mul_op.cc 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16 17 18 19

namespace paddle {
namespace operators {

20
using framework::OpKernelType;
D
dongzhihong 已提交
21 22
using framework::Tensor;

23
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
24
 public:
25 26 27
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28 29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MulOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
35

Q
Qiao Longfei 已提交
36 37
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
38

Y
Yu Yang 已提交
39 40 41 42
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;

43 44 45 46 47 48 49 50
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        "The input tensor X's rank of MulOp should be larger than "
        "x_num_col_dims.");
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        "The input tensor Y's rank of MulOp should be larger than "
        "y_num_col_dims.");
51

F
fengjiayi 已提交
52 53
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
54

Y
Yan Chunwei 已提交
55
    PADDLE_ENFORCE_EQ(
56
        x_mat_dims[1], y_mat_dims[0],
57
        "First matrix's width must be equal with second matrix's height.");
Y
Yu Yang 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
71
    ctx->ShareLoD("X", /*->*/ "Out");
72 73 74
  }
};

D
dongzhihong 已提交
75
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
76
 public:
77
  MulOpMaker(OpProto* proto, OpAttrChecker* op_checker)
78
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
79 80 81
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
F
WIP  
fengjiayi 已提交
82
    AddAttr<int>(
F
fengjiayi 已提交
83
        "x_num_col_dims",
C
caoying03 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
99
        )DOC")
F
WIP  
fengjiayi 已提交
100
        .SetDefault(1)
F
fengjiayi 已提交
101
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
102
    AddAttr<int>(
F
fengjiayi 已提交
103
        "y_num_col_dims",
C
caoying03 已提交
104 105 106 107
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
108
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
109
        )DOC")
F
WIP  
fengjiayi 已提交
110
        .SetDefault(1)
F
fengjiayi 已提交
111
        .EqualGreaterThan(1);
112
    AddComment(R"DOC(
C
caoying03 已提交
113
Mul Operator.
K
kexinzhao 已提交
114

C
caoying03 已提交
115
This operator is used to perform matrix multiplication for input $X$ and $Y$.
116

117 118
The equation is:

C
caoying03 已提交
119
$$Out = X * Y$$
120

C
caoying03 已提交
121 122
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
123

124 125 126 127
)DOC");
  }
};

128
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
129 130 131
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

132
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
133 134 135 136 137 138 139
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
140

Q
Qiao Longfei 已提交
141 142 143 144
    auto x_mat_dims = framework::flatten_to_2d(
        x_dims, ctx->Attrs().Get<int>("x_num_col_dims"));
    auto y_mat_dims = framework::flatten_to_2d(
        y_dims, ctx->Attrs().Get<int>("y_num_col_dims"));
145

Q
Qiao Longfei 已提交
146 147 148 149 150 151 152 153 154
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
155 156 157
  }
};

158 159 160
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
161
namespace ops = paddle::operators;
162
REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulGradOp);
Q
QI JUN 已提交
163 164 165 166
REGISTER_OP_CPU_KERNEL(
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>);