executor.cpp 33.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
H
hjchen2 已提交
32
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
33 34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
36 37

namespace paddle_mobile {
38
namespace framework {
39

W
wangliu 已提交
40 41
#pragma mark - executor

42 43 44 45 46
template <typename Device, typename T>
void Executor<Device, T>::SetThreadNum(int threads) {
  set_global_num_threads(threads);
}

47
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
48 49 50 51
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
52
    : program_(program),
H
hjchen2 已提交
53 54
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
55 56
      lod_mode_(lod_mode),
      config_(config) {
57 58
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
59
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
60
  variable_ptr->SetValue<int>(batch_size);
61 62

  program_desc_ =
Refine  
陈后江 已提交
63
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
64 65
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
66 67
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
68
  pass::MemoryOptPass()(program_desc_.get(), program_.scope.get());
69
#endif
70 71 72 73
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
74 75 76 77 78 79 80 81
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
82
        op_desc->GetAttrMap(), program_.scope.get());
83 84 85 86
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
87
    }
88
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
89
  }
90 91 92
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
93
  if (program_.combined) {
L
liuruilong 已提交
94 95 96 97
    InitCombineMemory();
  } else {
    InitMemory();
  }
98
  int count = 0;
99 100 101
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
102
  }
W
wangliu 已提交
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

132
template <typename T>
133
static void LoadMemInternal(void **data, LoDTensor *tensor,
134
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
135
  char **data_buf = reinterpret_cast<char **>(data);
136
  int64_t size = tensor->numel();
137
  T *tensor_data = tensor->mutable_data<T>();
138 139
  if (quant_uint8) {
    // should be moved into operator init function
140 141
    float min_value;
    float max_value;
142 143 144
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
145
    const float factor = (max_value - min_value) / 255.0;
146
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
147 148
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
149
    }
150
    *data_buf += size * sizeof(uint8_t);
151
  } else {
152 153
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
154
  }
155
}
W
wangliu 已提交
156

157 158 159 160
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
161
  char **data_buf = reinterpret_cast<char **>(data);
162
  // version
163
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
164
  *data_buf += sizeof(uint32_t);
165
  // lod information
H
hjchen2 已提交
166 167
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
168
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
169
  *data_buf += sizeof(uint64_t);
170 171 172 173

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
174
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
175
    *data_buf += sizeof(uint64_t);
176
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
177
    memory::Copy(tmp_dim.data(), *data_buf, size);
178
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
179
    *data_buf += size;
W
wangliu 已提交
180
  }
181
  // tensor version
182
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
183
  *data_buf += sizeof(uint32_t);
184
  // tensor desc size
185
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
186
  *data_buf += sizeof(int32_t);
187
  // skip tensor desc
Refine  
陈后江 已提交
188
  *data_buf += tensor_desc_size;
189

190 191
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
192 193
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
194
    case VARTYPE_TYPE_FP32:
195 196
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
197
      break;
198
    case VARTYPE_TYPE_INT8:
199
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
200
      break;
201
    case VARTYPE_TYPE_INT32:
202
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
203 204
      break;
    default:
205
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
206
  }
W
wangliu 已提交
207 208
}

209 210 211
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
212 213 214 215
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
216
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
217 218
          continue;
        }
H
hjchen2 已提交
219
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
220
        char *origin_data =
Refine  
陈后江 已提交
221
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
222
        char *data = origin_data;
H
update  
hjchen2 已提交
223
        auto tensor = var->template GetMutable<LoDTensor>();
224 225
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
226
      } else {
227
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
228
        varInputMemory(var_desc, var);
W
wangliu 已提交
229 230 231 232 233
      }
    }
  }
}

