search.py 39.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
Z
zhiboniu 已提交
16
import paddle
17
from ..framework import LayerHelper
C
Chengmo 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..fluid import layers
20 21
from ..framework import core, in_dygraph_mode, _non_static_mode
from ..fluid.framework import _in_legacy_dygraph
22 23 24
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
25
from paddle import _C_ops
Z
zhiboniu 已提交
26
from .logic import logical_not
27

28
# TODO: define searching & indexing functions of a tensor  
29 30
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
31

32 33
__all__ = []

34

35 36
def argsort(x, axis=-1, descending=False, name=None):
    """
W
wawltor 已提交
37
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
57

58
        .. code-block:: python
李灿 已提交
59

60 61
            import paddle
            
62 63 64 65 66 67 68
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
69 70 71
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
N
Noel 已提交
72
            print(out1)
W
wawltor 已提交
73 74 75
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
76
            # [[1 3 2 0]
W
wawltor 已提交
77 78
            #  [0 1 2 3]
            #  [2 0 3 1]]]
N
Noel 已提交
79
            print(out2)
W
wawltor 已提交
80 81 82 83 84 85
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
N
Noel 已提交
86
            print(out3)
W
wawltor 已提交
87 88 89 90 91 92
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
93
    """
H
hong 已提交
94
    if in_dygraph_mode():
95
        _, ids = _C_ops.final_state_argsort(x, axis, descending)
H
hong 已提交
96 97 98
        return ids

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
99
        _, ids = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


120
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
121
    """
122
    Computes the indices of the max elements of the input tensor's
123 124 125
    element along the provided axis.

    Args:
W
wawltor 已提交
126
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
127 128
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
129 130
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
131
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
132
        dtype(str|np.dtype, optional): Data type of the output tensor which can
133
                    be int32, int64. The default value is ``int64`` , and it will
134
                    return the int64 indices.
135
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
136 137

    Returns:
138
        Tensor, return the tensor of int32 if set :attr:`dtype` is int32, otherwise return the tensor of int64.
139 140 141 142

    Examples:
        .. code-block:: python

W
wawltor 已提交
143
            import paddle
144

145 146 147
            x = paddle.to_tensor([[5,8,9,5],
                                 [0,0,1,7],
                                 [6,9,2,4]])
W
wawltor 已提交
148
            out1 = paddle.argmax(x)
N
Noel 已提交
149
            print(out1) # 2
150
            out2 = paddle.argmax(x, axis=0)
N
Noel 已提交
151
            print(out2) 
152
            # [2, 2, 0, 1]
W
wawltor 已提交
153
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
154
            print(out3) 
155 156 157 158
            # [2, 3, 1]
            out4 = paddle.argmax(x, axis=0, keepdim=True)
            print(out4)
            # [[2, 2, 0, 1]]
159
    """
160 161 162 163
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
164

165 166 167 168
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
169

170
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
171 172 173 174 175
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

H
hong 已提交
176 177 178
    if in_dygraph_mode():
        return _C_ops.final_state_argmax(x, axis, keepdim, flatten, var_dtype)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
179 180
        out = _C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
181 182 183 184 185 186
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
187
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
188
    attrs = {}
W
wawltor 已提交
189 190 191 192
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
193
    attrs['dtype'] = var_dtype
W
wawltor 已提交
194 195 196 197 198 199
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


200
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
201 202 203 204 205 206 207 208 209 210
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
211
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
W
wawltor 已提交
212
        dtype(str): Data type of the output tensor which can
213
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

227 228 229
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
230
            out1 = paddle.argmin(x)
N
Noel 已提交
231
            print(out1) # 4
232
            out2 = paddle.argmin(x, axis=0)
N
Noel 已提交
233
            print(out2) 
234
            # [1, 1, 1, 2]
W
wawltor 已提交
235
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
236
            print(out3) 
237 238 239 240
            # [0, 0, 2]
            out4 = paddle.argmin(x, axis=0, keepdim=True)
            print(out4)
            # [[1, 1, 1, 2]]
W
wawltor 已提交
241
    """
242 243 244 245
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
246

