ProcessGroupNCCL.cc 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
20
#include "paddle/fluid/platform/place.h"
L
LiYuRio 已提交
21
#include "paddle/phi/api/lib/utils/allocator.h"
B
Baibaifan 已提交
22
#include "paddle/phi/common/place.h"
L
LiYuRio 已提交
23
#include "paddle/phi/core/device_context.h"
24 25 26 27 28 29 30 31 32 33 34

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
L
Leo Chen 已提交
35 36
    std::vector<EventManager>& ncclEvents,                     // NOLINT
    std::vector<std::unique_ptr<phi::GPUContext>>& dev_ctx) {  // NOLINT
37
  for (size_t i = 0; i < places.size(); ++i) {
L
Leo Chen 已提交
38
    auto* default_ctx = static_cast<phi::GPUContext*>(
39
        platform::DeviceContextPool::Instance().Get(places[i]));
40 41
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
42 43 44 45
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
46 47 48
    std::vector<Place> places,
    int rank,
    CommType comm_type,
49
    const std::vector<phi::DenseTensor>& inputs) {
50 51
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
52 53
}

54 55 56 57 58 59 60 61 62 63 64
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs, is_sync, use_calc_stream);
}

65
ProcessGroupNCCL::NCCLTask::NCCLTask(
66 67 68
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
69
    const std::vector<phi::DenseTensor>& inputs)
70 71 72 73 74 75 76 77 78 79 80 81 82 83
    : TaskStream(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool sync_op,
    bool use_calc_stream)
    : TaskStream(rank, inputs, comm_type, sync_op, use_calc_stream),
      places_(places) {
84 85 86 87 88 89 90
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
91 92
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
93 94 95 96
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
L
Leo Chen 已提交
97
    auto* default_ctx = static_cast<phi::GPUContext*>(
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

113
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
114
                                       std::vector<int64_t> tensor_shape) {
115
  int64_t len_size = (*split_sizes).size();
116 117 118 119 120 121
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
122 123 124 125
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
126 127 128 129 130 131 132
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
133
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
134 135 136 137 138 139 140 141
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

142 143
// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
144 145 146 147 148 149 150
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

151 152 153 154 155 156 157
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
158 159 160 161 162

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
S
ShenLiang 已提交
163
#ifdef PADDLE_WITH_CUDA
B
Baibaifan 已提交
164
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
S
ShenLiang 已提交
165 166 167
#else
      PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
B
Baibaifan 已提交
168 169
    }
  }
170 171 172 173 174 175
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

176
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
177 178 179 180
                                   int rank,
                                   int size,
                                   const platform::Place& place,
                                   int gid)
181
    : ProcessGroupStream(rank, size, place, gid), store_(store) {
182 183
  platform::SetDeviceId(place_.device);
}
184 185 186

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
187 188
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
189 190
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
191 192 193 194 195 196 197
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
198 199
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
200 201 202
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
203 204 205 206 207 208
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
209 210
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
211 212 213 214 215 216 217 218 219 220 221 222
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
223 224 225 226
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

227 228 229 230 231
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

232 233
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
234 235
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
236
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
237 238 239 240 241 242 243
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
L
Leo Chen 已提交
244
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
245 246 247 248 249 250 251 252 253 254 255 256 257
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(inputs);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

278 279 280
  if (!use_calc_stream) {
    SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);
  }
281

282 283
  auto task =
      CreateTask(places, rank_, comm_type, inputs, sync_op, use_calc_stream);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

  platform::CUDADeviceGuard cuda_guard;

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }

      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
    }
  }

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }

      memory::RecordStream(inputs[i].Holder(), nccl_stream);
    }
  }

  // Adding stream event dependency only when use comm stream
  if (!use_calc_stream) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      task->control_events_[i].Record(*places_to_ctx_[key][i]);
    }
  }

  return task;
}

335 336
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
337
    std::vector<phi::DenseTensor>& inputs,
338 339 340
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
360 361
  {
    platform::NCCLGroupGuard nccl_guard;
362 363
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
364 365
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
366 367 368
    }
  }

S
ShenLiang 已提交
369
  if (FLAGS_use_stream_safe_cuda_allocator) {
370 371
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
372 373
      memory::RecordStream(inputs[i].Holder(),
                           places_to_ctx_[key][i]->stream());
374 375 376 377 378 379 380 381 382 383
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

384 385
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
386 387
                                  phi::DenseTensor* out,
                                  Fn fn,
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
    CommType op_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(tensors);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  if (!use_calc_stream) {
    SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);
  }

  auto task =
      CreateTask(places, rank_, op_type, tensors, sync_op, use_calc_stream);

