op_param.h 65.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29

L
liuruilong 已提交
30 31 32 33
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif

朔-望's avatar
朔-望 已提交
34
namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
35 36
namespace operators {

W
wangliu 已提交
37 38 39 40 41 42 43
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
44

N
nhzlx 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
78 79 80 81 82 83 84 85 86 87

template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};

L
liuruilong 已提交
88
class OpParam {
朔-望's avatar
朔-望 已提交
89
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
90 91 92 93
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
94 95 96 97 98
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

99 100 101 102 103 104 105 106 107
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
108 109 110 111 112
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

140 141 142 143
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
144 145 146 147 148 149

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

150 151 152 153 154
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
155 156 157 158 159
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

160 161 162 163 164
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
165 166 167 168
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
169 170 171 172 173 174 175 176 177 178 179 180
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
181 182 183 184
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
201

E
eclipsess 已提交
202 203 204 205 206 207 208 209 210 211
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
212 213 214 215
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
216

217
  template <typename T>
W
wangliu 已提交
218 219
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
220 221 222
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

252 253 254 255 256 257 258 259 260 261
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
262 263 264 265 266 267
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

268 269 270 271 272
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
273 274 275 276 277 278
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
279 280 281 282 283
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
284 285 286 287 288 289
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

290 291 292 293 294 295 296 297 298 299 300
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
301
  static const T GetAttr(const string &key, const AttributeMap &map) {
302 303 304
    return ((Attribute)map.at(key)).Get<T>();
  }

305 306 307 308
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

309
  template <typename T>
W
wangliu 已提交
310
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
311
                        const Scope &scope) {
W
wangliu 已提交
312 313
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
314 315 316 317 318 319
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
320
    }
321
  }
朔-望's avatar
朔-望 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

343
  template <typename T>
W
wangliu 已提交
344 345 346
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
347 348
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
349
    vector<T *> var_res;
350 351 352
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
353
    }
354 355
    return var_res;
  }
朔-望's avatar
朔-望 已提交
356 357
};

N
nhzlx 已提交
358
template <typename Dtype>
359
class ConvParam : public OpParam {
N
nhzlx 已提交
360 361 362
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
363
 public:
364
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
365
            const AttributeMap &attrs, const Scope &scope) {
366 367 368 369 370 371 372 373 374
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
375
  }
朔-望's avatar
朔-望 已提交
376

N
nhzlx 已提交
377
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
378

N
nhzlx 已提交
379
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
380

N
nhzlx 已提交
381
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
382

W
wangliu 已提交
383
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
384

W
wangliu 已提交
385
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
386

W
wangliu 已提交
387
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
388

389
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
390

朔-望's avatar
朔-望 已提交
391
 private:
N
nhzlx 已提交
392 393 394
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
395 396 397
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
398
  int groups;
朔-望's avatar
朔-望 已提交
399
};
N
nhzlx 已提交
400 401
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
402

N
nhzlx 已提交
403
template <typename Dtype>
朔-望's avatar
朔-望 已提交
404
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
405 406 407
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
408
 public:
409
  ElementwiseAddParam(const VariableNameMap &inputs,
410 411
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
412 413 414
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
415 416 417
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
418
  const GType *InputX() const { return input_x_; }
419

xiebaiyuan's avatar
xiebaiyuan 已提交
420
  const GType *InputY() const { return input_y_; }
421

xiebaiyuan's avatar
xiebaiyuan 已提交
422
  GType *Out() const { return out_; }
423 424 425

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
426
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
427 428 429
  GType *input_x_;
  GType *input_y_;
  GType *out_;
430
  int axis_;
Z
zhangyang 已提交
431 432 433
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
434
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
435 436

 public:
H
hanbuhe 已提交
437 438
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
439
#endif
朔-望's avatar
朔-望 已提交
440 441
};

442
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
443 444
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
445 446 447
#endif

#ifdef MUL_OP
N
nhzlx 已提交
448
template <typename Dtype>
朔-望's avatar
朔-望 已提交
449
class MulParam : OpParam {
N
nhzlx 已提交
450 451 452
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
453
 public:
454
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
455
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
456 457 458
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
459 460 461
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
462

xiebaiyuan's avatar
xiebaiyuan 已提交
463
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
464

xiebaiyuan's avatar
xiebaiyuan 已提交
465
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
466

xiebaiyuan's avatar
xiebaiyuan 已提交
467
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
468