247 248 249 250
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
251

252
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
253
    flatten = False
254
    if axis is None:
W
wawltor 已提交
255 256 257
        flatten = True
        axis = 0

H
hong 已提交
258 259 260
    if in_dygraph_mode():
        return _C_ops.final_state_argmin(x, axis, keepdim, flatten, var_dtype)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
261 262
        out = _C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
263 264 265 266 267 268
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
269
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
270
    out = helper.create_variable_for_type_inference(var_dtype)
271
    attrs = {}
W
wawltor 已提交
272
    attrs['keepdims'] = keepdim
273
    attrs['axis'] = axis
W
wawltor 已提交
274
    attrs['flatten'] = flatten
275
    attrs['dtype'] = var_dtype
276
    helper.append_op(
W
wawltor 已提交
277
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
278 279
    out.stop_gradient = True
    return out
280 281


282
def index_select(x, index, axis=0, name=None):
283
    """
S
swtkiwi 已提交
284

285 286 287 288
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
289

290
    Args:
291 292 293
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
294 295 296
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
297 298

    Returns:
299
        Tensor: A Tensor with same data type as ``x``.
300
    
301 302
    Examples:
        .. code-block:: python
303
            
304 305
            import paddle

306 307 308 309
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
310 311 312 313 314 315 316 317
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
318
    """
319

F
From00 已提交
320 321 322 323
    if in_dygraph_mode():
        return _C_ops.final_state_index_select(x, index, axis)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
324
        return _C_ops.index_select(x, index, 'dim', axis)
325

326 327 328
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
329
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
330
                             'paddle.tensor.search.index_select')
331

332
    out = helper.create_variable_for_type_inference(x.dtype)
333 334 335

    helper.append_op(
        type='index_select',
336
        inputs={'X': x,
337 338
                'Index': index},
        outputs={'Out': out},
339
        attrs={'dim': axis})
340 341 342
    return out


343
def nonzero(x, as_tuple=False):
344 345 346 347 348 349 350 351
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
352

353
    Args:
354
        x (Tensor): The input tensor variable.
355 356 357
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
358
        Tensor. The data type is int64.
359 360

    Examples:
361

N
Noel 已提交
362
        .. code-block:: python
李灿 已提交
363

364
            import paddle
365 366

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
367 368
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
369 370
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
371
            print(out_z1)
372 373 374 375 376
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
377
                print(out)
378 379 380 381 382 383 384
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
385
            print(out_z2)
386 387 388 389
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
390
                print(out)
391 392
            #[[1]
            # [3]]
N
Noel 已提交
393

394 395
    """
    list_out = []
396
    shape = x.shape
397 398
    rank = len(shape)

399 400 401
    if in_dygraph_mode():
        outs = _C_ops.final_state_where_index(x)
    elif paddle.in_dynamic_mode():
W
wanghuancoder 已提交
402
        outs = _C_ops.where_index(x)
403
    else:
404 405 406 407 408 409 410 411 412
        helper = LayerHelper("where_index", **locals())

        outs = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64)

        helper.append_op(
            type='where_index',
            inputs={'Condition': x},
            outputs={'Out': [outs]})
413 414 415 416 417 418 419 420

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
Z
zhiboniu 已提交
421
                paddle.slice(
422
                    outs, axes=[1], starts=[i], ends=[i + 1]))
423 424 425
        return tuple(list_out)


426
def sort(x, axis=-1, descending=False, name=None):
427
    """
S
swtkiwi 已提交
428

W
wawltor 已提交
429
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
430

431
    Args:
432
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
433 434 435 436 437 438 439 440 441 442 443
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
444
        Tensor: sorted tensor(with the same shape and data type as ``x``).
445
    Examples:
N
Noel 已提交
446

