op_param.h 64.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
74
class OpParam {
朔-望's avatar
朔-望 已提交
75
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
80 81 82 83 84
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

85 86 87 88 89 90 91 92 93
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
94 95 96 97 98
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

126 127 128 129
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
130 131 132 133 134 135

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

136 137 138 139 140
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
141 142 143 144 145
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

146 147 148 149 150
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
151 152 153 154
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
155 156 157 158 159 160 161 162 163 164 165 166
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
167 168 169 170
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
187

E
eclipsess 已提交
188 189 190 191 192 193 194 195 196 197
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
198 199 200 201
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
202

203
  template <typename T>
W
wangliu 已提交
204 205
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
206 207 208
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

238 239 240 241 242 243 244 245 246 247
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

254 255 256 257 258
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
259 260 261 262 263 264
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
265 266 267 268 269
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
270 271 272 273 274 275
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

276 277 278 279 280 281 282 283 284 285 286
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
287
  static const T GetAttr(const string &key, const AttributeMap &map) {
288 289 290
    return ((Attribute)map.at(key)).Get<T>();
  }

291 292 293 294
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

295
  template <typename T>
W
wangliu 已提交
296
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
297
                        const Scope &scope) {
W
wangliu 已提交
298 299
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
300 301 302 303 304 305
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
306
    }
307
  }
朔-望's avatar
朔-望 已提交
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

329
  template <typename T>
W
wangliu 已提交
330 331 332
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
333 334
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
335
    vector<T *> var_res;
336 337 338
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
339
    }
340 341
    return var_res;
  }
朔-望's avatar
朔-望 已提交
342 343
};

L
liuruilong 已提交
344
#ifdef CONV_OP
N
nhzlx 已提交
345
template <typename Dtype>
346
class ConvParam : public OpParam {
N
nhzlx 已提交
347 348 349
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
350
 public:
351
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
352
            const AttributeMap &attrs, const Scope &scope) {
353 354 355 356 357 358 359 360 361
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
362
  }
朔-望's avatar
朔-望 已提交
363

N
nhzlx 已提交
364
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
365

N
nhzlx 已提交
366
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
367

N
nhzlx 已提交
368
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
369

W
wangliu 已提交
370
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
371

W
wangliu 已提交
372
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
373

W
wangliu 已提交
374
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
375

376
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
377

朔-望's avatar
朔-望 已提交
378
 private:
N
nhzlx 已提交
379 380 381
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
382 383 384
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
385
  int groups;
朔-望's avatar
朔-望 已提交
386
};
N
nhzlx 已提交
387 388
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
L
liuruilong 已提交
389
#endif
朔-望's avatar
朔-望 已提交
390

N
nhzlx 已提交
391
template <typename Dtype>
朔-望's avatar
朔-望 已提交
392
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
393 394 395
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
396
 public:
397
  ElementwiseAddParam(const VariableNameMap &inputs,
398 399
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
400 401 402
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
403 404 405
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
406
  const GType *InputX() const { return input_x_; }
407

xiebaiyuan's avatar
xiebaiyuan 已提交
408
  const GType *InputY() const { return input_y_; }
409

xiebaiyuan's avatar
xiebaiyuan 已提交
410
  GType *Out() const { return out_; }
411 412 413

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
414
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
415 416 417
  GType *input_x_;
  GType *input_y_;
  GType *out_;
418
  int axis_;
Z
zhangyang 已提交
419 420 421
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
422
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
423 424

 public:
H
hanbuhe 已提交
425 426
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
427
#endif
朔-望's avatar
朔-望 已提交
428 429
};

430
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
431 432
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
433 434 435
#endif

#ifdef MUL_OP
N
nhzlx 已提交
436
template <typename Dtype>
朔-望's avatar
朔-望 已提交
437
class MulParam : OpParam {
N
nhzlx 已提交
438 439 440
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
441
 public:
442
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
443
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
444 445 446
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
447 448 449
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
450

xiebaiyuan's avatar
xiebaiyuan 已提交
451
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
452

xiebaiyuan's avatar
xiebaiyuan 已提交
453
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
454

xiebaiyuan's avatar
xiebaiyuan 已提交
455
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
456

