op_param.h 66.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
50
class OpParam {
朔-望's avatar
朔-望 已提交
51
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
52 53 54 55
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
56 57 58 59 60
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

61 62 63 64 65 66 67 68 69
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
70 71 72 73 74
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

102 103 104 105
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
106 107 108 109 110 111

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

112 113 114 115 116
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
117 118 119 120 121
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

122 123 124 125 126
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
131 132 133 134 135 136 137 138 139 140 141 142
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
143 144 145 146
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
163

E
eclipsess 已提交
164 165 166 167 168 169 170 171 172 173
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
174 175 176 177
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
178

179
  template <typename T>
W
wangliu 已提交
180 181
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
182 183 184
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

214 215 216 217 218 219 220 221 222 223
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
224 225 226 227 228 229
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
235 236 237 238 239 240
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
241 242 243 244 245
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

252 253 254 255 256 257 258 259 260 261 262
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
263
  static const T GetAttr(const string &key, const AttributeMap &map) {
264 265 266
    return ((Attribute)map.at(key)).Get<T>();
  }

267 268 269 270
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

271
  template <typename T>
W
wangliu 已提交
272
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
273
                        const Scope &scope) {
W
wangliu 已提交
274 275
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
276 277 278 279 280 281
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
282
    }
283
  }
朔-望's avatar
朔-望 已提交
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

305
  template <typename T>
W
wangliu 已提交
306 307 308
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
309 310
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
311
    vector<T *> var_res;
312 313 314
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
315
    }
316 317
    return var_res;
  }
朔-望's avatar
朔-望 已提交
318 319
};

N
nhzlx 已提交
320
template <typename Dtype>
321
class ConvParam : public OpParam {
N
nhzlx 已提交
322 323 324
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
325
 public:
326
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
327
            const AttributeMap &attrs, const Scope &scope) {
328 329 330 331 332 333 334 335 336
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
337
  }
朔-望's avatar
朔-望 已提交
338

N
nhzlx 已提交
339
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
340

N
nhzlx 已提交
341
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
342

N
nhzlx 已提交
343
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
344

W
wangliu 已提交
345
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
346

W
wangliu 已提交
347
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
348

W
wangliu 已提交
349
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
350

351
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
352

朔-望's avatar
朔-望 已提交
353
 private:
N
nhzlx 已提交
354 355 356
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
357 358 359
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
360
  int groups;
朔-望's avatar
朔-望 已提交
361
};
N
nhzlx 已提交
362 363
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
364

N
nhzlx 已提交
365
template <typename Dtype>
朔-望's avatar
朔-望 已提交
366
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
367 368 369
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
370
 public:
371
  ElementwiseAddParam(const VariableNameMap &inputs,
372 373
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
374 375 376
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
377 378 379
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
380
  const GType *InputX() const { return input_x_; }
381

xiebaiyuan's avatar
xiebaiyuan 已提交
382
  const GType *InputY() const { return input_y_; }
383

xiebaiyuan's avatar
xiebaiyuan 已提交
384
  GType *Out() const { return out_; }
385 386 387

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
388
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
389 390 391
  GType *input_x_;
  GType *input_y_;
  GType *out_;
392
  int axis_;
Z
zhangyang 已提交
393 394 395
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
396
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
397 398

 public:
H
hanbuhe 已提交
399 400
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
401
#endif
朔-望's avatar
朔-望 已提交
402 403
};

404
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
405 406
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
407 408 409
#endif

#ifdef MUL_OP
N
nhzlx 已提交
410
template <typename Dtype>
朔-望's avatar
朔-望 已提交
411
class MulParam : OpParam {
N
nhzlx 已提交
412 413 414
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
415
 public:
416
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
417
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
418 419 420
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
421 422 423
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
424

xiebaiyuan's avatar
xiebaiyuan 已提交
425
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
426

xiebaiyuan's avatar
xiebaiyuan 已提交
427
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
428

xiebaiyuan's avatar
xiebaiyuan 已提交
429
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
430

431
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
432

433
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
434

朔-望's avatar
朔-望 已提交
435
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
436 437 438
  GType *input_x_;
  GType *input_y_;
  GType *out_;
439 440
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
441
};
L
liuruilong 已提交
442
#endif
朔-望's avatar
朔-望 已提交
443