447
        .. code-block:: python
N
Noel 已提交
448

449
            import paddle
N
Noel 已提交
450

451 452 453 454 455 456 457
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
458 459 460
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
461
            print(out1)
W
wawltor 已提交
462 463 464 465 466 467
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
468
            print(out2)
469
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
470 471 472 473 474
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
475
            print(out3)
476
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
477 478 479 480 481
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
482
    """
483 484 485 486 487 488 489
    if in_dygraph_mode():
        outs, _ = _C_ops.final_state_argsort(x, axis, descending)
        return outs

    if _in_legacy_dygraph():
        outs, _ = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
        return outs
490
    helper = LayerHelper("sort", **locals())
491 492
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
493 494 495 496
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
497
        inputs={'X': x},
498 499 500 501
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
502
    return out
C
Chengmo 已提交
503 504


505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
def mode(x, axis=-1, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the modes at the optional axis.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
536 537 538
    if in_dygraph_mode():
        return _C_ops.final_state_mode(x, axis, keepdim)
    if _in_legacy_dygraph():
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
        return _C_ops.mode(x, "axis", axis, "keepdim", keepdim)

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="mode",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
560
def where(condition, x=None, y=None, name=None):
561
    r"""
562 563
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

R
ronnywang 已提交
564 565 566
    **Note**:
        ``paddle.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``.

567
    .. math::
C
Chengmo 已提交
568

569
      out_i =
R
ronnywang 已提交
570 571 572 573
      \begin{cases}
      x_i, \quad  \text{if}  \ condition_i \  is \ True \\
      y_i, \quad  \text{if}  \ condition_i \  is \ False \\
      \end{cases}
C
Chengmo 已提交
574

575

576
    Args:
R
ronnywang 已提交
577
        condition(Tensor): The condition to choose x or y. When True(nonzero), yield x, otherwise yield y.
R
ronnywang 已提交
578 579
        x(Tensor or Scalar, optional): x is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
        y(Tensor or Scalar, optional): y is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
580 581 582 583 584

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

585
    Returns:
G
GaoWei8 已提交
586
        Tensor: A Tensor with the same data dype as x. 
587

588 589 590
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
591
          import paddle
592

593 594 595
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
596

G
GaoWei8 已提交
597
          print(out)
598
          #out: [1.0, 1.0, 3.2, 1.2]
R
ronnywang 已提交
599 600 601 602 603 604

          out = paddle.where(x>1)
          print(out)
          #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
          #            [[2],
          #             [3]]),)
605
    """
R
ronnywang 已提交
606
    if np.isscalar(x):
607
        x = paddle.full([1], x, np.array([x]).dtype.name)
R
ronnywang 已提交
608 609

    if np.isscalar(y):
610
        y = paddle.full([1], y, np.array([y]).dtype.name)
R
ronnywang 已提交
611

R
ronnywang 已提交
612 613 614 615 616 617
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
618
    if not paddle.in_dynamic_mode():
619
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
620
        check_variable_and_dtype(
621
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
622
        check_variable_and_dtype(
623
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
624

625
    condition_shape = list(condition.shape)
626 627
    x_shape = list(x.shape)
    y_shape = list(y.shape)
628

629
    if x_shape == y_shape and condition_shape == x_shape:
630 631 632 633 634
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
        if core.is_compiled_with_xpu():
Z
zhiboniu 已提交
635 636 637 638 639
            cond_int = paddle.cast(condition, x.dtype)
            cond_not_int = paddle.cast(logical_not(condition), x.dtype)
            out1 = paddle.multiply(x, cond_int)
            out2 = paddle.multiply(y, cond_not_int)
            out = paddle.add(out1, out2)
640
            return out
641

Z
zhiboniu 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

J
Jiabin Yang 已提交
655 656 657
    if in_dygraph_mode():
        return _C_ops.final_state_where(broadcast_condition, broadcast_x,
                                        broadcast_y)
658
    else:
J
Jiabin Yang 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672
        if _in_legacy_dygraph():
            return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
        else:
            helper = LayerHelper("where", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            helper.append_op(
                type='where',
                inputs={
                    'Condition': broadcast_condition,
                    'X': broadcast_x,
                    'Y': broadcast_y
                },
                outputs={'Out': [out]})
673

J
Jiabin Yang 已提交
674
            return out
675 676


C
Chengmo 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
701
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
702
            int32, int64, float32, float64.
C
Chengmo 已提交
703
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
704 705 706
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
707
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
708 709 710 711 712 713