457
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
458

459
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
460

朔-望's avatar
朔-望 已提交
461
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
462 463 464
  GType *input_x_;
  GType *input_y_;
  GType *out_;
465 466
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
467
};
L
liuruilong 已提交
468
#endif
朔-望's avatar
朔-望 已提交
469

L
liuruilong 已提交
470
#ifdef CONCAT_OP
N
nhzlx 已提交
471
template <typename Dtype>
朔-望's avatar
朔-望 已提交
472
class ConcatParam : public OpParam {
N
nhzlx 已提交
473 474 475
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
476
 public:
477
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
478
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
479 480
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
481 482
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
483

N
nhzlx 已提交
484
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
485

xiebaiyuan's avatar
xiebaiyuan 已提交
486
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
487

488
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
489

朔-望's avatar
朔-望 已提交
490
 private:
N
nhzlx 已提交
491
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
492
  GType *out_;
493
  int axis_;
Z
zhangyang 已提交
494 495 496 497 498 499 500 501 502
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
503
};
L
liuruilong 已提交
504
#endif
朔-望's avatar
朔-望 已提交
505

L
liuruilong 已提交
506
#ifdef LRN_OP
N
nhzlx 已提交
507
template <typename Dtype>
E
eclipsess 已提交
508
class LrnParam : public OpParam {
N
nhzlx 已提交
509 510 511
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
512
 public:
513
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
514
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
515 516 517
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
518 519 520 521
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
522
    data_format_ = GetAttr<string>("data_format", attrs);
523
  }
E
eclipsess 已提交
524

N
nhzlx 已提交
525
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
526

N
nhzlx 已提交
527
  RType *Out() const { return out_; }
E
eclipsess 已提交
528

N
nhzlx 已提交
529
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
530

531
  const int &N() const { return n_; }
E
eclipsess 已提交
532

533
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
534

535
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
536

537
  const float &K() const { return k_; }
E
eclipsess 已提交
538

W
wangliu 已提交
539
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
540

朔-望's avatar
朔-望 已提交
541
 private:
N
nhzlx 已提交
542 543 544
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
545 546 547 548
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
549
  string data_format_;
E
eclipsess 已提交
550
};
L
liuruilong 已提交
551 552 553
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
554
template <typename Dtype>
E
eclipsess 已提交
555
class BatchNormParam : OpParam {
N
nhzlx 已提交
556 557 558
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
559
 public:
560
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
561
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
562 563 564 565 566 567
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
568 569
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
570
    //    is_test_ = GetAttr<bool>("is_test", attrs);
571
  }
E
eclipsess 已提交
572

N
nhzlx 已提交
573
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
574

N
nhzlx 已提交
575
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
576

N
nhzlx 已提交
577
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
578

N
nhzlx 已提交
579
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
580

N
nhzlx 已提交
581
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
582

N
nhzlx 已提交
583
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
584

585
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
586

587
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
588

589
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
590

W
wangliu 已提交
591
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
592

朔-望's avatar
朔-望 已提交
593
 private:
N
nhzlx 已提交
594 595 596 597 598 599
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
600 601 602
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
603
  string data_format_;
E
eclipsess 已提交
604
};
L
liuruilong 已提交
605 606 607
#endif

#ifdef POOL_OP
N
nhzlx 已提交
608
template <typename Dtype>
609
class PoolParam : public OpParam {
N
nhzlx 已提交
610 611 612
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
613
 public:
614
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
615
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
616
    input_ = InputXFrom<GType>(inputs, scope);
617

N
nhzlx 已提交
618
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
619 620 621 622
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
623
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
624
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
625
  }
626

N
nhzlx 已提交
627
  const RType *Input() const { return input_; }
628

N
nhzlx 已提交
629
  RType *Output() const { return output_; }
630

W
wangliu 已提交
631
  const string &PoolingType() const { return pooling_type_; }
632

W
wangliu 已提交
633
  const vector<int> &Ksize() const { return ksize_; }
634

W
wangliu 已提交
635
  const vector<int> &Strides() const { return strides_; }
636

W
wangliu 已提交
637
  const vector<int> &Paddings() const { return paddings_; }
638

639
  bool isCeilMode() const { return ceil_mode_; }
640

Z
zhangyang 已提交
641
  bool isGlobalPooling() const { return global_pooling_; }
642

