ProcessGroupNCCL.cc 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
L
lilong12 已提交
16
#include "paddle/fluid/distributed/collective/Common.h"
17
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
18
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
19 20 21
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
    std::vector<EventManager>& ncclEvents,                       // NOLINT
    std::vector<std::unique_ptr<CUDADeviceContext>>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
38 39
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
40 41 42 43 44
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places, int rank, CommType comm_type,
45
    const std::vector<phi::DenseTensor>& inputs) {
46 47 48 49
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(places, rank, comm_type,
                                                      inputs);
}

50 51 52
ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places, int rank, CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
53 54 55 56 57 58 59 60
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
61 62
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
92 93 94 95 96 97 98 99

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
    }
  }
100 101 102 103 104 105
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

106
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
107 108 109 110 111
                                   int rank, int size,
                                   const platform::Place& place, int gid)
    : ProcessGroup(rank, size, place, gid), store_(store) {
  platform::SetDeviceId(place_.device);
}
112 113 114

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
115 116
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
117 118
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
119 120 121 122 123 124 125
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
126 127
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
128 129 130
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
  PADDLE_ENFORCE_EQ(places_key.empty(), false,
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
150 151 152 153
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

154 155 156 157 158
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

159 160
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

  std::vector<std::unique_ptr<CUDADeviceContext>> dev_ctx;
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
    dev_ctx[i].reset(new CUDADeviceContext(places[i]));
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
187 188
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, Fn fn, CommType op_type) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);
  task->SetOutputs(outputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
212
      memory::RecordStream(inputs[i].Holder(),
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
                                  phi::DenseTensor* out, Fn fn,
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

B
Baibaifan 已提交
270 271
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
272 273
    std::vector<phi::DenseTensor>& tensors, Fn fn, int dst_rank,
    CommType op_type) {
B
Baibaifan 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
296
      memory::RecordStream(tensors[i].Holder(),
B
Baibaifan 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

317
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
318 319
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const AllreduceOptions& opts) {
320
  PADDLE_ENFORCE_EQ(
321
      CheckTensorsInCudaPlace(in_tensors), true,
322
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
323 324 325 326 327 328 329 330 331
  return Collective(in_tensors, out_tensors,
                    [&](const phi::DenseTensor& input, phi::DenseTensor& output,
                        ncclComm_t comm, const gpuStream_t& stream) {
                      return platform::dynload::ncclAllReduce(
                          input.data(), output.data(), input.numel(),
                          platform::ToNCCLDataType(input.type()),
                          ToNCCLRedType(opts.reduce_op), comm, stream);
                    },
                    CommType::ALLREDUCE);
332 333 334
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
335 336
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const BroadcastOptions& opts) {
337
  PADDLE_ENFORCE_EQ(
338
      CheckTensorsInCudaPlace(in_tensors), true,
339 340
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

341 342 343 344 345 346 347 348 349 350 351
  return Collective(in_tensors, out_tensors,
                    [&](phi::DenseTensor& input, phi::DenseTensor& output,
                        ncclComm_t comm, const gpuStream_t& stream) {
                      const auto root = opts.source_rank * in_tensors.size() +
                                        opts.source_root;
                      return platform::dynload::ncclBroadcast(
                          input.data(), output.data(), input.numel(),
                          platform::ToNCCLDataType(input.type()), root, comm,
                          stream);
                    },
                    CommType::BROADCAST);
352 353
}

B
Baibaifan 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
  std::vector<phi::GPUPlace> places;

  if (!opts.place_ids.empty()) {
    for (auto place_id : opts.place_ids) {
      places.emplace_back(place_id);
    }
  } else if (!used_place_ids_.empty()) {
    for (auto place_id : used_place_ids_) {
      places.emplace_back(place_id);
    }
  } else {
    auto numGPUs = GetSize();
    int place_id = static_cast<int>(rank_ % numGPUs);
    places.emplace_back(place_id);
  }