L
liuruilong 已提交
444
#ifdef CONCAT_OP
N
nhzlx 已提交
445
template <typename Dtype>
朔-望's avatar
朔-望 已提交
446
class ConcatParam : public OpParam {
N
nhzlx 已提交
447 448 449
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
450
 public:
451
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
452
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
453 454
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
455 456
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
457

N
nhzlx 已提交
458
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
459

xiebaiyuan's avatar
xiebaiyuan 已提交
460
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
461

462
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
463

朔-望's avatar
朔-望 已提交
464
 private:
N
nhzlx 已提交
465
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
466
  GType *out_;
467
  int axis_;
Z
zhangyang 已提交
468 469 470 471 472 473 474 475 476
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
477
};
L
liuruilong 已提交
478
#endif
朔-望's avatar
朔-望 已提交
479

L
liuruilong 已提交
480
#ifdef LRN_OP
N
nhzlx 已提交
481
template <typename Dtype>
E
eclipsess 已提交
482
class LrnParam : public OpParam {
N
nhzlx 已提交
483 484 485
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
486
 public:
487
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
488
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
489 490 491
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
492 493 494 495
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
496
    data_format_ = GetAttr<string>("data_format", attrs);
497
  }
E
eclipsess 已提交
498

N
nhzlx 已提交
499
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
500

N
nhzlx 已提交
501
  RType *Out() const { return out_; }
E
eclipsess 已提交
502

N
nhzlx 已提交
503
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
504

505
  const int &N() const { return n_; }
E
eclipsess 已提交
506

507
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
508

509
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
510

511
  const float &K() const { return k_; }
E
eclipsess 已提交
512

W
wangliu 已提交
513
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
514

朔-望's avatar
朔-望 已提交
515
 private:
N
nhzlx 已提交
516 517 518
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
519 520 521 522
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
523
  string data_format_;
E
eclipsess 已提交
524
};
L
liuruilong 已提交
525 526 527
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
528
template <typename Dtype>
E
eclipsess 已提交
529
class BatchNormParam : OpParam {
N
nhzlx 已提交
530 531 532
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
533
 public:
534
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
535
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
536 537 538 539 540 541
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
542 543
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
544
    //    is_test_ = GetAttr<bool>("is_test", attrs);
545
  }
E
eclipsess 已提交
546

N
nhzlx 已提交
547
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
548

N
nhzlx 已提交
549
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
550

N
nhzlx 已提交
551
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
552

N
nhzlx 已提交
553
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
554

N
nhzlx 已提交
555
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
556

N
nhzlx 已提交
557
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
558

559
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
560

561
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
562

563
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
564

W
wangliu 已提交
565
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
566

朔-望's avatar
朔-望 已提交
567
 private:
N
nhzlx 已提交
568 569 570 571 572 573
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
574 575 576
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
577
  string data_format_;
E
eclipsess 已提交
578
};
L
liuruilong 已提交
579 580 581
#endif

#ifdef POOL_OP
N
nhzlx 已提交
582
template <typename Dtype>
583
class PoolParam : public OpParam {
N
nhzlx 已提交
584 585 586
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
587
 public:
588
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
589
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
590
    input_ = InputXFrom<GType>(inputs, scope);
591

N
nhzlx 已提交
592
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
593 594 595 596
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
597
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
598
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
599
  }
600

N
nhzlx 已提交
601
  const RType *Input() const { return input_; }
602

N
nhzlx 已提交
603
  RType *Output() const { return output_; }
604

W
wangliu 已提交
605
  const string &PoolingType() const { return pooling_type_; }
606

W
wangliu 已提交
607
  const vector<int> &Ksize() const { return ksize_; }
608

W
wangliu 已提交
609
  const vector<int> &Strides() const { return strides_; }
610

W
wangliu 已提交
611
  const vector<int> &Paddings() const { return paddings_; }
612

613
  bool isCeilMode() const { return ceil_mode_; }
614

Z
zhangyang 已提交
615
  bool isGlobalPooling() const { return global_pooling_; }
616