234 235
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
236
  char *origin_data = nullptr;
Refine  
陈后江 已提交
237
  bool self_alloc = false;
238
  if (program_.combined_params_buf && program_.combined_params_len) {
239 240
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
241
  } else {
Refine  
陈后江 已提交
242
    self_alloc = true;
Refine  
陈后江 已提交
243
    origin_data = ReadFileToBuff(program_.para_path);
244
  }
Refine  
陈后江 已提交
245 246
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
247
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
248 249 250 251
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
252
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
253 254
          continue;
        }
L
liuruilong 已提交
255 256

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
257
        auto tensor = var->template GetMutable<LoDTensor>();
258
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
259
      } else {
H
update  
hjchen2 已提交
260 261
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
262 263 264
      }
    }
  }
Refine  
陈后江 已提交
265
  if (self_alloc) {
266
    delete[] origin_data;
Refine  
陈后江 已提交
267 268
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
269
}
270

C
Chon 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
285
template <typename Device, typename T>
L
liuruilong 已提交
286
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
287 288 289 290 291 292
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
293
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
294 295 296 297 298
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
299 300 301 302
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
303
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
304 305 306
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
307 308 309 310 311 312 313 314 315 316
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

317 318
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
319
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
320
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
321
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
322 323 324
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
325
  tensor->init(type_id<float>().hash_code());
326
#endif
327 328
  return true;
#endif
H
update  
hjchen2 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
342
  }
H
update  
hjchen2 已提交
343
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
344
}
L
liuruilong 已提交
345

346 347 348 349 350
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
351
  }
352 353 354 355 356 357 358 359
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
360
  }
361
  return this->Predict();
W
wangliu 已提交
362
}
xiebaiyuan's avatar
xiebaiyuan 已提交
363

364 365 366
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
367 368 369 370 371 372 373
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
374
  Tensor feed_tensor(input, make_ddim(dims));
375
  SetInput(feed_tensor, input_name);
376 377
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
378 379
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
380 381 382 383 384 385
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
386

387 388 389
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
390
  int index = 0;
391
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
392
    index = feed_indices_.find(var_name)->second;
393
  }
H
hjchen2 已提交
394 395 396 397 398 399
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
400
}
xiebaiyuan's avatar
xiebaiyuan 已提交
401

402 403 404
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
405
  int index = 0;
406
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
407
    index = feed_indices_.find(var_name)->second;
408
  }
H
hjchen2 已提交
409 410 411 412 413 414 415
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
416 417 418 419 420
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
421 422 423 424 425 426 427 428 429
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
430

431 432 433 434 435 436 437
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
438
}
xiebaiyuan's avatar
xiebaiyuan 已提交
439

440 441
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
442 443 444
#if _OPENMP
  omp_set_num_threads(get_global_num_threads());
#endif
445 446 447 448
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());

xiebaiyuan's avatar
xiebaiyuan 已提交
449
#ifdef PADDLE_MOBILE_PROFILE
450
  std::vector<ProfInfo> profile(ops_of_block0_.size());
451 452
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
453
#endif
454
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
455
#ifdef PADDLE_MOBILE_PROFILE
456 457
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
458
#endif
H
hjchen2 已提交
459
    DLOG << "run op: " << op_handler->Type();
460 461 462 463
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
464
#ifdef PADDLE_MOBILE_PROFILE
465 466 467
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
468 469 470 471 472 473 474
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
475 476 477
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
478 479
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
480
      int kernel_size = filter->dims()[2];
481 482
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
483
    } else {
484
      _tp[ops_of_block0_[i]->Type()] += timeCost;
485
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
486
  }
H
hjchen2 已提交
487
  printf("====================[ profile ]======================\n");
488
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
504
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
505
#endif
506
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
507 508
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

535
#ifdef PADDLE_MOBILE_FPGA
536 537 538 539
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
540
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
541 542
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
543
}
544

545 546
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
547
  InjectVariable(t, "feed0");
548
}
549

550
template <typename Device, typename T>
551
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
552
  auto input_size = v.size();
Z
zhangyang0701 已提交
553 554
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
555 556 557
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
558
    auto var = program_.scope->Var("feed", i + index);
559 560 561 562 563 564 565 566 567
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
568 569
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
570 571
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
572

