i915_gem.c 129.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64 65 66 67
static int
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask);

static void
i915_gem_object_put_pages(struct drm_gem_object *obj);

68 69 70
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.gtt_count++;
	dev_priv->mm.gtt_memory += size;
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.gtt_count--;
	dev_priv->mm.gtt_memory -= size;
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.pin_count++;
	dev_priv->mm.pin_memory += size;
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.pin_count--;
	dev_priv->mm.pin_memory -= size;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

162
	WARN_ON(i915_verify_lists(dev));
163 164
	return 0;
}
165

166 167 168 169 170 171 172 173
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

174 175
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
J
Jesse Barnes 已提交
176
		     unsigned long end)
177 178 179
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
180 181 182
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
183 184 185
		return -EINVAL;
	}

J
Jesse Barnes 已提交
186 187
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
188

189
	dev_priv->mm.gtt_total = end - start;
190
	dev_priv->mm.gtt_mappable_end = end;
J
Jesse Barnes 已提交
191 192 193

	return 0;
}
194

J
Jesse Barnes 已提交
195 196 197 198 199 200 201 202 203
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
204 205
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
206
	return ret;
207 208
}

209 210 211 212
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
213
	struct drm_i915_private *dev_priv = dev->dev_private;
214 215 216 217 218
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

219 220 221 222
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
223 224 225 226

	return 0;
}

227 228 229 230 231 232 233 234 235 236

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
237 238
	int ret;
	u32 handle;
239 240 241 242

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
243
	obj = i915_gem_alloc_object(dev, args->size);
244 245 246 247
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
248
	if (ret) {
249 250 251
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
252
		return ret;
253
	}
254

255 256 257 258
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

259
	args->handle = handle;
260 261 262
	return 0;
}

263 264 265 266 267 268
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
269
	char *vaddr;
270
	int ret;
271

P
Peter Zijlstra 已提交
272
	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
273
	ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
P
Peter Zijlstra 已提交
274
	kunmap_atomic(vaddr);
275

276
	return ret;
277 278
}

279 280 281
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
282
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
283 284 285 286 287

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

288
static inline void
289 290 291 292 293 294 295 296
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

297 298
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
299 300 301

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

302 303
	kunmap(src_page);
	kunmap(dst_page);
304 305
}

306
static inline void
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

326 327
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

351 352
	kunmap(cpu_page);
	kunmap(gpu_page);
353 354
}

355 356 357 358 359 360 361 362 363 364
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
365
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
366 367 368 369 370 371 372 373
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

374
	obj_priv = to_intel_bo(obj);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

390 391 392 393
		if (fast_shmem_read(obj_priv->pages,
				    page_base, page_offset,
				    user_data, page_length))
			return -EFAULT;
394 395 396 397 398 399

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

400
	return 0;
401 402
}

403 404 405 406 407
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

408
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
409 410 411 412 413 414 415

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

416
		ret = i915_gem_evict_something(dev, obj->size,
417 418
					       i915_gem_get_gtt_alignment(obj),
					       false);
419 420 421
		if (ret)
			return ret;

422
		ret = i915_gem_object_get_pages(obj, 0);
423 424 425 426 427
	}

	return ret;
}

428 429 430 431 432 433 434 435 436 437 438
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
439
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
440 441 442 443 444 445 446 447 448 449
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
450
	int do_bit17_swizzling;
451 452 453 454 455 456 457 458 459 460 461

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

462
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
463 464 465
	if (user_pages == NULL)
		return -ENOMEM;

466
	mutex_unlock(&dev->struct_mutex);
467 468
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
469
				      num_pages, 1, 0, user_pages, NULL);
470
	up_read(&mm->mmap_sem);
471
	mutex_lock(&dev->struct_mutex);
472 473
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
474
		goto out;
475 476
	}

477 478 479
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
480
	if (ret)
481
		goto out;
482

483
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
484

485
	obj_priv = to_intel_bo(obj);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

508
		if (do_bit17_swizzling) {
509
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
510
					      shmem_page_offset,
511 512 513 514 515 516 517 518 519 520
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
521
		}
522 523 524 525 526 527

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

528
out:
529 530 531 532
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
533
	drm_free_large(user_pages);
534 535 536 537

	return ret;
}

538 539 540 541 542 543 544 545 546 547 548 549
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
550
	int ret = 0;
551

552
	ret = i915_mutex_lock_interruptible(dev);
553
	if (ret)
554
		return ret;
555 556

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
557 558 559
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
560
	}
561
	obj_priv = to_intel_bo(obj);
562