朔-望's avatar
朔-望 已提交
617
 private:
N
nhzlx 已提交
618 619
  RType *input_;
  RType *output_;
W
wangliu 已提交
620 621 622 623
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
624
  bool ceil_mode_;
625
  bool global_pooling_ = false;
Z
zhangyang 已提交
626
#ifdef PADDLE_MOBILE_FPGA
627 628

 private:
H
hanbuhe 已提交
629
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
630 631

 public:
H
hanbuhe 已提交
632 633
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
634
#endif
635
};
L
liuruilong 已提交
636 637 638
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
639
template <typename Dtype>
E
eclipsess 已提交
640
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
641 642 643
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
644 645
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
646
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
647 648 649 650
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
651 652 653 654
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
655 656 657 658 659

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
660 661 662 663 664 665
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
666
  const RType *Input() const { return input_; }
E
eclipsess 已提交
667

N
nhzlx 已提交
668
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
669

N
nhzlx 已提交
670
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
671

N
nhzlx 已提交
672
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
673

W
wangliu 已提交
674
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
675

W
wangliu 已提交
676
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
677

W
wangliu 已提交
678
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
679

W
wangliu 已提交
680
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
681 682 683 684 685 686 687 688 689 690 691

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

692 693 694 695
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
696
 private:
N
nhzlx 已提交
697 698 699 700
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
701 702 703 704
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
705 706 707 708 709
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
710
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
711
};
L
liuruilong 已提交
712
#endif
E
eclipsess 已提交
713

L
liuruilong 已提交
714
#ifdef BOXCODER_OP
N
nhzlx 已提交
715
template <typename Dtype>
E
eclipsess 已提交
716
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
717 718 719
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
720 721
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
722
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
723 724 725 726
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
727 728
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
729
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
730

N
nhzlx 已提交
731
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
732

N
nhzlx 已提交
733
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
734

N
nhzlx 已提交
735
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
736 737 738 739

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
740 741 742 743
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
744 745
  std::string code_type_;
};
L
liuruilong 已提交
746
#endif
W
wangliu 已提交
747

L
liuruilong 已提交
748
#ifdef SOFTMAX_OP
N
nhzlx 已提交
749
template <typename Dtype>
W
wangliu 已提交
750
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
751 752 753
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
754 755
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
756
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
757 758
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
759
  }
N
nhzlx 已提交
760 761
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
762 763

 private:
N
nhzlx 已提交
764 765
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
766 767 768 769

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
770
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
771 772 773
  fpga::BypassArgs fpga_bypass_args;

 public:
774
  RType *FloatInput() const {
H
hanbuhe 已提交
775 776 777 778 779 780
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
781
};
L
liuruilong 已提交
782
#endif
W
wangliu 已提交
783

L
liuruilong 已提交
784
#ifdef SIGMOID_OP
N
nhzlx 已提交
785
template <typename Dtype>
W
wangliu 已提交
786
class SigmoidParam : public OpParam {
N
nhzlx 已提交
787 788 789
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
790 791
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
792
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
793 794
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
795
  }
N
nhzlx 已提交
796 797
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
798 799

 private:
N
nhzlx 已提交
800 801
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
802
};
L
liuruilong 已提交
803 804 805
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
806
template <typename Dtype>
E
eclipsess 已提交
807
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
808 809 810
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
811 812 813 814
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
815 816 817
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
818 819 820 821 822 823 824 825
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
826
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
827

N
nhzlx 已提交
828
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
829

N
nhzlx 已提交
830
  RType *Out() const { return out_; }
E
eclipsess 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
845 846 847
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
848 849 850 851 852 853 854
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
855
#endif
W
wangliu 已提交
856

N
nhzlx 已提交
857
template <typename Dtype>
L
liuruilong 已提交
858
class FeedParam : public OpParam {
N
nhzlx 已提交
859 860 861
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
862 863
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
864
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
865 866
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
867
    auto var = scope->Var("batch_size");
W
wangliu 已提交
868
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
869
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
870 871
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
872
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
873

L
liuruilong 已提交
874
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
875 876
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
877
  int batch_size;
L
liuruilong 已提交
878 879
};

N
nhzlx 已提交
880
template <typename Dtype>
L
liuruilong 已提交
881
class FetchParam : public OpParam {
N
nhzlx 已提交
882 883 884
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
885 886
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
887
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
888 889
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
890
  }
N
nhzlx 已提交
891 892
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
893