469
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
470

471
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
472

朔-望's avatar
朔-望 已提交
473
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
474 475 476
  GType *input_x_;
  GType *input_y_;
  GType *out_;
477 478
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
479
};
L
liuruilong 已提交
480
#endif
朔-望's avatar
朔-望 已提交
481

L
liuruilong 已提交
482
#ifdef CONCAT_OP
N
nhzlx 已提交
483
template <typename Dtype>
朔-望's avatar
朔-望 已提交
484
class ConcatParam : public OpParam {
N
nhzlx 已提交
485 486 487
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
488
 public:
489
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
490
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
491 492
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
493 494
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
495

N
nhzlx 已提交
496
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
497

xiebaiyuan's avatar
xiebaiyuan 已提交
498
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
499

500
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
501

朔-望's avatar
朔-望 已提交
502
 private:
N
nhzlx 已提交
503
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
504
  GType *out_;
505
  int axis_;
Z
zhangyang 已提交
506 507 508 509 510 511 512 513 514
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
515
};
L
liuruilong 已提交
516
#endif
朔-望's avatar
朔-望 已提交
517

L
liuruilong 已提交
518
#ifdef LRN_OP
N
nhzlx 已提交
519
template <typename Dtype>
E
eclipsess 已提交
520
class LrnParam : public OpParam {
N
nhzlx 已提交
521 522 523
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
524
 public:
525
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
526
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
527 528 529
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
530 531 532 533
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
534
    data_format_ = GetAttr<string>("data_format", attrs);
535
  }
E
eclipsess 已提交
536

N
nhzlx 已提交
537
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
538

N
nhzlx 已提交
539
  RType *Out() const { return out_; }
E
eclipsess 已提交
540

N
nhzlx 已提交
541
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
542

543
  const int &N() const { return n_; }
E
eclipsess 已提交
544

545
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
546

547
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
548

549
  const float &K() const { return k_; }
E
eclipsess 已提交
550

W
wangliu 已提交
551
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
552

朔-望's avatar
朔-望 已提交
553
 private:
N
nhzlx 已提交
554 555 556
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
557 558 559 560
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
561
  string data_format_;
E
eclipsess 已提交
562
};
L
liuruilong 已提交
563 564 565
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
566
template <typename Dtype>
E
eclipsess 已提交
567
class BatchNormParam : OpParam {
N
nhzlx 已提交
568 569 570
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
571
 public:
572
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
573
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
574 575 576 577 578 579
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
580 581
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
582
    //    is_test_ = GetAttr<bool>("is_test", attrs);
583
  }
E
eclipsess 已提交
584

N
nhzlx 已提交
585
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
586

N
nhzlx 已提交
587
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
588

N
nhzlx 已提交
589
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
590

N
nhzlx 已提交
591
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
592

N
nhzlx 已提交
593
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
594

N
nhzlx 已提交
595
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
596

597
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
598

599
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
600

601
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
602

W
wangliu 已提交
603
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
604

朔-望's avatar
朔-望 已提交
605
 private:
N
nhzlx 已提交
606 607 608 609 610 611
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
612 613 614
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
615
  string data_format_;
E
eclipsess 已提交
616
};
L
liuruilong 已提交
617 618 619
#endif

#ifdef POOL_OP
N
nhzlx 已提交
620
template <typename Dtype>
621
class PoolParam : public OpParam {
N
nhzlx 已提交
622 623 624
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
625
 public:
626
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
627
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
628
    input_ = InputXFrom<GType>(inputs, scope);
629

N
nhzlx 已提交
630
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
631 632 633 634
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
635
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
636
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
637
  }
638

N
nhzlx 已提交
639
  const RType *Input() const { return input_; }
640

N
nhzlx 已提交
641
  RType *Output() const { return output_; }
642

W
wangliu 已提交
643
  const string &PoolingType() const { return pooling_type_; }
644

W
wangliu 已提交
645
  const vector<int> &Ksize() const { return ksize_; }
646

W
wangliu 已提交
647
  const vector<int> &Strides() const { return strides_; }
648

W
wangliu 已提交
649
  const vector<int> &Paddings() const { return paddings_; }
650