563 564
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
565
		ret = -EINVAL;
566
		goto out;
C
Chris Wilson 已提交
567 568
	}

569 570 571
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
572 573 574 575
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
576
		goto out;
577 578
	}

579 580 581 582 583
	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
584
	}
585

586 587 588 589 590 591 592 593 594 595 596 597
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
		goto out;

	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
		goto out_put;

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
598
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
599 600
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
601

602 603
out_put:
	i915_gem_object_put_pages(obj);
604
out:
605
	drm_gem_object_unreference(obj);
606
unlock:
607
	mutex_unlock(&dev->struct_mutex);
608
	return ret;
609 610
}

611 612
/* This is the fast write path which cannot handle
 * page faults in the source data
613
 */
614 615 616 617 618 619

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
620 621
{
	char *vaddr_atomic;
622
	unsigned long unwritten;
623

P
Peter Zijlstra 已提交
624
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
625 626
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
627
	io_mapping_unmap_atomic(vaddr_atomic);
628
	return unwritten;
629 630 631 632 633 634
}

/* Here's the write path which can sleep for
 * page faults
 */

635
static inline void
636 637 638 639
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
640
{
641 642
	char __iomem *dst_vaddr;
	char *src_vaddr;
643

644 645 646 647 648 649 650 651 652
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
653 654
}

655 656 657 658 659 660
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
661
	char *vaddr;
662
	int ret;
663

P
Peter Zijlstra 已提交
664
	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
665
	ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
P
Peter Zijlstra 已提交
666
	kunmap_atomic(vaddr);
667

668
	return ret;
669 670
}

671 672 673 674
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
675
static int
676 677 678
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
679
{
680
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
681
	drm_i915_private_t *dev_priv = dev->dev_private;
682
	ssize_t remain;
683
	loff_t offset, page_base;
684
	char __user *user_data;
685
	int page_offset, page_length;
686 687 688 689

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

690
	obj_priv = to_intel_bo(obj);
691 692 693 694 695
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
696 697 698
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
699
		 */
700 701 702 703 704 705 706
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
707 708
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
709
		 */
710 711 712 713
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
714

715 716 717
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
718 719
	}

720
	return 0;
721 722
}

723 724 725 726 727 728 729
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
730
static int
731 732 733
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
734
{
735
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
736 737 738 739 740 741 742 743
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
744
	int ret;
745 746 747 748 749 750 751 752 753 754 755 756
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

757
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
758 759 760
	if (user_pages == NULL)
		return -ENOMEM;

761
	mutex_unlock(&dev->struct_mutex);
762 763 764 765
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
766
	mutex_lock(&dev->struct_mutex);
767 768 769 770
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
771

772 773
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
774
		goto out_unpin_pages;
775

776
	obj_priv = to_intel_bo(obj);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

799 800 801 802 803
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
804 805 806 807 808 809 810 811 812

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
813
	drm_free_large(user_pages);
814 815 816 817

	return ret;
}

818 819 820 821
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
822
static int
823 824 825
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
826
{
827
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
828 829 830 831 832 833 834
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
835

836
	obj_priv = to_intel_bo(obj);
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

853
		if (fast_shmem_write(obj_priv->pages,
854
				       page_base, page_offset,
855 856
				       user_data, page_length))
			return -EFAULT;
857 858 859 860 861 862

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

863
	return 0;
864 865 866 867 868 869 870 871 872 873 874 875 876 877
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
878
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
879 880 881 882 883 884 885 886 887 888
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
889
	int do_bit17_swizzling;
890 891 892 893 894 895 896 897 898 899 900

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

901
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
902 903 904
	if (user_pages == NULL)
		return -ENOMEM;

905
	mutex_unlock(&dev->struct_mutex);
906 907 908 909
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
910
	mutex_lock(&dev->struct_mutex);
911 912
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
913
		goto out;
914 915
	}

916
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
917
	if (ret)
918
		goto out;
919

920
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
921

922
	obj_priv = to_intel_bo(obj);
923
	offset = args->offset;
924
	obj_priv->dirty = 1;
925

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

946
		if (do_bit17_swizzling) {
947
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
948 949 950
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
951 952 953 954 955 956 957 958
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
959
		}
960 961 962 963

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
964 965
	}

966
out:
967 968
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
969
	drm_free_large(user_pages);
970

971
	return ret;
972 973 974 975 976 977 978 979 980
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
981
		      struct drm_file *file)
982 983 984 985 986 987
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

