tensor.py 27.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
X
xuwei06 已提交
24
import numpy
Y
Yu Yang 已提交
25 26

__all__ = [
L
li099 已提交
27 28 29
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
30
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
31
    'range', 'linspace', 'zeros_like'
Y
Yu Yang 已提交
32 33 34
]


X
xuwei06 已提交
35
def create_tensor(dtype, name=None, persistable=False):
36
    """
Q
update  
qiaolongfei 已提交
37
    Create an variable, which will hold a LoDTensor with data type dtype.
38 39

    Args:
Q
update  
qiaolongfei 已提交
40
        dtype(string): 'float32'|'int32'|..., the data type of the
41
            created tensor.
Q
update  
qiaolongfei 已提交
42
        name(string): The name of the created tensor, if not set,
43
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
44
        persistable(bool): Set the persistable flag of the create tensor.
45 46 47 48 49 50 51 52 53

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
54
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
55 56
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
57 58


59 60
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
61
                     name=None,
62 63 64 65
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
66 67 68 69 70 71
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

72 73 74 75 76 77 78 79 80 81 82
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
83 84 85 86 87 88
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
89
    """
Q
Qiao Longfei 已提交
90
    helper = LayerHelper("create_parameter", **locals())
91
    if attr is None:
X
xuwei06 已提交
92
        attr = ParamAttr(name=name)
93 94 95 96
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


97 98 99 100 101 102 103
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
104
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
105

106 107
    Args:
        shape(list[int]): shape of the variable
M
minqiyang 已提交
108
        value(float): the value of the variable. The new created
F
fengjiayi 已提交
109 110
                      variable will be filled with it.
        dtype(string): data type of the variable
M
minqiyang 已提交
111
        persistable(bool): if this variable is persistable.
F
fengjiayi 已提交
112
                           Default: False
M
minqiyang 已提交
113
        force_cpu(bool): force this variable to be on CPU.
F
fengjiayi 已提交
114
                         Default: False
M
minqiyang 已提交
115 116
        name(str|None): The name of the variable. If set to None the variable
                        name will be generated automatically.
F
fengjiayi 已提交
117
                        Default: None
118 119 120

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
121 122 123 124

    Examples:
        .. code-block:: python

M
minqiyang 已提交
125
            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32',
F
fengjiayi 已提交
126
                                 persistable=True, force_cpu=True, name='new_var')
127
    """
Q
Qiao Longfei 已提交
128 129
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
130 131 132 133 134
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
135 136 137
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
138

Q
Qiao Longfei 已提交
139 140 141
    return var


142
def cast(x, dtype):
Y
Yu Yang 已提交
143
    """
M
minqiyang 已提交
144
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
145 146
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
147 148 149 150 151 152 153 154 155 156

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
157

Y
Yibing Liu 已提交
158 159
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
160 161
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
162
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
163 164 165 166 167 168 169 170 171
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


172
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
173
    """
174 175 176
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
177
    and returns that as the output.
178 179 180 181

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
182 183
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
184 185 186 187 188 189

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
190

F
fengjiayi 已提交
191
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
192 193
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
194
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
195 196 197 198 199 200 201 202
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
203 204 205 206 207 208
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
209

L
li099 已提交
210
    .. code-block:: text
M
minqiyang 已提交
211

L
li099 已提交
212 213 214 215 216 217 218 219
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
220

L
li099 已提交
221
        axis = 1
M
minqiyang 已提交
222

L
li099 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

           output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
    """
L
li099 已提交
245
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
246 247 248
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
249
        type='tensor_array_to_tensor',
L
li099 已提交
250 251 252 253 254 255 256
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


257
def sums(input, out=None):
F
fengjiayi 已提交
258 259
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
260 261 262 263 264
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
265
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
266
                             Default: None
K
kavyasrinet 已提交
267 268

    Returns:
F
fengjiayi 已提交
269
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
270 271

    Examples:
F
fengjiayi 已提交
272
        .. code-block:: python
K
kavyasrinet 已提交
273 274 275 276 277 278

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
279 280
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
281
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
282 283 284
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
285 286
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
287 288 289 290 291
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
292 293 294
    return out


F
fengjiayi 已提交
295
def assign(input, output=None):
296 297 298 299 300 301
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
302
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
303
        output(Variable|None): The destination variable
304 305 306 307 308 309

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
310

311 312 313 314
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
315
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
316
    if output is None:
X
Xin Pan 已提交
317
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
318 319
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
320
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
321 322
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
323
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
324
            value_name = "fp32_values"
325
            values = [float(v) for v in input.flat]
326
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
327
            value_name = "int32_values"
328
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
329 330
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
331 332 333
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
334 335 336 337 338 339 340

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
341
                value_name: values
X
xuwei06 已提交
342 343 344 345
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
346 347 348
    return output


Q
QI JUN 已提交
349
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
350
    """
351 352
    **fill_constant**

353 354
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
355

356
    The attribute `stop_gradient` of the created tensor is set to True.
357 358

    Args:
359
        shape(tuple|list|None): Shape of the output tensor.
360
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
361 362
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
363
        force_cpu(True|False): data should be on CPU if set true.
364 365

    Returns:
366
        Variable: The tensor variable storing the output.
367 368 369 370 371

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
372
    """
373

Y
Yu Yang 已提交
374 375
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
X
Xin Pan 已提交
376
        out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
377 378 379 380
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
381 382 383 384
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
385
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
386 387
        },
        stop_gradient=True)
Y
Yu Yang 已提交
388 389 390 391
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
392
@templatedoc()
Y
Yu Yang 已提交
393 394 395 396 397
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
398
                                  output_dim_idx=0):
399
    """
Y
yuyang18 已提交
400
    ${comment}
401 402 403 404

    It also sets *stop_gradient* to True.

    Args:
Y
yuyang18 已提交
405
        input(${input_type}): ${input_comment}.
406

Y
yuyang18 已提交
407
        shape(${shape_type}): ${shape_comment}.
408

Y
yuyang18 已提交
409 410 411
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
412

Y
yuyang18 已提交
413 414 415 416 417
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
418
        ${out_comment}.
H
haowang101779990 已提交
419 420 421 422 423 424 425 426

    Examples:

        .. code-block:: python

             data = fluid.layers.fill_constant_batch_size_like(
                         input=like, shape=[1], value=0, dtype='int64')

427
    """
Y
Yu Yang 已提交
428
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
429
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
445 446 447 448
def argmin(x, axis=0):
    """
    **argmin**

449
    This function computes the indices of the min elements
S
sneaxiy 已提交
450 451 452 453 454 455
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
456

S
sneaxiy 已提交
457 458
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
459

S
sneaxiy 已提交
460 461
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
462

S
sneaxiy 已提交
463
          out = fluid.layers.argmin(x=in, axis=0)
464
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
465 466
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
467
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
468 469 470 471 472 473 474 475 476 477 478 479
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

480
    This function computes the indices of the max elements
S
sneaxiy 已提交
481 482 483 484 485 486
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
487

S
sneaxiy 已提交
488 489
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
490

S
sneaxiy 已提交
491 492
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
493

S
sneaxiy 已提交
494
          out = fluid.layers.argmax(x=in, axis=0)
495
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
496 497
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
498
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
499 500 501 502 503 504 505 506
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


507
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
508
    """
M
minqiyang 已提交
509 510
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
511 512 513
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
514

Y
Yibing Liu 已提交
515 516 517 518 519 520 521 522 523 524 525 526
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
527
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
528 529 530 531
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
532 533
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
534
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
535
        name(str|None): (optional) A name for this layer. If set None, the
536
                   layer will be named automatically.
Y
Yibing Liu 已提交
537 538 539 540 541 542 543 544 545 546 547

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
548 549 550 551
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
552 553 554 555
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
556 557
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
558 559 560
    return out, ids


Y
Yang Yu 已提交
561
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
562
    """
563 564 565 566 567 568 569 570
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
571
        shape(tuple|list): Shape of output tensor
572
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
573 574 575 576 577 578 579 580

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
581
    """
C
chengduozh 已提交
582 583 584 585
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
586 587 588
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
589
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
590
    """
591 592 593 594 595 596 597 598
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
599 600 601
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
602 603

    Returns:
W
wanghaoshuang 已提交
604
        Variable: The tensor variable storing the output.
605 606 607 608 609

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
610 611
    """
    return fill_constant(value=0.0, **locals())
612 613


F
fengjiayi 已提交
614 615 616 617 618 619 620 621
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
622 623 624
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
639
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
640 641
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
642
        inputs={'X': x},
F
fengjiayi 已提交
643 644 645 646 647
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


648 649 650 651 652 653 654
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
655 656 657
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
673 674
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
675
        file_path(str): The file path where variables will be saved.
676
        overwrite(bool): Whether or not cover the given file when it has already
677 678
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
718 719 720 721 722 723 724 725 726 727 728 729 730


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
731
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
747
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
764
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
765 766
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

    args:
        start(int|float|Variable): Start of interval. The interval includes this value.
        end(int|float|Variable): End of interval. The interval does not include this
                                 value, except in some cases where step is not an integer
                                 and floating point round-off affects the length of out. 
        step(int|float|Variable): Spacing between values. For any output out, this is the
                                  distance between two adjacent values, out[i+1] - out[i].
                                  The default step size is 1.
        dtype(string): 'float32'|'int32'|..., the data type of the output tensor.

    returns:
        Evenly spaced values within a given interval.

    examples:

        .. code-block:: python

             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
814 815


Z
zhoukunsheng 已提交
816 817 818 819 820 821 822 823
def linspace(start, stop, num, dtype):
    """
    Return fixed number of evenly spaced values within a given interval.

    First entry is start, and last entry is stop. In the case when Num is 1, only Start is returned. Like linspace function of numpy.

    Args:
        start(float|Variable): First entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
Z
zhoukunsheng 已提交
824
        stop(float|Variable): Last entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
Z
zhoukunsheng 已提交
825 826 827 828 829 830
        num(int|Variable): Number of entry in the sequence. It is an int scalar, or a tensor of shape [1] with type int32.
        dtype(string): 'float32'|'float64', the data type of the output tensor.

    Returns:
        Variable: The tensor variable storing a 1-D tensor. 

Z
zhoukunsheng 已提交
831
    Examples:
Z
zhoukunsheng 已提交
832 833
        .. code-block:: python

Z
zhoukunsheng 已提交
834 835
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
856 857


Z
zhoukunsheng 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
def zeros_like(x, out=None):
    """
    **zeros_like**

    This function creates a zeros tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
        Variable: The tensor variable storing the output.

    Examples:
        .. code-block:: python

Z
zhoukunsheng 已提交
875 876 877
          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
878 879 880 881 882 883 884 885 886
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out