朔-望's avatar
朔-望 已提交
643
 private:
N
nhzlx 已提交
644 645
  RType *input_;
  RType *output_;
W
wangliu 已提交
646 647 648 649
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
650
  bool ceil_mode_;
651
  bool global_pooling_ = false;
Z
zhangyang 已提交
652
#ifdef PADDLE_MOBILE_FPGA
653 654

 private:
H
hanbuhe 已提交
655
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
656 657

 public:
H
hanbuhe 已提交
658 659
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
660
#endif
661
};
L
liuruilong 已提交
662 663 664
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
665
template <typename Dtype>
E
eclipsess 已提交
666
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
667 668 669
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
670 671
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
672
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
673 674 675 676
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
677 678 679 680
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
681

xiebaiyuan's avatar
xiebaiyuan 已提交
682 683 684
    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
685
    }
E
eclipsess 已提交
686 687 688 689 690 691
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
692
  const RType *Input() const { return input_; }
E
eclipsess 已提交
693

N
nhzlx 已提交
694
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
695

N
nhzlx 已提交
696
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
697

N
nhzlx 已提交
698
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
699

W
wangliu 已提交
700
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
701

W
wangliu 已提交
702
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
703

W
wangliu 已提交
704
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
705

W
wangliu 已提交
706
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
707 708 709 710 711 712 713 714 715 716 717

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

718 719 720 721
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
722
 private:
N
nhzlx 已提交
723 724 725 726
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
727 728 729 730
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
731 732 733 734 735
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
736
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
737
};
L
liuruilong 已提交
738
#endif
E
eclipsess 已提交
739

L
liuruilong 已提交
740
#ifdef BOXCODER_OP
N
nhzlx 已提交
741
template <typename Dtype>
E
eclipsess 已提交
742
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
743 744 745
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
746 747
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
748
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
749 750 751 752
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
753 754
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
755
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
756

N
nhzlx 已提交
757
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
758

N
nhzlx 已提交
759
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
760

N
nhzlx 已提交
761
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
762 763 764 765

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
766 767 768 769
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
770 771
  std::string code_type_;
};
L
liuruilong 已提交
772
#endif
W
wangliu 已提交
773

L
liuruilong 已提交
774
#ifdef SOFTMAX_OP
N
nhzlx 已提交
775
template <typename Dtype>
W
wangliu 已提交
776
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
777 778 779
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
780 781
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
782
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
783 784
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
785
  }
N
nhzlx 已提交
786 787
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
788 789

 private:
N
nhzlx 已提交
790 791
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
792 793 794 795

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
796
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
797 798 799
  fpga::BypassArgs fpga_bypass_args;

 public:
800
  RType *FloatInput() const {
H
hanbuhe 已提交
801 802 803 804 805 806
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
807
};
L
liuruilong 已提交
808
#endif
W
wangliu 已提交
809

L
liuruilong 已提交
810
#ifdef SIGMOID_OP
N
nhzlx 已提交
811
template <typename Dtype>
W
wangliu 已提交
812
class SigmoidParam : public OpParam {
N
nhzlx 已提交
813 814 815
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
816 817
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
818
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
819 820
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
821
  }
N
nhzlx 已提交
822 823
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
824 825

 private:
N
nhzlx 已提交
826 827
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
828
};
L
liuruilong 已提交
829 830 831
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
832
template <typename Dtype>
E
eclipsess 已提交
833
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
834 835 836
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
837 838 839 840
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
841 842 843
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
844 845 846 847 848 849 850 851
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
852
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
853

N
nhzlx 已提交
854
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
855

N
nhzlx 已提交
856
  RType *Out() const { return out_; }
E
eclipsess 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
871 872 873
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
874 875 876 877 878 879 880
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
881
#endif
W
wangliu 已提交
882

N
nhzlx 已提交
883
template <typename Dtype>
L
liuruilong 已提交
884
class FeedParam : public OpParam {
N
nhzlx 已提交
885 886 887
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
888 889
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
890
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
891 892
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
893
    auto var = scope->Var("batch_size");
W
wangliu 已提交
894
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
895
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
896 897
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
898
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
899

L
liuruilong 已提交
900
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
901 902
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
903
  int batch_size;
L
liuruilong 已提交
904 905
};

N
nhzlx 已提交
906
template <typename Dtype>
L
liuruilong 已提交
907
class FetchParam : public OpParam {
N
nhzlx 已提交
908 909 910
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
911 912
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
913
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
914 915
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
916
  }
N
nhzlx 已提交
917 918
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
919

L
liuruilong 已提交
920
 private:
N
nhzlx 已提交
921 922
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
923 924
};

L
liuruilong 已提交
925
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
926
template <typename Dtype>
E
eclipsess 已提交
927
class TransposeParam : public OpParam {
N
nhzlx 已提交
928 929 930
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
931 932 933
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
934 935
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
936 937 938
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
939
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
940

N
nhzlx 已提交
941
  RType *Out() const { return out_; }
E
eclipsess 已提交
942 943 944 945

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
946 947
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
948 949
  vector<int> axis_;
};
L
liuruilong 已提交
950
#endif
E
eclipsess 已提交
951

xiebaiyuan's avatar
xiebaiyuan 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1018
#ifdef RESHAPE_OP
N
nhzlx 已提交
1019
template <typename Dtype>
E
eclipsess 已提交
1020
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1021 1022 1023
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1024 1025 1026
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1027 1028 1029
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1030
    shape_ = GetAttr<vector<int>>("shape", attrs);
1031 1032 1033 1034 1035 1036 1037

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1038 1039
  }

N
nhzlx 已提交
1040
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1041

N
nhzlx 已提交
1042
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1043

N
nhzlx 已提交
1044
  RType *Out() const { return out_; }
E
eclipsess 已提交
1045 1046 1047 1048 1049 1050

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1051 1052 1053
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1054 1055 1056
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1057
#endif
E
eclipsess 已提交
1058

T
Tian 已提交
1059
#ifdef SCALE_OP
N
nhzlx 已提交
1060
template <typename Dtype>
I
itminner 已提交
1061
class ScaleParam : public OpParam {
N
nhzlx 已提交
1062 1063 1064
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1065 1066 1067
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1068 1069 1070
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1071 1072 1073 1074 1075 1076
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1077
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1078

N
nhzlx 已提交
1079
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1080

N
nhzlx 已提交
1081
  RType *Out() const { return out_; }
I
itminner 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1092 1093 1094
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1095 1096 1097 1098 1099
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1100 1101 1102
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1103
template <typename Dtype>
I
itminner 已提交
1104
class SliceParam : public OpParam {
N
nhzlx 已提交
1105 1106 1107
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1108 1109 1110
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1111 1112 1113
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1114 1115 1116 1117 1118
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1119
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1120

N
nhzlx 已提交
1121
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1122

N
nhzlx 已提交
1123
  RType *Out() const { return out_; }
I
itminner 已提交
1124 1125 1126 1127 1128 1129 1130 1131

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1132 1133 1134
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1135 1136 1137 1138
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1139 1140 1141
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1142
template <typename Dtype>
T
Tian 已提交
1143
class ResizeParam : public OpParam {
N
nhzlx 已提交
1144 1145 1146
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1147 1148 1149
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1150 1151 1152
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1153 1154 1155 1156 1157 1158
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1159

N
nhzlx 已提交
1160
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1161

N
nhzlx 已提交
1162
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1163

N
nhzlx 已提交
1164
  RType *Out() const { return out_; }
T
Tian 已提交
1165

I
itminner 已提交
1166
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1167

I
itminner 已提交
1168
  const int &Height() const { return height_; }
T
Tian 已提交
1169

I
itminner 已提交
1170
  const int &Width() const { return width_; }
T
Tian 已提交
1171

I
itminner 已提交
1172
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1173

I
itminner 已提交
1174
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1175

I
itminner 已提交
1176
 private:
N
nhzlx 已提交
1177 1178 1179
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1180 1181 1182 1183 1184
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1185 1186 1187
};
#endif

L
liuruilong 已提交
1188
#ifdef RELU_OP
L
liuruilong 已提交
1189 1190 1191
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1192
template <typename Dtype>
E
eclipsess 已提交
1193
class ReluParam : public OpParam {
N
nhzlx 已提交
1194 1195 1196
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1197 1198 1199
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1200 1201
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1202 1203
  }

N
nhzlx 已提交
1204
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1205

N
nhzlx 已提交
1206
  RType *Out() const { return out_; }
E
eclipsess 已提交
1207 1208

 private:
N
nhzlx 已提交
1209 1210
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1211
};
L
liuruilong 已提交
1212
#endif
E
eclipsess 已提交
1213

T
Tian 已提交
1214
#ifdef PRELU_OP
N
nhzlx 已提交
1215
template <typename Dtype>
T
Tian 已提交
1216
class PReluParam : public OpParam {
N
nhzlx 已提交
1217 1218 1219
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1220 1221 1222
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1223
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1224
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1225
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1226
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1227
    out_ = OutFrom<GType>(outputs, scope);
1228 1229
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1230
  }
N
nhzlx 已提交
1231
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1232
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1233
  RType *Out() const { return out_; }
1234
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1235

I
itminner 已提交
1236
 private:
N
nhzlx 已提交
1237 1238
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1239
  RType *alpha_;
1240
  std::string mode_;
T
Tian 已提交
1241 1242 1243
};
#endif

N
nhzlx 已提交
1244
template <typename Dtype>
L
liuruilong 已提交
1245
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1246 1247 1248
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1249
 public:
L
liuruilong 已提交
1250
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1251
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1252 1253 1254 1255
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1256 1257 1258 1259
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1260
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1261

N
nhzlx 已提交
1262
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1263

N
nhzlx 已提交
1264
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1265

xiebaiyuan's avatar
xiebaiyuan 已提交
1266
  GType *Out() const { return out_; }
E
eclipsess 已提交
1267 1268 1269 1270 1271 1272 1273 1274

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1275
  GType *input_x_;
N
nhzlx 已提交
1276 1277
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1278
  GType *out_;
E
eclipsess 已提交
1279 1280 1281
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1282 1283 1284
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1285
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1286 1287

 public:
Z
zhangyang 已提交
1288 1289
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1290
#endif
E
eclipsess 已提交
1291
};
1292 1293

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1294 1295
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1296
#endif
E
eclipsess 已提交
1297

N
nhzlx 已提交
1298
template <typename Dtype>
1299
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1300 1301 1302
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1303
 public:
L
liuruilong 已提交
1304
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1305
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1306 1307 1308 1309 1310
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1311
  }
N
nhzlx 已提交
1312
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1313 1314 1315

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1316
  RType *Output() const { return output_; }
W
wangliu 已提交
1317

L
liuruilong 已提交
1318
 protected:
N
nhzlx 已提交
1319
  RType *bias_;
W
wangliu 已提交
1320
  int axis_;
N
nhzlx 已提交
1321
  RType *output_;
Z
zhangyang 已提交
1322 1323 1324
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1325
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1326 1327

 public:
Z
zhangyang 已提交
1328 1329
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1330
#endif
W
wangliu 已提交
1331 1332
};

N
nhzlx 已提交
1333 1334
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1335

Z
zhangyang 已提交
1336
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1337 1338
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1339
 public:
L
liuruilong 已提交
1340
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1341 1342
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1343
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1344 1345 1346
};
#endif

1347
#ifdef FUSION_CONVADDPRELU_OP
1348 1349 1350 1351
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1352 1353 1354 1355

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1356 1357 1358 1359
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1360
    framework::DDim dims = alpha_->dims();
1361 1362 1363
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1380
  fpga::WrapperConvArgs fpga_conv_args;
1381 1382

 public:
Z
zhangyang 已提交
1383 1384
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1385 1386 1387 1388 1389
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1390 1391 1392 1393
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1394 1395 1396 1397

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1398 1399 1400 1401 1402
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1403
    framework::DDim dims = alpha_->dims();
1404 1405 1406 1407 1408 1409
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1410
    if (keyX1_ == keyOutput_) {
1411
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1412
    } else if (keyY1_ == keyOutput_) {
1413
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1438
  fpga::WrapperConvArgs fpga_conv_args;
1439 1440

 public:
Z
zhangyang 已提交
1441 1442
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1443 1444 1445 1446
#endif
};
#endif

E
eclipsess 已提交
1447
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1448
template <typename Dtype>
1449
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1450 1451 1452
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1453 1454 1455
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1468
  }
N
nhzlx 已提交
1469
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1470 1471 1472

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1473
  RType *Output() const { return output_; }
E
eclipsess 已提交
1474

N
nhzlx 已提交
1475
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1476

N
nhzlx 已提交
1477
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1478

N
nhzlx 已提交
1479
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1480

N
nhzlx 已提交
1481
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1482 1483 1484 1485 1486 1487 1488

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1489
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1490

N
nhzlx 已提交
1491
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1492

N
nhzlx 已提交
1493
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1494

N
nhzlx 已提交
1495
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1496 1497

 protected:
N
nhzlx 已提交
1498
  RType *bias_;
E
eclipsess 已提交
1499
  int axis_;
N
nhzlx 已提交
1500 1501 1502 1503 1504
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1505 1506 1507
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1508 1509
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1510 1511 1512
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1513
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1514 1515

 public:
Z
zhangyang 已提交
1516 1517
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1518 1519 1520 1521 1522 1523
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1524
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1525 1526 1527 1528 1529 1530
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1545
    if (keyX_ == keyBNY_) {
1546
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1547
    } else if (keyY_ == keyBNY_) {
1548
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1549
    }
1550
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1599
  fpga::WrapperConvArgs fpga_conv_args;
1600 1601

 public:
Z
zhangyang 已提交
1602 1603
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1604
#endif
E
eclipsess 已提交
1605
};
1606
#endif
E
eclipsess 已提交
1607

Z
zhangyang 已提交
1608
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1609
template <typename Dtype>
1610
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1611 1612 1613
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1614 1615 1616
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1627
  }
N
nhzlx 已提交
1628
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1629

N
nhzlx 已提交
1630
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1631

N
nhzlx 已提交
1632
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1633

N
nhzlx 已提交
1634
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1635

N
nhzlx 已提交
1636
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1637 1638 1639 1640 1641 1642 1643

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1644
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1645

N
nhzlx 已提交
1646
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1647

N
nhzlx 已提交
1648
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1649

N
nhzlx 已提交
1650
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1651 1652

 protected:
N
nhzlx 已提交
1653 1654 1655 1656 1657
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1658 1659 1660
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1661 1662
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1663 1664 1665
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1666
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1667 1668

 public:
Z
zhangyang 已提交
1669 1670
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1671 1672 1673 1674
#endif
};
#endif

1675
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1676
template <typename Dtype>
1677
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1678 1679 1680
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1681 1682 1683
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1696
  }
N
nhzlx 已提交
1697
  RType *Bias() const { return bias_; }
1698 1699 1700

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1701
  RType *Output() const { return output_y_; }
1702

N
nhzlx 已提交
1703
  const RType *InputBias() const { return input_bias_; }
1704

N
nhzlx 已提交
1705
  const RType *InputMean() const { return input_mean_; }
1706

N
nhzlx 已提交
1707
  const RType *InputScale() const { return input_scale_; }
1708

N
nhzlx 已提交
1709
  const RType *InputVariance() const { return input_variance_; }
1710 1711 1712 1713 1714 1715 1716

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1717
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1718

N
nhzlx 已提交
1719
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1720

N
nhzlx 已提交
1721
  const RType *NewScale() const { return new_scale_; }
1722

N
nhzlx 已提交
1723
  const RType *NewBias() const { return new_bias_; }
1724 1725

 protected:
N
nhzlx 已提交
1726
  RType *bias_;
1727
  int axis_;
N
nhzlx 已提交
1728 1729 1730 1731 1732
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1733 1734 1735
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1736 1737
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1738 1739 1740
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1741
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1742 1743

 public:
Z
zhangyang 已提交
1744 1745
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1746
#endif
1747
};
E
eclipsess 已提交
1748
#endif
Y
Yao,kun 已提交
1749

E
eclipsess 已提交
1750
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1751
template <typename Dtype>
1752
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1753 1754 1755
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1756 1757 1758
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1769
  }
N
nhzlx 已提交
1770
  RType *Output() const { return output_; }
E
eclipsess 已提交
1771

N
nhzlx 已提交
1772
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1773

N
nhzlx 已提交
1774
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1775

N
nhzlx 已提交
1776
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1777

N
nhzlx 已提交
1778
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1779 1780 1781 1782 1783 1784 1785

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1786
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1787

N
nhzlx 已提交
1788
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1789

N
nhzlx 已提交
1790
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1791

N
nhzlx 已提交
1792
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1793 1794

 protected:
N
nhzlx 已提交
1795 1796 1797 1798 1799
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1800 1801 1802
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1803 1804
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1805 1806 1807 1808
};

#endif

1809
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1810
template <typename Dtype>
1811
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1812 1813 1814
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1815 1816 1817
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1828
  }
N
nhzlx 已提交
1829
  RType *Output() const { return output_; }
1830

N
nhzlx 已提交
1831
  const RType *InputBias() const { return input_bias_; }
1832

N
nhzlx 已提交
1833
  const RType *InputMean() const { return input_mean_; }
1834

N
nhzlx 已提交
1835
  const RType *InputScale() const { return input_scale_; }
1836

N
nhzlx 已提交
1837
  const RType *InputVariance() const { return input_variance_; }
1838 1839 1840 1841 1842 1843 1844

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1845
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1846

N
nhzlx 已提交
1847
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1848

N
nhzlx 已提交
1849
  const RType *NewScale() const { return new_scale_; }
1850

N
nhzlx 已提交
1851
  const RType *NewBias() const { return new_bias_; }
1852 1853

 protected:
N
nhzlx 已提交
1854 1855 1856 1857 1858
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1859 1860 1861
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1862 1863
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1864 1865 1866
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1867
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1868 1869

 public:
Z
zhangyang 已提交
1870 1871
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1872
#endif
1873 1874 1875
};
#endif

Y
Yao,kun 已提交
1876
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1877
template <typename Dtype>
Y
Yao,kun 已提交
1878
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1879 1880 1881
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1882 1883 1884 1885
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1886 1887
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1888 1889 1890 1891 1892
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1893
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1894

N
nhzlx 已提交
1895
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1896 1897 1898 1899 1900 1901 1902 1903

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1904 1905
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1906 1907 1908 1909
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1910
#endif
Y
Yao,kun 已提交
1911

1912
#ifdef DROPOUT_OP
N
nhzlx 已提交
1913
template <typename Dtype>
Y
Yao,kun 已提交
1914
class DropoutParam : public OpParam {
N
nhzlx 已提交
1915 1916 1917
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1918 1919 1920
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1921 1922
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1923 1924

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1925 1926
  }

N
nhzlx 已提交
1927
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1928

N
nhzlx 已提交
1929
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1930

Y
yangfei 已提交
1931 1932
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1933
 private:
N
nhzlx 已提交
1934 1935
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1936
  float dropout_prob_;
Y
Yao,kun 已提交
1937
};
1938
#endif
Y
Yao,kun 已提交
1939

L
liuruilong 已提交
1940
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
1941
template <typename Dtype>
L
liuruilong 已提交
1942
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1943 1944 1945
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1946 1947 1948 1949
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1950 1951 1952
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1953 1954 1955 1956 1957 1958
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1959
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1960

N
nhzlx 已提交
1961
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1962

N
nhzlx 已提交
1963
  RType *Output() const { return output_; }
L
liuruilong 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1974 1975 1976
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1977 1978 1979 1980 1981 1982 1983
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2055
    axis = GetAttr<int>("axis", attrs);
2056 2057 2058
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2059
  const int &Axis() const { return axis; }
2060 2061 2062 2063

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2064
  int axis;
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2078
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2079
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2080 2081 2082 2083 2084 2085
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2086 2087
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2088 2089 2090 2091 2092
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2093 2094 2095

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2096
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2097
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2098 2099 2100
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2117 2118
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2119 2120
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2121
  const RType *InputOutPutSize() const { return input_outsize_; }
2122
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2123 2124
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2125 2126 2127 2128 2129

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2130 2131
  int out_h_;
  int out_w_;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2147
  const RType *Input() const { return input_; }
2148 2149 2150 2151 2152 2153 2154 2155
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

朔-望's avatar
朔-望 已提交
2156 2157
}  // namespace operators
}  // namespace paddle_mobile