  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }
      memory::RecordStream(tensors[i].Holder(), nccl_stream);
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  if (!use_calc_stream) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      task->control_events_[i].Record(*places_to_ctx_[key][i]);
    }
  }

  return task;
}

B
Baibaifan 已提交
494 495
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
496 497 498
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
499
    CommType op_type) {
B
Baibaifan 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
522
      memory::RecordStream(tensors[i].Holder(),
B
Baibaifan 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

543
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
544
    std::vector<phi::DenseTensor>& in_tensors,
545 546
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
547
  PADDLE_ENFORCE_EQ(
548 549
      CheckTensorsInCudaPlace(in_tensors),
      true,
550
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
551
  return Collective(
552 553 554 555 556 557
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
558
        return platform::dynload::ncclAllReduce(
559 560 561
            input.data(),
            output.data(),
            input.numel(),
562
            platform::ToNCCLDataType(input.type()),
563 564 565
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
566 567
      },
      CommType::ALLREDUCE);
568 569
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllReduce(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

601
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
602
    std::vector<phi::DenseTensor>& in_tensors,
603 604
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
605
  PADDLE_ENFORCE_EQ(
606 607
      CheckTensorsInCudaPlace(in_tensors),
      true,
608 609
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

610
  return Collective(
611 612 613 614 615
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
616 617 618 619
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
620 621 622 623 624 625 626
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
627 628
      },
      CommType::BROADCAST);
629 630
}

B
Baibaifan 已提交
631 632
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
B
Baibaifan 已提交
633 634
  // Only support single card single process
  std::vector<phi::GPUPlace> places = {place_};
B
Baibaifan 已提交
635

636
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
637 638 639 640 641
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
L
LiYuRio 已提交
642 643 644 645
    phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim({1}));
    auto allocator = std::unique_ptr<phi::Allocator>(
        new paddle::experimental::DefaultAllocator(place));
    barrierTensors.emplace_back(allocator.get(), meta);
B
Baibaifan 已提交
646
  }
647 648
  auto task = ProcessGroupNCCL::AllReduce(
      barrierTensors, barrierTensors, AllreduceOptions());
B
Baibaifan 已提交
649 650 651 652 653
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

654 655
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
656
  PADDLE_ENFORCE_EQ(
657 658
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
659 660
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
661 662
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
663 664 665 666 667 668
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
669 670
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
671 672 673
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

674
    const auto inserted = used_devices.insert(t.place()).second;
675 676
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
677 678 679 680 681 682
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
683
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
684 685
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

686 687
  auto task = PointToPoint(
      tensors,
688 689 690
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
691 692
          int dst_rank) {
        return platform::dynload::ncclSend(
693 694 695 696 697 698
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
699
      },
700 701
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
702 703 704
  return task;
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
    std::vector<phi::DenseTensor>& tensors,
    int dst_rank,
    bool sync_op,
    bool use_calc_stream) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
      },
      dst_rank,
      CommType::SEND,
      sync_op,
      use_calc_stream);
  return task;
}

B
Baibaifan 已提交
733
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
734
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
735 736
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

737 738
  auto task = PointToPoint(
      tensors,
739 740 741
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
742 743
          int src_rank) {
        return platform::dynload::ncclRecv(
744 745 746 747 748 749
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
750
      },
751 752
      src_rank,
      CommType::RECV);
753 754 755
  return task;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
    std::vector<phi::DenseTensor>& tensors,
    int src_rank,
    bool sync_op,
    bool use_calc_stream) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
      },
      src_rank,
      CommType::RECV,
      sync_op,
      use_calc_stream);
  return task;
}

784 785 786 787 788 789 790
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors, int dst_rank, int offset, int length) {
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

791 792
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
793

794 795
  auto task = PointToPoint(
      shared_tensors,
796 797 798
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
799 800
          int dst_rank) {
        return platform::dynload::ncclSend(
801 802 803 804 805 806
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
807
      },
808 809
      dst_rank,
      CommType::SEND);
810 811 812
  return task;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors,
    int dst_rank,
    int offset,
    int length,
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
      },
      dst_rank,
      CommType::SEND,
      sync_op,
      use_calc_stream);
  return task;
}

847 848 849 850 851 852 853
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors, int src_rank, int offset, int length) {
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

854 855
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
856

857 858
  auto task = PointToPoint(
      shared_tensors,
859 860 861
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
862 863
          int src_rank) {
        return platform::dynload::ncclRecv(
864 865 866 867 868 869
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
870
      },
871 872
      src_rank,
      CommType::RECV);
B
Baibaifan 已提交
873 874 875
  return task;
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors,
    int src_rank,
    int offset,
    int length,
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
      },
      src_rank,
      CommType::RECV,
      sync_op,
      use_calc_stream);
  return task;
}