L
liuruilong 已提交
894
 private:
N
nhzlx 已提交
895 896
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
897 898
};

L
liuruilong 已提交
899
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
900
template <typename Dtype>
E
eclipsess 已提交
901
class TransposeParam : public OpParam {
N
nhzlx 已提交
902 903 904
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
905 906 907
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
908 909
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
910 911 912
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
913
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
914

N
nhzlx 已提交
915
  RType *Out() const { return out_; }
E
eclipsess 已提交
916 917 918 919

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
920 921
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
922 923
  vector<int> axis_;
};
L
liuruilong 已提交
924
#endif
E
eclipsess 已提交
925

xiebaiyuan's avatar
xiebaiyuan 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
992
#ifdef RESHAPE_OP
N
nhzlx 已提交
993
template <typename Dtype>
E
eclipsess 已提交
994
class ReshapeParam : public OpParam {
N
nhzlx 已提交
995 996 997
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
998 999 1000
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1001 1002 1003
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1004
    shape_ = GetAttr<vector<int>>("shape", attrs);
1005 1006 1007 1008 1009 1010 1011

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1012 1013
  }

N
nhzlx 已提交
1014
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1015

N
nhzlx 已提交
1016
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1017

N
nhzlx 已提交
1018
  RType *Out() const { return out_; }
E
eclipsess 已提交
1019 1020 1021 1022 1023 1024

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1025 1026 1027
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1028 1029 1030
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1031
#endif
E
eclipsess 已提交
1032

T
Tian 已提交
1033
#ifdef SCALE_OP
N
nhzlx 已提交
1034
template <typename Dtype>
I
itminner 已提交
1035
class ScaleParam : public OpParam {
N
nhzlx 已提交
1036 1037 1038
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1039 1040 1041
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1042 1043 1044
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1045 1046 1047 1048 1049 1050
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1051
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1052

N
nhzlx 已提交
1053
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1054

N
nhzlx 已提交
1055
  RType *Out() const { return out_; }
I
itminner 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1066 1067 1068
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1069 1070 1071 1072 1073
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1074 1075 1076
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1077
template <typename Dtype>
I
itminner 已提交
1078
class SliceParam : public OpParam {
N
nhzlx 已提交
1079 1080 1081
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1082 1083 1084
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1085 1086 1087
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1088 1089 1090 1091 1092
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1093
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1094

N
nhzlx 已提交
1095
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1096

N
nhzlx 已提交
1097
  RType *Out() const { return out_; }
I
itminner 已提交
1098 1099 1100 1101 1102 1103 1104 1105

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1106 1107 1108
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1109 1110 1111 1112
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1113 1114 1115
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1116
template <typename Dtype>
T
Tian 已提交
1117
class ResizeParam : public OpParam {
N
nhzlx 已提交
1118 1119 1120
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1121 1122 1123
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1124 1125 1126
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1127 1128 1129 1130 1131 1132
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1133

N
nhzlx 已提交
1134
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1135

N
nhzlx 已提交
1136
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1137

N
nhzlx 已提交
1138
  RType *Out() const { return out_; }
T
Tian 已提交
1139

I
itminner 已提交
1140
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1141

I
itminner 已提交
1142
  const int &Height() const { return height_; }
T
Tian 已提交
1143

I
itminner 已提交
1144
  const int &Width() const { return width_; }
T
Tian 已提交
1145

I
itminner 已提交
1146
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1147

I
itminner 已提交
1148
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1149

I
itminner 已提交
1150
 private:
N
nhzlx 已提交
1151 1152 1153
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1154 1155 1156 1157 1158
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1159 1160 1161
};
#endif

L
liuruilong 已提交
1162
#ifdef RELU_OP
L
liuruilong 已提交
1163 1164 1165
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1166
template <typename Dtype>
E
eclipsess 已提交
1167
class ReluParam : public OpParam {
N
nhzlx 已提交
1168 1169 1170
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1171 1172 1173
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1174 1175
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1176 1177
  }

N
nhzlx 已提交
1178
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1179

N
nhzlx 已提交
1180
  RType *Out() const { return out_; }
E
eclipsess 已提交
1181 1182

 private:
N
nhzlx 已提交
1183 1184
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1185
};
L
liuruilong 已提交
1186
#endif
E
eclipsess 已提交
1187