    Examples:

        .. code-block:: python

            import paddle
714 715 716 717 718 719 720 721 722 723 724

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
725
            print(out_z1)
726 727 728 729 730 731 732 733
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
734
            print(top_value)
735 736 737 738
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
739
            print(top_index)
740 741 742 743
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
744
            print(out_z2)
745 746 747
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
748

C
Chengmo 已提交
749
    """
J
Jiabin Yang 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    if in_dygraph_mode():
        return _C_ops.final_state_index_sample(x, index)
    else:
        if _in_legacy_dygraph():
            return _C_ops.index_sample(x, index)
        else:
            helper = LayerHelper("index_sample", **locals())
            check_variable_and_dtype(x, 'x',
                                     ['float32', 'float64', 'int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            helper.append_op(
                type='index_sample',
                inputs={'X': x,
                        'Index': index},
                outputs={'Out': out})
            return out
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
791 792 793 794 795 796 797

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
798 799 800 801
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

H
hong 已提交
802 803 804 805
    if in_dygraph_mode():
        return _C_ops.final_state_masked_select(x, mask)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
806
        return _C_ops.masked_select(x, mask)
807 808 809 810 811 812 813 814 815 816 817

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

847
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
848
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
N
Noel 已提交
849
           print(value_1)
W
wawltor 已提交
850
           # [7]
N
Noel 已提交
851
           print(indices_1)
W
wawltor 已提交
852
           # [3] 
853
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
854
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
N
Noel 已提交
855
           print(value_2)
W
wawltor 已提交
856 857
           # [[7]
           #  [6]]
N
Noel 已提交
858
           print(indices_2)
W
wawltor 已提交
859 860 861
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
N
Noel 已提交
862
           print(value_3)
W
wawltor 已提交
863 864
           # [[7]
           #  [6]]
N
Noel 已提交
865
           print(indices_3)
W
wawltor 已提交
866 867 868
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
N
Noel 已提交
869
           print(value_4)
W
wawltor 已提交
870
           # [[2 6 5 7]]
N
Noel 已提交
871
           print(indices_4)
W
wawltor 已提交
872 873 874
           # [[1 1 0 0]]

    """
H
hong 已提交
875

H
hong 已提交
876 877 878 879 880 881
    if in_dygraph_mode():
        if axis == None:
            axis = -1
        out, indices = _C_ops.final_state_top_k(x, k, axis, largest, sorted)
        return out, indices

H
hong 已提交
882
    if _non_static_mode():
W
wawltor 已提交
883
        if axis is None:
W
wanghuancoder 已提交
884 885 886
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'largest', largest, 'sorted',
                                           sorted)
W
wawltor 已提交
887
        else:
W
wanghuancoder 已提交
888 889 890
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'axis', axis, 'largest',
                                           largest, 'sorted', sorted)
W
wawltor 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963


def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
    This OP is used to find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """
F
From00 已提交
964 965 966
    if in_dygraph_mode():
        return _C_ops.final_state_searchsorted(sorted_sequence, values,
                                               out_int32, right)
Y
Yanxing Shi 已提交
967

F
From00 已提交
968
    if _in_legacy_dygraph():
Y
Yanxing Shi 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
        return _C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                   out_int32, "right", right)

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
    helper.append_op(
        type='searchsorted',
        inputs={'SortedSequence': sorted_sequence,
                "Values": values},
        outputs={'Out': out},
        attrs={"out_int32": out_int32,
               "right": right})

    return out
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the k-th smallest at the axis.

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
1031
    if _non_static_mode():
1032
        if axis is not None:
1033 1034 1035 1036
            if _in_legacy_dygraph():
                return _C_ops.kthvalue(x, 'k', k, "axis", axis, "keepdim",
                                       keepdim)
            return _C_ops.final_state_kthvalue(x, k, axis, keepdim)
1037
        else:
1038 1039 1040
            if _in_legacy_dygraph():
                return _C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)
            return _C_ops.final_state_kthvalue(x, k, -1, keepdim)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="kthvalue",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices