data_feeder.py 20.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28 29
__all__ = ['DataFeeder']


S
sneaxiy 已提交
30
def convert_dtype(dtype):
P
pkpk 已提交
31
    if isinstance(dtype, core.VarDesc.VarType):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
50 51 52 53 54 55
    elif isinstance(dtype, type):
        if dtype in [
                np.bool, np.float16, np.float32, np.float64, np.int8, np.int16,
                np.int32, np.int64, np.uint8
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
                'int32', 'int64', 'uint8', u'bool', u'float16', u'float32',
                u'float64', u'int8', u'int16', u'int32', u'int64', u'uint8'
        ]:
            # this code is a little bit dangerous, since error could happen
            # when casting no-asci code to str in python2.
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

69 70 71
    raise ValueError(
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
        "int32, int64, uint8]")
S
sneaxiy 已提交
72 73


74 75 76 77 78 79
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
    check_type(input, input_name, Variable, op_name, extra_message)
80 81 82 83
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
84 85 86 87 88 89 90 91 92
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
93 94 95 96 97 98 99 100 101 102 103
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
104 105 106
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
107 108 109 110 111 112 113 114 115 116 117
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


Y
Yu Yang 已提交
118 119 120 121 122
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
123 124 125 126 127 128 129
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
130 131
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
132

S
sneaxiy 已提交
133
    def _reset(self):
Y
Yu Yang 已提交
134
        self.data = []
S
sneaxiy 已提交
135
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
136 137 138 139 140 141 142 143

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
144
            lod[0].append(len(data))
Y
Yu Yang 已提交
145
            for each_data in data:
K
Kexin Zhao 已提交
146
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
147

S
sneaxiy 已提交
148
    def _check_shape(self, shape):
S
sneaxiy 已提交
149 150 151 152 153 154
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
155
    def done(self):
156
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
157 158
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
159 160 161 162 163 164
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
165 166 167
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
168
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
169
        self._reset()
Y
Yu Yang 已提交
170 171 172
        return t


S
sneaxiy 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
211
class DataFeeder(object):
C
chengduoZH 已提交
212
    """
C
chengduoZH 已提交
213
    DataFeeder converts the data that returned by a reader into a data
214 215 216 217 218 219 220 221 222 223 224 225 226 227
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
228 229

    Raises:
230
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
231

232
    Example:
233 234 235 236 237 238
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
239
            place = fluid.CPUPlace()
240
            def reader():
241 242
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
243 244 245 246 247
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
248 249
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
250 251 252
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
253
            
254 255
            exe = fluid.Executor(place)
            exe.run(startup_program)
256 257 258 259 260 261 262 263 264 265
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
266
            print(outs)
267

C
chengduoZH 已提交
268 269
    """

F
fengjiayi 已提交
270
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
271 272 273 274
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
275 276
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
277
        for each_var in feed_list:
278
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
279
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
280 281 282 283 284
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
285
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
286 287 288 289

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
290
        """
291 292
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
293

294 295
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
296

297 298
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
299

300
        Example:
301 302
            ..  code-block:: python

303 304 305 306 307 308
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
309 310 311
                import paddle.fluid as fluid
                
                def reader(limit=5):
312 313
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
314
                
315 316 317
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
318 319
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
320 321 322 323
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
324
                print(result['data_3'])
325

C
chengduoZH 已提交
326
        """
Y
Yu Yang 已提交
327
        converter = []
328
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
329 330 331 332 333 334 335 336 337
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
338
            assert len(each_sample) == len(converter), (
339 340
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
341 342
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
343 344
                each_converter.feed(each_slot)
        ret_dict = {}
345 346
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
347 348
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
349 350

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
351
        """
352 353
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
354
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
355

356
        Parameters:
T
tianshuo78520a 已提交
357
            iterable (list|tuple): list of user-defined python generators. The element 
358 359 360
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
361

362 363 364
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
365

366 367
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
368

369
        Example:
370 371
            ..  code-block:: python

372
                import numpy as np
373
                import paddle.fluid as fluid
374

375 376 377 378 379
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
380 381 382 383

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

384
                z = fluid.layers.elementwise_add(x, y)
385

386
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
387
                place_num = 2
388 389 390 391 392
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
393

T
tianshuo78520a 已提交
394
                # print sample feed_parallel r result
395 396 397
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
398

399 400 401
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
402

C
chengduoZH 已提交
403
        """
Y
yuyang18 已提交
404 405 406
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
407 408
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
409 410 411 412
            ]
        else:
            places = [
                core.CPUPlace()
413 414
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
415 416 417 418 419 420 421 422 423
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
424
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
425 426 427 428 429 430 431 432
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
433
            return len(_cuda_ids())
Y
yuyang18 已提交
434
        else:
C
chengduo 已提交
435
            return _cpu_num()
Y
yuyang18 已提交
436 437 438 439 440 441

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
442
        """
443 444 445 446 447
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
448
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
449 450 451 452 453 454 455 456 457 458 459
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
460
        Raises:
461
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
462

463
        Example:
464 465
            ..  code-block:: python

466
                import numpy as np
467 468
                import paddle
                import paddle.fluid as fluid
469
                import paddle.fluid.compiler as compiler
470
                
471 472 473 474
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
475

476 477
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
478
                
479 480
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
481
                
482
                # a simple network sample
483 484
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
485 486
                hidden = fluid.layers.fc(input=data, size=10)
                
487 488
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
489
                
490
                exe = fluid.Executor(places[0])
491
                exe.run(fluid.default_startup_program())
492
                compiled_prog = compiler.CompiledProgram(
493 494
                         fluid.default_main_program()).with_data_parallel(places=places)
                
495
                for i,data in enumerate(reader()):
496 497
                    # print data if you like
                    # print(i, data)
498
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
499 500
                    print(ret)

C
chengduoZH 已提交
501 502
        """

Y
yuyang18 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__