372
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
373 374 375 376 377
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
378
    auto dt = full({1}, 0, phi::DataType::FLOAT32, phi::GPUPlace());
379 380
    barrierTensors.push_back(
        *std::dynamic_pointer_cast<phi::DenseTensor>(dt.impl()));
B
Baibaifan 已提交
381
  }
382
  auto task = ProcessGroupNCCL::AllReduce(barrierTensors, barrierTensors);
B
Baibaifan 已提交
383 384 385 386 387
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

388 389
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
390 391 392 393 394 395 396 397 398 399 400
  PADDLE_ENFORCE_EQ(
      tensors.size() == 0, false,
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
      tensors.size(), num_devices,
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
401
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()), true,
B
Baibaifan 已提交
402 403 404
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

405
    const auto inserted = used_devices.insert(t.place()).second;
B
Baibaifan 已提交
406 407 408 409 410 411 412
    PADDLE_ENFORCE_EQ(inserted, true,
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
413
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
414 415
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

416 417 418 419 420 421 422 423 424
  auto task = PointToPoint(tensors,
                           [&](phi::DenseTensor& input, ncclComm_t comm,
                               const gpuStream_t& stream, int dst_rank) {
                             return platform::dynload::ncclSend(
                                 input.data(), input.numel(),
                                 platform::ToNCCLDataType(input.dtype()),
                                 dst_rank, comm, stream);
                           },
                           dst_rank, CommType::SEND);
B
Baibaifan 已提交
425 426 427 428
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
429
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
430 431
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

432 433 434 435 436 437 438 439 440
  auto task = PointToPoint(tensors,
                           [&](phi::DenseTensor& output, ncclComm_t comm,
                               const gpuStream_t& stream, int src_rank) {
                             return platform::dynload::ncclRecv(
                                 output.data(), output.numel(),
                                 platform::ToNCCLDataType(output.dtype()),
                                 src_rank, comm, stream);
                           },
                           src_rank, CommType::RECV);
B
Baibaifan 已提交
441 442 443
  return task;
}

444
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
445 446
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
447 448 449 450 451 452
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
453 454 455 456 457 458 459 460 461
  return Collective(in_tensors, out_tensors,
                    [&](const phi::DenseTensor& input, phi::DenseTensor& output,
                        ncclComm_t comm, const gpuStream_t& stream) {
                      return platform::dynload::ncclAllGather(
                          input.data(), output.data(), input.numel(),
                          platform::ToNCCLDataType(input.dtype()), comm,
                          stream);
                    },
                    CommType::ALLGATHER);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
}

void* GetPointerByOffset(void* raw_pointer, size_t offset,
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
485
  return nullptr;
486 487 488
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
489 490
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
491 492 493 494 495 496 497 498
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
499
      [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm,
500 501 502 503 504
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
505 506 507
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i,
              comm, stream));
508
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
509 510 511 512
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i,
              comm, stream));
          offset += input.numel() / size_;
513 514 515 516 517 518 519
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLREDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
520 521
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ReduceOptions& opts) {
522
  PADDLE_ENFORCE_EQ(
523
      CheckTensorsInCudaPlace(in_tensors), true,
524 525
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
526 527 528
      in_tensors, out_tensors,
      [&](const phi::DenseTensor& input, phi::DenseTensor& output,
          ncclComm_t comm, const gpuStream_t& stream) {
529
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
530 531
            input.data(), output.data(), input.numel(),
            platform::ToNCCLDataType(input.dtype()),
532 533 534 535 536 537
            ToNCCLRedType(opts.reduce_op), opts.root_rank, comm, stream));
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
538 539
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ScatterOptions& opts) {
540 541 542 543 544 545 546 547
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
548
      [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm,
549 550 551 552 553 554
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
555 556 557 558
                GetPointerByOffset(input.data(), offset, input.dtype()),
                input.numel() / size_, platform::ToNCCLDataType(input.dtype()),
                i, comm, stream));
            offset += input.numel() / size_;
559 560
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
561 562
              output.data(), input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm,
563 564 565 566
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
567 568
              output.data(), input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm,
569 570 571 572 573 574
              stream));
        }
      },
      CommType::SCATTER);
}

575 576
}  //  namespace distributed
}  //  namespace paddle