mul_op.cc 12.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27
using framework::OpKernelType;
D
dongzhihong 已提交
28 29
using framework::Tensor;

30
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31
 public:
32 33 34
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
35 36 37
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "Mul");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Mul");
Q
Qiao Longfei 已提交
38 39 40

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
41

Q
Qiao Longfei 已提交
42 43
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
44

M
minqiyang 已提交
45 46 47
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
48

49
    PADDLE_ENFORCE_NE(framework::product(y_dims), 0,
50
                      platform::errors::PreconditionNotMet(
51
                          "The Input variable Y(%s) has not "
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
                          "been initialized. You may need to confirm "
                          "if you put exe.run(startup_program) "
                          "after optimizer.minimize function.",
                          ctx->Inputs("Y").front()));
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        platform::errors::InvalidArgument(
            "The input tensor X's dimensions of MulOp "
            "should be larger than x_num_col_dims. But received X's "
            "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
            x_dims.size(), x_dims, x_num_col_dims));
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        platform::errors::InvalidArgument(
            "The input tensor Y's dimensions of MulOp "
            "should be larger than y_num_col_dims. But received Y's "
            "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
            y_dims.size(), y_dims, y_num_col_dims));
70

F
fengjiayi 已提交
71 72
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
73

74 75
    PADDLE_ENFORCE_EQ(
        x_mat_dims[1], y_mat_dims[0],
76
        platform::errors::InvalidArgument(
77 78 79
            "After flatten the input tensor X and Y to 2-D dimensions matrix "
            "X1 and Y1, the matrix X1's width must be equal with matrix Y1's "
            "height. But received X's shape = [%s], X1's shape = [%s], X1's "
80 81 82 83
            "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = "
            "%s.",
            x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims,
            y_mat_dims[0]));
Y
Yu Yang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
97
    ctx->ShareLoD("X", /*->*/ "Out");
98
  }
P
Physher 已提交
99 100 101 102 103 104 105

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
106
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
107 108
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
109
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
P
Physher 已提交
110 111 112
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

113 114
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
115 116 117 118 119 120 121 122
        customized_type_value = kMULMKLDNNINT8;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
123 124
};

D
dongzhihong 已提交
125
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
126
 public:
Y
Yu Yang 已提交
127
  void Make() override {
C
caoying03 已提交
128 129 130
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
131 132 133
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
F
WIP  
fengjiayi 已提交
134
    AddAttr<int>(
F
fengjiayi 已提交
135
        "x_num_col_dims",
C
caoying03 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
151
        )DOC")
F
WIP  
fengjiayi 已提交
152
        .SetDefault(1)
F
fengjiayi 已提交
153
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
154
    AddAttr<int>(
F
fengjiayi 已提交
155
        "y_num_col_dims",
C
caoying03 已提交
156 157 158 159
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
160
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
161
        )DOC")
F
WIP  
fengjiayi 已提交
162
        .SetDefault(1)
F
fengjiayi 已提交
163
        .EqualGreaterThan(1);
164 165 166 167 168
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
169 170
        .SetDefault(1.0f)
        .AsExtra();
171 172 173 174 175
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
176 177
        .SetDefault({1.0f})
        .AsExtra();
P
Physher 已提交
178 179 180
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
181 182
        .SetDefault(1.0f)
        .AsExtra();
P
Physher 已提交
183 184 185 186
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
187 188
        .SetDefault(false)
        .AsExtra();
189
    AddComment(R"DOC(
C
caoying03 已提交
190
Mul Operator.
K
kexinzhao 已提交
191

C
caoying03 已提交
192
This operator is used to perform matrix multiplication for input $X$ and $Y$.
193

194 195
The equation is:

C
caoying03 已提交
196
$$Out = X * Y$$
197

C
caoying03 已提交
198 199
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
200

201 202 203 204
)DOC");
  }
};

C
chengduo 已提交
205 206
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
207
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
208
      const override {
209 210
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
211 212 213
  }
};

214
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
215 216 217
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

218
  void InferShape(framework::InferShapeContext* ctx) const override {
219 220 221 222
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "mul");
Q
Qiao Longfei 已提交
223 224
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
225

Q
Qiao Longfei 已提交
226 227 228 229 230 231 232 233 234
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
235 236 237
  }
};

H
hong 已提交
238 239
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
240
 public:
H
hong 已提交
241
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
242 243

 protected:
244
  void Apply(GradOpPtr<T> retv) const override {
S
sneaxiy 已提交
245
    retv->SetType("mul_grad");
H
hong 已提交
246 247 248 249 250 251
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
252 253 254
  }
};

255 256 257 258 259
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
260 261 262
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
263

L
lvmengsi 已提交
264 265
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
266 267 268
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
269 270
      ctx->ShareDim("X", "DX");
    }
271
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
272 273 274 275 276
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
277 278
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
279
 public:
H
hong 已提交
280
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
281 282

 protected:
283
  void Apply(GradOpPtr<T> retv) const override {
284 285
    retv->SetType("mul_grad_grad");

H
hong 已提交
286 287 288 289 290
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
291

H
hong 已提交
292 293
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
294

L
lvmengsi 已提交
295
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
296
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
297
    }
298 299 300 301
    retv->SetOutput(
        "DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
302

H
hong 已提交
303
    retv->SetAttrMap(this->Attrs());
304 305 306
  }
};

307 308 309
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
310
namespace ops = paddle::operators;
C
chengduo 已提交
311
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
H
hong 已提交
312 313
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MulOpGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
314

H
hong 已提交
315 316 317
REGISTER_OPERATOR(mul_grad, ops::MulGradOp,
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
318

319
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
P
Physher 已提交
320

Q
QI JUN 已提交
321
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
322 323
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
324

Q
QI JUN 已提交
325
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
326 327
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
328

329 330 331 332
REGISTER_OP_CPU_KERNEL(
    mul_grad_grad,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);