910
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
911 912
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
913
  PADDLE_ENFORCE_EQ(
914 915
      CheckTensorsInCudaPlace(in_tensors),
      true,
916 917
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
918 919
      CheckTensorsInCudaPlace(out_tensors),
      true,
920
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
921
  return Collective(
922 923 924 925 926 927
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
928
        return platform::dynload::ncclAllGather(
929 930 931 932 933 934
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
935 936
      },
      CommType::ALLGATHER);
937 938
}

939 940
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
941 942 943 944 945 946 947
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
948 949 950
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
951 952 953 954 955 956
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
957 958 959 960 961 962 963 964
  } else if (type == experimental::DataType::INT8) {
    return reinterpret_cast<void*>(reinterpret_cast<int8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::UINT8) {
    return reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::BOOL) {
    return reinterpret_cast<void*>(reinterpret_cast<bool*>(raw_pointer) +
965 966 967 968 969
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
970
  return nullptr;
971 972
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    int offset,
    int length) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

1004
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
1005 1006
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1007
  PADDLE_ENFORCE_EQ(
1008 1009
      CheckTensorsInCudaPlace(in_tensors),
      true,
1010 1011
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1012 1013
      CheckTensorsInCudaPlace(out_tensors),
      true,
1014 1015
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1016 1017 1018 1019 1020
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1021 1022 1023 1024 1025
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1026
              GetPointerByOffset(input.data(), offset, input.dtype()),
1027 1028 1029 1030 1031
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1032
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1033
              GetPointerByOffset(output.data(), offset, input.dtype()),
1034 1035 1036 1037 1038
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1039
          offset += input.numel() / size_;
1040 1041 1042
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
      CommType::ALLTOALL);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
1073 1074
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
1106 1107 1108
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
1109
    std::vector<phi::DenseTensor>& in_tensors,
1110 1111
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
1112
  PADDLE_ENFORCE_EQ(
1113 1114
      CheckTensorsInCudaPlace(in_tensors),
      true,
1115 1116
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1117 1118 1119 1120 1121 1122
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1123
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
1124 1125 1126
            input.data(),
            output.data(),
            input.numel(),
1127
            platform::ToNCCLDataType(input.dtype()),
1128 1129 1130 1131
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
1132 1133 1134 1135 1136
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
1137
    std::vector<phi::DenseTensor>& in_tensors,
1138 1139
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
1140
  PADDLE_ENFORCE_EQ(
1141 1142
      CheckTensorsInCudaPlace(in_tensors),
      true,
1143 1144
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1145 1146
      CheckTensorsInCudaPlace(out_tensors),
      true,
1147 1148
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1149 1150 1151 1152 1153
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1154 1155 1156 1157 1158 1159
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1160
                GetPointerByOffset(input.data(), offset, input.dtype()),
1161 1162 1163 1164 1165
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
1166
            offset += input.numel() / size_;
1167 1168
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1169 1170 1171 1172 1173
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1174 1175 1176 1177
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1178 1179 1180 1181 1182
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1183 1184 1185 1186 1187 1188
              stream));
        }
      },
      CommType::SCATTER);
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::_ReduceScatterBase(
    phi::DenseTensor& out_tensor,
    phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts) {
  // auto tensor = out_tensors.back();
  PADDLE_ENFORCE_EQ(
      out_tensor.dtype(),
      in_tensor.dtype(),
      platform::errors::InvalidArgument(
          "Input tensor and output tensor should be same dtype."));

  PADDLE_ENFORCE_EQ(
      out_tensor.numel() * size_,
      in_tensor.numel(),
      platform::errors::InvalidArgument("input tensor must be the same size as "
                                        "output tensor size times world_size"));

  auto inputs = std::vector<phi::DenseTensor>{in_tensor};
  auto outputs = std::vector<phi::DenseTensor>{out_tensor};

  return Collective(
      inputs,
      outputs,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER);
}

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

L
LiYuRio 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
  std::vector<Place> places = {place};
  const auto& iter = places_to_ncclcomm_.find(GetKeyFromPlaces(places));
  PADDLE_ENFORCE_NE(iter,
                    places_to_ncclcomm_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find nccl comm in process group."));
  return iter->second[0]->GetNcclComm();
}

L
LiYuRio 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
phi::DeviceContext* ProcessGroupNCCL::GetDeviceContext(
    const Place& place) const {
  std::vector<Place> places = {place};
  const auto& iter = places_to_ctx_.find(GetKeyFromPlaces(places));
  PADDLE_ENFORCE_NE(iter,
                    places_to_ctx_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find device context in process group."));
  return iter->second[0].get();
}

1262 1263
}  //  namespace distributed
}  //  namespace paddle