573
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
574
    auto var = program_.scope->Var("fetch", i + index);
575 576
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
577
  }
578
}
579

580
template <typename Device, typename T>
581 582 583 584
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
585
}
586

587 588
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
589
  auto &ops = ops_of_block0_;
590

Z
zhangyang 已提交
591 592 593 594 595
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
596 597 598
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
599
}
600

601 602
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
603
  auto &ops = ops_of_block0_;
604
  end = end < 0 ? static_cast<int>(ops.size()) : end;
605 606 607 608 609 610 611 612 613 614 615 616
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
617
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
618 619 620 621 622 623 624
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
625
}
626

627 628
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
629
  Predict_From_To(start);
630
}
631

632 633
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
634
  Predict_From_To(0, end);
635
}
636 637 638 639 640 641
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
642 643
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
683 684 685 686 687 688
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
689 690 691 692 693 694 695 696
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
697 698 699 700 701 702
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
703 704 705 706 707 708
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
709
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
710 711
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
712
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
744

xiebaiyuan's avatar
xiebaiyuan 已提交
745 746 747
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
748 749 750 751 752 753 754
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
755 756 757 758 759

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
760
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
761
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
762
    if (input_dim_last_ != input.dims()) {
763 764 765
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
766 767 768 769 770 771 772 773
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
774 775
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
776 777
}

778 779 780
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
781

Y
yangfei 已提交
782
template <>
H
hjchen2 已提交
783 784
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

822
  const TensorDesc &desc = var_desc.Tensor_desc();
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
857

Y
yangfei 已提交
858
template <>
859 860
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
861 862 863
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
864
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
865
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
866
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
867
          continue;
L
liuruilong 已提交
868
        } else {
869
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
870
        }
L
liuruilong 已提交
871

Y
yangfei 已提交
872
        char *origin_data =
L
liuruilong 已提交
873
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
874
        char *data = origin_data;
Y
yangfei 已提交
875
        cl_context context = program_.scope->GetCLScpoe()->Context();
876
        const TensorDesc &desc = var_desc->Tensor_desc();
877 878 879 880 881
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
882
        float *tensorInput = static_cast<float *>(
883 884
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
885

886
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
887

L
liuruilong 已提交
888 889
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
890

891
        delete origin_data;
Y
yangfei 已提交
892
        paddle_mobile::memory::Free(tensorInput);
893
      } else {
894 895
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
896
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
897 898
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
899

900 901 902
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
903
          DLOG << var_desc->Name();
L
liuruilong 已提交
904
          cl_image->InitEmptyImage(context, command_queue, ddim);
905
        }
Y
yangfei 已提交
906 907 908 909
      }
    }
  }
}
910

Y
yangfei 已提交
911
template <>
912
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
913 914
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
915 916
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
917 918
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
919
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
920 921
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
922
    self_alloc = true;
L
liuruilong 已提交
923
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
924 925
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
926
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
927

928
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
929 930 931
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
932
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
933
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
934
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
935
          continue;
L
liuruilong 已提交
936
        } else {
937
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
938 939 940 941
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

942 943
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
944 945 946 947 948

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
949 950 951
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
952 953 954 955

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

956 957
        paddle_mobile::memory::Free(tensorInput);
      } else {
958
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
959
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
960 961
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
962 963 964
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
965
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
966 967 968
      }
    }
  }
Y
yangfei 已提交
969
  if (self_alloc) {
970
    delete data;
Y
yangfei 已提交
971
  }
Y
yangfei 已提交
972
  LOG(kLOG_INFO) << " end init combine memory ";
973
}
Y
yangfei 已提交
974 975 976

#endif

977
template class Executor<CPU, float>;
Y
yangfei 已提交
978

979
template class Executor<FPGA, float>;
W
wangliu 已提交
980

981
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
982

983
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
984 985

}  // namespace framework
W
wangliu 已提交
986
}  // namespace paddle_mobile