T
Tian 已提交
1188
#ifdef PRELU_OP
N
nhzlx 已提交
1189
template <typename Dtype>
T
Tian 已提交
1190
class PReluParam : public OpParam {
N
nhzlx 已提交
1191 1192 1193
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1194 1195 1196
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1197
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1198
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1199
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1200
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1201
    out_ = OutFrom<GType>(outputs, scope);
1202 1203
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1204
  }
N
nhzlx 已提交
1205
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1206
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1207
  RType *Out() const { return out_; }
1208
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1209

I
itminner 已提交
1210
 private:
N
nhzlx 已提交
1211 1212
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1213
  RType *alpha_;
1214
  std::string mode_;
T
Tian 已提交
1215 1216 1217
};
#endif

N
nhzlx 已提交
1218
template <typename Dtype>
L
liuruilong 已提交
1219
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1220 1221 1222
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1223
 public:
L
liuruilong 已提交
1224
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1225
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1226 1227 1228 1229
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1230 1231 1232 1233
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1234
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1235

N
nhzlx 已提交
1236
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1237

N
nhzlx 已提交
1238
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1239

xiebaiyuan's avatar
xiebaiyuan 已提交
1240
  GType *Out() const { return out_; }
E
eclipsess 已提交
1241 1242 1243 1244 1245 1246 1247 1248

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1249
  GType *input_x_;
N
nhzlx 已提交
1250 1251
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1252
  GType *out_;
E
eclipsess 已提交
1253 1254 1255
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1256 1257 1258
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1259
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1260 1261

 public:
Z
zhangyang 已提交
1262 1263
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1264
#endif
E
eclipsess 已提交
1265
};
1266 1267

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1268 1269
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1270
#endif
E
eclipsess 已提交
1271

N
nhzlx 已提交
1272
template <typename Dtype>
1273
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1274 1275 1276
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1277
 public:
L
liuruilong 已提交
1278
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1279
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1280 1281 1282 1283 1284
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1285
  }
N
nhzlx 已提交
1286
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1287 1288 1289

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1290
  RType *Output() const { return output_; }
W
wangliu 已提交
1291

L
liuruilong 已提交
1292
 protected:
N
nhzlx 已提交
1293
  RType *bias_;
W
wangliu 已提交
1294
  int axis_;
N
nhzlx 已提交
1295
  RType *output_;
Z
zhangyang 已提交
1296 1297 1298
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1299
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1300 1301

 public:
Z
zhangyang 已提交
1302 1303
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1304
#endif
W
wangliu 已提交
1305 1306
};

N
nhzlx 已提交
1307 1308
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1309

Z
zhangyang 已提交
1310
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1311 1312
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1313
 public:
L
liuruilong 已提交
1314
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1315 1316
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1317
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1318 1319 1320
};
#endif

1321
#ifdef FUSION_CONVADDPRELU_OP
1322 1323 1324 1325
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1326 1327 1328 1329

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1330 1331 1332 1333
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1334
    framework::DDim dims = alpha_->dims();
1335 1336 1337
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1354
  fpga::WrapperConvArgs fpga_conv_args;
1355 1356

 public:
Z
zhangyang 已提交
1357 1358
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1359 1360 1361 1362 1363
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1364 1365 1366 1367
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1368 1369 1370 1371

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1372 1373 1374 1375 1376
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1377
    framework::DDim dims = alpha_->dims();
1378 1379 1380 1381 1382 1383
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1384
    if (keyX1_ == keyOutput_) {
1385
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1386
    } else if (keyY1_ == keyOutput_) {
1387
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1412
  fpga::WrapperConvArgs fpga_conv_args;
1413 1414

 public:
Z
zhangyang 已提交
1415 1416
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1417 1418 1419 1420
#endif
};
#endif

E
eclipsess 已提交
1421
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1422
template <typename Dtype>
1423
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1424 1425 1426
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1427 1428 1429
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1442
  }
N
nhzlx 已提交
1443
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1444 1445 1446

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1447
  RType *Output() const { return output_; }
E
eclipsess 已提交
1448

N
nhzlx 已提交
1449
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1450

N
nhzlx 已提交
1451
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1452

N
nhzlx 已提交
1453
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1454

N
nhzlx 已提交
1455
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1456 1457 1458 1459 1460 1461 1462

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1463
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1464

N
nhzlx 已提交
1465
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1466

N
nhzlx 已提交
1467
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1468

N
nhzlx 已提交
1469
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1470 1471

 protected:
N
nhzlx 已提交
1472
  RType *bias_;
E
eclipsess 已提交
1473
  int axis_;
N
nhzlx 已提交
1474 1475 1476 1477 1478
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1479 1480 1481
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1482 1483
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1484 1485 1486
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1487
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1488 1489

 public:
Z
zhangyang 已提交
1490 1491
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1492 1493 1494 1495 1496 1497
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1498
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1499 1500 1501 1502 1503 1504
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1519
    if (keyX_ == keyBNY_) {
1520
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1521
    } else if (keyY_ == keyBNY_) {
1522
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1523
    }
1524
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1573
  fpga::WrapperConvArgs fpga_conv_args;
1574 1575

 public:
Z
zhangyang 已提交
1576 1577
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1578
#endif
E
eclipsess 已提交
1579
};
1580
#endif
E
eclipsess 已提交
1581

Z
zhangyang 已提交
1582
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1583
template <typename Dtype>
1584
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1585 1586 1587
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1588 1589 1590
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1601
  }
N
nhzlx 已提交
1602
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1603

N
nhzlx 已提交
1604
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1605

N
nhzlx 已提交
1606
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1607

N
nhzlx 已提交
1608
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1609

N
nhzlx 已提交
1610
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1611 1612 1613 1614 1615 1616 1617

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1618
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1619

N
nhzlx 已提交
1620
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1621

N
nhzlx 已提交
1622
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1623

N
nhzlx 已提交
1624
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1625 1626

 protected:
N
nhzlx 已提交
1627 1628 1629 1630 1631
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1632 1633 1634
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1635 1636
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1637 1638 1639
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1640
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1641 1642

 public:
Z
zhangyang 已提交
1643 1644
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1645 1646 1647 1648
#endif
};
#endif

1649
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1650
template <typename Dtype>
1651
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1652 1653 1654
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1655 1656 1657
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1670
  }
N
nhzlx 已提交
1671
  RType *Bias() const { return bias_; }
1672 1673 1674

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1675
  RType *Output() const { return output_y_; }
1676

N
nhzlx 已提交
1677
  const RType *InputBias() const { return input_bias_; }
1678

N
nhzlx 已提交
1679
  const RType *InputMean() const { return input_mean_; }
1680

N
nhzlx 已提交
1681
  const RType *InputScale() const { return input_scale_; }
1682

N
nhzlx 已提交
1683
  const RType *InputVariance() const { return input_variance_; }
1684 1685 1686 1687 1688 1689 1690

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1691
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1692

N
nhzlx 已提交
1693
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1694

N
nhzlx 已提交
1695
  const RType *NewScale() const { return new_scale_; }
1696

N
nhzlx 已提交
1697
  const RType *NewBias() const { return new_bias_; }
1698 1699

 protected:
N
nhzlx 已提交
1700
  RType *bias_;
1701
  int axis_;
N
nhzlx 已提交
1702 1703 1704 1705 1706
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1707 1708 1709
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1710 1711
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1712 1713 1714
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1715
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1716 1717

 public:
Z
zhangyang 已提交
1718 1719
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1720
#endif
1721
};
E
eclipsess 已提交
1722
#endif
Y
Yao,kun 已提交
1723

E
eclipsess 已提交
1724
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1725
template <typename Dtype>
1726
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1727 1728 1729
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1730 1731 1732
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1743
  }
N
nhzlx 已提交
1744
  RType *Output() const { return output_; }
E
eclipsess 已提交
1745

N
nhzlx 已提交
1746
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1747

N
nhzlx 已提交
1748
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1749

N
nhzlx 已提交
1750
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1751

N
nhzlx 已提交
1752
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1753 1754 1755 1756 1757 1758 1759

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1760
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1761

