交
343
    retv->SetAttrMap(this->Attrs());
344 345 346
  }
};

347 348 349
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
350
namespace ops = paddle::operators;
C
chengduo 已提交
351
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
H
hong 已提交
352 353
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MulOpGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
354

H
hong 已提交
355 356 357
REGISTER_OPERATOR(mul_grad, ops::MulGradOp,
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
358

359
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);