651
  bool isCeilMode() const { return ceil_mode_; }
652

Z
zhangyang 已提交
653
  bool isGlobalPooling() const { return global_pooling_; }
654

朔-望's avatar
朔-望 已提交
655
 private:
N
nhzlx 已提交
656 657
  RType *input_;
  RType *output_;
W
wangliu 已提交
658 659 660 661
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
662
  bool ceil_mode_;
663
  bool global_pooling_ = false;
Z
zhangyang 已提交
664
#ifdef PADDLE_MOBILE_FPGA
665 666

 private:
H
hanbuhe 已提交
667
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
668 669

 public:
H
hanbuhe 已提交
670 671
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
672
#endif
673
};
L
liuruilong 已提交
674 675 676
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
677
template <typename Dtype>
E
eclipsess 已提交
678
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
679 680 681
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
682 683
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
684
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
685 686 687 688
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
689 690 691 692
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
693

xiebaiyuan's avatar
xiebaiyuan 已提交
694 695 696
    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
697
    }
E
eclipsess 已提交
698 699 700 701 702 703
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
704
  const RType *Input() const { return input_; }
E
eclipsess 已提交
705

N
nhzlx 已提交
706
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
707

N
nhzlx 已提交
708
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
709

N
nhzlx 已提交
710
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
711

W
wangliu 已提交
712
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
713

W
wangliu 已提交
714
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
715

W
wangliu 已提交
716
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
717

W
wangliu 已提交
718
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
719 720 721 722 723 724 725 726 727 728 729

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

730 731 732 733
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
734
 private:
N
nhzlx 已提交
735 736 737 738
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
739 740 741 742
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
743 744 745 746 747
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
748
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
749
};
L
liuruilong 已提交
750
#endif
E
eclipsess 已提交
751

L
liuruilong 已提交
752
#ifdef BOXCODER_OP
N
nhzlx 已提交
753
template <typename Dtype>
E
eclipsess 已提交
754
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
755 756 757
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
758 759
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
760
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
761 762 763 764
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
765 766
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
767
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
768

N
nhzlx 已提交
769
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
770

N
nhzlx 已提交
771
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
772

N
nhzlx 已提交
773
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
774 775 776 777

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
778 779 780 781
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
782 783
  std::string code_type_;
};
L
liuruilong 已提交
784
#endif
W
wangliu 已提交
785

L
liuruilong 已提交
786
#ifdef SOFTMAX_OP
N
nhzlx 已提交
787
template <typename Dtype>
W
wangliu 已提交
788
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
789 790 791
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
792 793
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
794
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
795 796
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
797
  }
N
nhzlx 已提交
798 799
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
800 801

 private:
N
nhzlx 已提交
802 803
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
804 805 806 807

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
808
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
809 810 811
  fpga::BypassArgs fpga_bypass_args;

 public:
812
  RType *FloatInput() const {
H
hanbuhe 已提交
813 814 815 816 817 818
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
819
};
L
liuruilong 已提交
820
#endif
W
wangliu 已提交
821

L
liuruilong 已提交
822
#ifdef SIGMOID_OP
N
nhzlx 已提交
823
template <typename Dtype>
W
wangliu 已提交
824
class SigmoidParam : public OpParam {
N
nhzlx 已提交
825 826 827
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
828 829
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
830
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
831 832
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
833
  }
N
nhzlx 已提交
834 835
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
836 837

 private:
N
nhzlx 已提交
838 839
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
840
};
L
liuruilong 已提交
841 842 843
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
844
template <typename Dtype>
E
eclipsess 已提交
845
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
846 847 848
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
849 850 851 852
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
853 854 855
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
856 857 858 859 860 861 862 863
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
864
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
865

N
nhzlx 已提交
866
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
867

N
nhzlx 已提交
868
  RType *Out() const { return out_; }
E
eclipsess 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
883 884 885
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
886 887 888 889 890 891 892
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
893
#endif
W
wangliu 已提交
894

N
nhzlx 已提交
895
template <typename Dtype>
L
liuruilong 已提交
896
class FeedParam : public OpParam {
N
nhzlx 已提交
897 898 899
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
900 901
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
902
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
903 904
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
905
    auto var = scope->Var("batch_size");
W
wangliu 已提交
906
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
907
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
908 909
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
910
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
911

L
liuruilong 已提交
912
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
913 914
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
915
  int batch_size;
L
liuruilong 已提交
916 917
};

N
nhzlx 已提交
918
template <typename Dtype>
L
liuruilong 已提交
919
class FetchParam : public OpParam {
N
nhzlx 已提交
920 921 922
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
923 924
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
925
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
926 927
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
928
  }
N
nhzlx 已提交
929 930
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
931

L
liuruilong 已提交
932
 private:
N
nhzlx 已提交
933 934
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
935 936
};

L
liuruilong 已提交
937
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
938
template <typename Dtype>
E
eclipsess 已提交
939
class TransposeParam : public OpParam {
N
nhzlx 已提交
940 941 942
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
943 944 945
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
946 947
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
948 949 950
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
951
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
952

N
nhzlx 已提交
953
  RType *Out() const { return out_; }
E
eclipsess 已提交
954 955 956 957

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
958 959
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
960 961
  vector<int> axis_;
};
L
liuruilong 已提交
962
#endif
E
eclipsess 已提交
963

xiebaiyuan's avatar
xiebaiyuan 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1030
#ifdef RESHAPE_OP
N
nhzlx 已提交
1031
template <typename Dtype>
E
eclipsess 已提交
1032
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1033 1034 1035
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1036 1037 1038
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1039 1040 1041
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1042
    shape_ = GetAttr<vector<int>>("shape", attrs);
1043 1044 1045 1046 1047 1048 1049

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1050 1051
  }

N
nhzlx 已提交
1052
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1053

N
nhzlx 已提交
1054
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1055

N
nhzlx 已提交
1056
  RType *Out() const { return out_; }
E
eclipsess 已提交
1057 1058 1059 1060 1061 1062

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1063 1064 1065
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1066 1067 1068
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1069
#endif
E
eclipsess 已提交
1070

T
Tian 已提交
1071
#ifdef SCALE_OP
N
nhzlx 已提交
1072
template <typename Dtype>
I
itminner 已提交
1073
class ScaleParam : public OpParam {
N
nhzlx 已提交
1074 1075 1076
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1077 1078 1079
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1080 1081 1082
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1083 1084 1085 1086 1087 1088
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1089
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1090

N
nhzlx 已提交
1091
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1092

N
nhzlx 已提交
1093
  RType *Out() const { return out_; }
I
itminner 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1104 1105 1106
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1107 1108 1109 1110 1111
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1112 1113 1114
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1115
template <typename Dtype>
I
itminner 已提交
1116
class SliceParam : public OpParam {
N
nhzlx 已提交
1117 1118 1119
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1120 1121 1122
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1123 1124 1125
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1126 1127 1128 1129 1130
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1131
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1132

N
nhzlx 已提交
1133
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1134

N
nhzlx 已提交
1135
  RType *Out() const { return out_; }
I
itminner 已提交
1136 1137 1138 1139 1140 1141 1142 1143

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1144 1145 1146
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1147 1148 1149 1150
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1151 1152 1153
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1154
template <typename Dtype>
T
Tian 已提交
1155
class ResizeParam : public OpParam {
N
nhzlx 已提交
1156 1157 1158
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1159 1160 1161
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1162 1163 1164
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1165 1166 1167 1168 1169 1170
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1171

N
nhzlx 已提交
1172
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1173

N
nhzlx 已提交
1174
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1175

N
nhzlx 已提交
1176
  RType *Out() const { return out_; }
T
Tian 已提交
1177

I
itminner 已提交
1178
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1179

I
itminner 已提交
1180
  const int &Height() const { return height_; }
T
Tian 已提交
1181

I
itminner 已提交
1182
  const int &Width() const { return width_; }
T
Tian 已提交
1183

I
itminner 已提交
1184
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1185

I
itminner 已提交
1186
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1187

I
itminner 已提交
1188
 private:
N
nhzlx 已提交
1189 1190 1191
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1192 1193 1194 1195 1196
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1197 1198 1199
};
#endif

L
liuruilong 已提交
1200
#ifdef RELU_OP
L
liuruilong 已提交
1201 1202 1203
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1204
template <typename Dtype>
E
eclipsess 已提交
1205
class ReluParam : public OpParam {
N
nhzlx 已提交
1206 1207 1208
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1209 1210 1211
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1212 1213
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1214 1215
  }

N
nhzlx 已提交
1216
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1217

N
nhzlx 已提交
1218
  RType *Out() const { return out_; }
E
eclipsess 已提交
1219 1220

 private:
N
nhzlx 已提交
1221 1222
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1223
};
L
liuruilong 已提交
1224
#endif
E
eclipsess 已提交
1225

T
Tian 已提交
1226
#ifdef PRELU_OP
N
nhzlx 已提交
1227
template <typename Dtype>
T
Tian 已提交
1228
class PReluParam : public OpParam {
N
nhzlx 已提交
1229 1230 1231
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1232 1233 1234
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1235
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1236
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1237
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1238
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1239
    out_ = OutFrom<GType>(outputs, scope);
1240 1241
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1242
  }
N
nhzlx 已提交
1243
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1244
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1245
  RType *Out() const { return out_; }
1246
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1247

I
itminner 已提交
1248
 private:
N
nhzlx 已提交
1249 1250
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1251
  RType *alpha_;
1252
  std::string mode_;
T
Tian 已提交
1253 1254 1255
};
#endif

N
nhzlx 已提交
1256
template <typename Dtype>
L
liuruilong 已提交
1257
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1258 1259 1260
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1261
 public:
L
liuruilong 已提交
1262
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1263
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1264 1265 1266 1267
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1268 1269 1270 1271
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1272
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1273

N
nhzlx 已提交
1274
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1275

N
nhzlx 已提交
1276
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1277

xiebaiyuan's avatar
xiebaiyuan 已提交
1278
  GType *Out() const { return out_; }
E
eclipsess 已提交
1279 1280 1281 1282 1283 1284 1285 1286

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1287
  GType *input_x_;
N
nhzlx 已提交
1288 1289
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1290
  GType *out_;
E
eclipsess 已提交
1291 1292 1293
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1294 1295 1296
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1297
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1298 1299

 public:
Z
zhangyang 已提交
1300 1301
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1302
#endif
E
eclipsess 已提交
1303
};
1304 1305

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1306 1307
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1308
#endif
E
eclipsess 已提交
1309

N
nhzlx 已提交
1310
template <typename Dtype>
1311
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1312 1313 1314
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1315
 public:
L
liuruilong 已提交
1316
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1317
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1318 1319 1320 1321 1322
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1323
  }
N
nhzlx 已提交
1324
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1325 1326 1327

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1328
  RType *Output() const { return output_; }
W
wangliu 已提交
1329

L
liuruilong 已提交
1330
 protected:
N
nhzlx 已提交
1331
  RType *bias_;
W
wangliu 已提交
1332
  int axis_;
N
nhzlx 已提交
1333
  RType *output_;
Z
zhangyang 已提交
1334 1335 1336
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1337
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1338 1339

 public:
Z
zhangyang 已提交
1340 1341
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1342
#endif
W
wangliu 已提交
1343 1344
};

N
nhzlx 已提交
1345 1346
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1347

Z
zhangyang 已提交
1348
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1349 1350
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1351
 public:
L
liuruilong 已提交
1352
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1353 1354
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1355
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1356 1357 1358
};
#endif

1359
#ifdef FUSION_CONVADDPRELU_OP
1360 1361 1362 1363
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1364 1365 1366 1367

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1368 1369 1370 1371
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1372
    framework::DDim dims = alpha_->dims();
1373 1374 1375
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1392
  fpga::WrapperConvArgs fpga_conv_args;
1393 1394

 public:
Z
zhangyang 已提交
1395 1396
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1397 1398 1399 1400 1401
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1402 1403 1404 1405
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1406 1407 1408 1409

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1410 1411 1412 1413 1414
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1415
    framework::DDim dims = alpha_->dims();
1416 1417 1418 1419 1420 1421
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1422
    if (keyX1_ == keyOutput_) {
1423
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1424
    } else if (keyY1_ == keyOutput_) {
1425
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1450
  fpga::WrapperConvArgs fpga_conv_args;
1451 1452

 public:
Z
zhangyang 已提交
1453 1454
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1455 1456 1457 1458
#endif
};
#endif