N
nhzlx 已提交
1762
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1763

N
nhzlx 已提交
1764
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1765

N
nhzlx 已提交
1766
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1767 1768

 protected:
N
nhzlx 已提交
1769 1770 1771 1772 1773
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1774 1775 1776
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1777 1778
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1779 1780 1781 1782
};

#endif

1783
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1784
template <typename Dtype>
1785
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1786 1787 1788
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1789 1790 1791
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1802
  }
N
nhzlx 已提交
1803
  RType *Output() const { return output_; }
1804

N
nhzlx 已提交
1805
  const RType *InputBias() const { return input_bias_; }
1806

N
nhzlx 已提交
1807
  const RType *InputMean() const { return input_mean_; }
1808

N
nhzlx 已提交
1809
  const RType *InputScale() const { return input_scale_; }
1810

N
nhzlx 已提交
1811
  const RType *InputVariance() const { return input_variance_; }
1812 1813 1814 1815 1816 1817 1818

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1819
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1820

N
nhzlx 已提交
1821
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1822

N
nhzlx 已提交
1823
  const RType *NewScale() const { return new_scale_; }
1824

N
nhzlx 已提交
1825
  const RType *NewBias() const { return new_bias_; }
1826 1827

 protected:
N
nhzlx 已提交
1828 1829 1830 1831 1832
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1833 1834 1835
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1836 1837
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1838 1839 1840
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1841
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1842 1843

 public:
Z
zhangyang 已提交
1844 1845
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1846
#endif
1847 1848 1849
};
#endif

Y
Yao,kun 已提交
1850
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1851
template <typename Dtype>
Y
Yao,kun 已提交
1852
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1853 1854 1855
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1856 1857 1858 1859
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1860 1861
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1862 1863 1864 1865 1866
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1867
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1868

N
nhzlx 已提交
1869
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1870 1871 1872 1873 1874 1875 1876 1877

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1878 1879
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1880 1881 1882 1883
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1884
#endif
Y
Yao,kun 已提交
1885

1886
#ifdef DROPOUT_OP
N
nhzlx 已提交
1887
template <typename Dtype>
Y
Yao,kun 已提交
1888
class DropoutParam : public OpParam {
N
nhzlx 已提交
1889 1890 1891
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1892 1893 1894
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1895 1896
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1897 1898

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1899 1900
  }

N
nhzlx 已提交
1901
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1902

N
nhzlx 已提交
1903
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1904

Y
yangfei 已提交
1905 1906
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1907
 private:
N
nhzlx 已提交
1908 1909
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1910
  float dropout_prob_;
Y
Yao,kun 已提交
1911
};
1912
#endif
Y
Yao,kun 已提交
1913

L
liuruilong 已提交
1914
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
1915
template <typename Dtype>
L
liuruilong 已提交
1916
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1917 1918 1919
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1920 1921 1922 1923
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1924 1925 1926
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1927 1928 1929 1930 1931 1932
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1933
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1934

N
nhzlx 已提交
1935
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1936

N
nhzlx 已提交
1937
  RType *Output() const { return output_; }
L
liuruilong 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1948 1949 1950
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1951 1952 1953 1954 1955 1956 1957
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2029
    axis = GetAttr<int>("axis", attrs);
2030 2031 2032
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2033
  const int &Axis() const { return axis; }
2034 2035 2036 2037

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2038
  int axis;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2052
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2053
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2054 2055 2056 2057 2058 2059
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2060 2061
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2062 2063 2064 2065 2066
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2067 2068 2069

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2070
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2071
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2072 2073 2074
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2091 2092
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2093 2094
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2095
  const RType *InputOutPutSize() const { return input_outsize_; }
2096
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2097 2098
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2099 2100 2101 2102 2103

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2104 2105
  int out_h_;
  int out_w_;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2121
  const RType *Input() const { return input_; }
2122 2123 2124 2125 2126 2127 2128 2129
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2130
template <typename Dtype>
2131 2132 2133 2134 2135
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2136 2137
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    if (HasAttr("is_static", attrs)) {
      is_static_ = GetAttr<bool>("is_static", attrs);
    }
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
  RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
};

2172
template <typename Dtype>
2173 2174 2175 2176 2177
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2178 2179
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};

朔-望's avatar
朔-望 已提交
2200 2201
}  // namespace operators
}  // namespace paddle_mobile