E
eclipsess 已提交
1459
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1460
template <typename Dtype>
1461
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1462 1463 1464
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1465 1466 1467
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1480
  }
N
nhzlx 已提交
1481
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1482 1483 1484

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1485
  RType *Output() const { return output_; }
E
eclipsess 已提交
1486

N
nhzlx 已提交
1487
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1488

N
nhzlx 已提交
1489
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1490

N
nhzlx 已提交
1491
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1492

N
nhzlx 已提交
1493
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1494 1495 1496 1497 1498 1499 1500

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1501
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1502

N
nhzlx 已提交
1503
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1504

N
nhzlx 已提交
1505
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1506

N
nhzlx 已提交
1507
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1508 1509

 protected:
N
nhzlx 已提交
1510
  RType *bias_;
E
eclipsess 已提交
1511
  int axis_;
N
nhzlx 已提交
1512 1513 1514 1515 1516
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1517 1518 1519
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1520 1521
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1522 1523 1524
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1525
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1526 1527

 public:
Z
zhangyang 已提交
1528 1529
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1530 1531 1532 1533 1534 1535
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1536
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1537 1538 1539 1540 1541 1542
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1557
    if (keyX_ == keyBNY_) {
1558
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1559
    } else if (keyY_ == keyBNY_) {
1560
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1561
    }
1562
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1611
  fpga::WrapperConvArgs fpga_conv_args;
1612 1613

 public:
Z
zhangyang 已提交
1614 1615
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1616
#endif
E
eclipsess 已提交
1617
};
1618
#endif
E
eclipsess 已提交
1619

Z
zhangyang 已提交
1620
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1621
template <typename Dtype>
1622
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1623 1624 1625
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1626 1627 1628
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1639
  }
N
nhzlx 已提交
1640
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1641

N
nhzlx 已提交
1642
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1643

N
nhzlx 已提交
1644
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1645

N
nhzlx 已提交
1646
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1647

N
nhzlx 已提交
1648
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1649 1650 1651 1652 1653 1654 1655

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1656
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1657

N
nhzlx 已提交
1658
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1659

N
nhzlx 已提交
1660
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1661

N
nhzlx 已提交
1662
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1663 1664

 protected:
N
nhzlx 已提交
1665 1666 1667 1668 1669
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1670 1671 1672
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1673 1674
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1675 1676 1677
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1678
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1679 1680

 public:
Z
zhangyang 已提交
1681 1682
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1683 1684 1685 1686
#endif
};
#endif

1687
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1688
template <typename Dtype>
1689
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1690 1691 1692
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1693 1694 1695
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1708
  }
N
nhzlx 已提交
1709
  RType *Bias() const { return bias_; }
1710 1711 1712

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1713
  RType *Output() const { return output_y_; }
1714

N
nhzlx 已提交
1715
  const RType *InputBias() const { return input_bias_; }
1716

N
nhzlx 已提交
1717
  const RType *InputMean() const { return input_mean_; }
1718

N
nhzlx 已提交
1719
  const RType *InputScale() const { return input_scale_; }
1720

N
nhzlx 已提交
1721
  const RType *InputVariance() const { return input_variance_; }
1722 1723 1724 1725 1726 1727 1728

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1729
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1730

N
nhzlx 已提交
1731
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1732

N
nhzlx 已提交
1733
  const RType *NewScale() const { return new_scale_; }
1734

N
nhzlx 已提交
1735
  const RType *NewBias() const { return new_bias_; }
1736 1737

 protected:
N
nhzlx 已提交
1738
  RType *bias_;
1739
  int axis_;
N
nhzlx 已提交
1740 1741 1742 1743 1744
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1745 1746 1747
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1748 1749
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1750 1751 1752
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1753
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1754 1755

 public:
Z
zhangyang 已提交
1756 1757
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1758
#endif
1759
};
E
eclipsess 已提交
1760
#endif
Y
Yao,kun 已提交
1761

E
eclipsess 已提交
1762
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1763
template <typename Dtype>
1764
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1765 1766 1767
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1768 1769 1770
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1781
  }
N
nhzlx 已提交
1782
  RType *Output() const { return output_; }
E
eclipsess 已提交
1783

N
nhzlx 已提交
1784
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1785

N
nhzlx 已提交
1786
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1787

N
nhzlx 已提交
1788
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1789

N
nhzlx 已提交
1790
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1791 1792 1793 1794 1795 1796 1797

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1798
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1799

N
nhzlx 已提交
1800
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1801

N
nhzlx 已提交
1802
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1803

N
nhzlx 已提交
1804
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1805 1806

 protected:
N
nhzlx 已提交
1807 1808 1809 1810 1811
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1812 1813 1814
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1815 1816
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1817 1818 1819 1820
};

#endif

1821
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1822
template <typename Dtype>
1823
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1824 1825 1826
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1827 1828 1829
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1840
  }
N
nhzlx 已提交
1841
  RType *Output() const { return output_; }
1842

N
nhzlx 已提交
1843
  const RType *InputBias() const { return input_bias_; }
1844

N
nhzlx 已提交
1845
  const RType *InputMean() const { return input_mean_; }
1846

N
nhzlx 已提交
1847
  const RType *InputScale() const { return input_scale_; }
1848

N
nhzlx 已提交
1849
  const RType *InputVariance() const { return input_variance_; }
1850 1851 1852 1853 1854 1855 1856

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1857
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1858

N
nhzlx 已提交
1859
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1860

N
nhzlx 已提交
1861
  const RType *NewScale() const { return new_scale_; }
1862

N
nhzlx 已提交
1863
  const RType *NewBias() const { return new_bias_; }
1864 1865

 protected:
N
nhzlx 已提交
1866 1867 1868 1869 1870
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1871 1872 1873
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1874 1875
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1876 1877 1878
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1879
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1880 1881

 public:
Z
zhangyang 已提交
1882 1883
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1884
#endif
1885 1886 1887
};
#endif

Y
Yao,kun 已提交
1888
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1889
template <typename Dtype>
Y
Yao,kun 已提交
1890
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1891 1892 1893
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1894 1895 1896 1897
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1898 1899
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1900 1901 1902 1903 1904
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1905
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1906

N
nhzlx 已提交
1907
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1908 1909 1910 1911 1912 1913 1914 1915

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1916 1917
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1918 1919 1920 1921
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1922
#endif
Y
Yao,kun 已提交
1923

1924
#ifdef DROPOUT_OP
N
nhzlx 已提交
1925
template <typename Dtype>
Y
Yao,kun 已提交
1926
class DropoutParam : public OpParam {
N
nhzlx 已提交
1927 1928 1929
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1930 1931 1932
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1933 1934
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1935 1936

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1937 1938
  }

N
nhzlx 已提交
1939
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1940

N
nhzlx 已提交
1941
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1942

Y
yangfei 已提交
1943 1944
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1945
 private:
N
nhzlx 已提交
1946 1947
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1948
  float dropout_prob_;
Y
Yao,kun 已提交
1949
};
1950
#endif
Y
Yao,kun 已提交
1951

L
liuruilong 已提交
1952
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
1953
template <typename Dtype>
L
liuruilong 已提交
1954
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1955 1956 1957
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1958 1959 1960 1961
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1962 1963 1964
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1965 1966 1967 1968 1969 1970
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1971
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1972

N
nhzlx 已提交
1973
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1974

N
nhzlx 已提交
1975
  RType *Output() const { return output_; }
L
liuruilong 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1986 1987 1988
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1989 1990 1991 1992 1993 1994 1995
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2067
    axis = GetAttr<int>("axis", attrs);
2068 2069 2070
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2071
  const int &Axis() const { return axis; }
2072 2073 2074 2075

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2076
  int axis;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2090
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2091
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2092 2093 2094 2095 2096 2097
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2098 2099
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2100 2101 2102 2103 2104
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2105 2106 2107

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2108
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2109
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2110 2111 2112
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2129 2130
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2131 2132
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2133
  const RType *InputOutPutSize() const { return input_outsize_; }
2134
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2135 2136
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2137 2138 2139 2140 2141

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2142 2143
  int out_h_;
  int out_w_;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2159
  const RType *Input() const { return input_; }
2160 2161 2162 2163 2164 2165 2166 2167
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

朔-望's avatar
朔-望 已提交
2168 2169
}  // namespace operators
}  // namespace paddle_mobile