988
	ret = i915_mutex_lock_interruptible(dev);
989
	if (ret)
990
		return ret;
991 992 993 994 995

	obj = drm_gem_object_lookup(dev, file, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
996
	}
997
	obj_priv = to_intel_bo(obj);
998

999

1000 1001
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1002
		ret = -EINVAL;
1003
		goto out;
C
Chris Wilson 已提交
1004 1005
	}

1006 1007 1008
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1009 1010 1011 1012
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1013
		goto out;
1014 1015
	}

1016 1017 1018 1019 1020
	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
1021 1022 1023 1024 1025 1026 1027 1028
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1029
	if (obj_priv->phys_obj)
1030
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1031
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1032
		 obj_priv->gtt_space &&
1033
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		ret = i915_gem_object_pin(obj, 0);
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1048
	} else {
1049 1050 1051
		ret = i915_gem_object_get_pages_or_evict(obj);
		if (ret)
			goto out;
1052

1053 1054 1055
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
			goto out_put;
1056

1057 1058 1059 1060 1061 1062 1063 1064 1065
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);

out_put:
		i915_gem_object_put_pages(obj);
	}
1066

1067
out:
1068
	drm_gem_object_unreference(obj);
1069
unlock:
1070
	mutex_unlock(&dev->struct_mutex);
1071 1072 1073 1074
	return ret;
}

/**
1075 1076
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1077 1078 1079 1080 1081
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1082
	struct drm_i915_private *dev_priv = dev->dev_private;
1083 1084
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1085
	struct drm_i915_gem_object *obj_priv;
1086 1087
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1088 1089 1090 1091 1092
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1093
	/* Only handle setting domains to types used by the CPU. */
1094
	if (write_domain & I915_GEM_GPU_DOMAINS)
1095 1096
		return -EINVAL;

1097
	if (read_domains & I915_GEM_GPU_DOMAINS)
1098 1099 1100 1101 1102 1103 1104 1105
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1106
	ret = i915_mutex_lock_interruptible(dev);
1107
	if (ret)
1108
		return ret;
1109

1110
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1111 1112 1113
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1114
	}
1115
	obj_priv = to_intel_bo(obj);
1116

1117 1118
	intel_mark_busy(dev, obj);

1119 1120
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1121

1122 1123 1124 1125
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1126 1127 1128
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1129 1130 1131
				       &dev_priv->mm.fence_list);
		}

1132 1133 1134 1135 1136 1137
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1138
	} else {
1139
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1140 1141
	}

1142 1143
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1144
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1145

1146
	drm_gem_object_unreference(obj);
1147
unlock:
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1166
	ret = i915_mutex_lock_interruptible(dev);
1167
	if (ret)
1168
		return ret;
1169

1170 1171
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
1172 1173
		ret = -ENOENT;
		goto unlock;
1174 1175 1176
	}

	/* Pinned buffers may be scanout, so flush the cache */
1177
	if (to_intel_bo(obj)->pin_count)
1178 1179
		i915_gem_object_flush_cpu_write_domain(obj);

1180
	drm_gem_object_unreference(obj);
1181
unlock:
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1207
		return -ENOENT;
1208 1209 1210 1211 1212 1213 1214 1215

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1216
	drm_gem_object_unreference_unlocked(obj);
1217 1218 1219 1220 1221 1222 1223 1224
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1245
	drm_i915_private_t *dev_priv = dev->dev_private;
1246
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1247 1248 1249
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1250
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1251 1252 1253 1254 1255 1256 1257 1258

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1259
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1260 1261
		if (ret)
			goto unlock;
1262 1263

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1264 1265
		if (ret)
			goto unlock;
1266 1267 1268
	}

	/* Need a new fence register? */
1269
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1270
		ret = i915_gem_object_get_fence_reg(obj, true);
1271 1272
		if (ret)
			goto unlock;
1273
	}
1274

1275
	if (i915_gem_object_is_inactive(obj_priv))
1276
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1277

1278 1279 1280 1281 1282
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1283
unlock:
1284 1285 1286
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1287 1288 1289
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1290 1291 1292 1293
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1294
		return VM_FAULT_SIGBUS;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1314
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1315
	struct drm_map_list *list;
1316
	struct drm_local_map *map;
1317 1318 1319 1320
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1321
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1335
		ret = -ENOSPC;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1347 1348
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1362
	kfree(list->map);
1363 1364 1365 1366

	return ret;
}

1367 1368 1369 1370
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1371
 * Preserve the reservation of the mmapping with the DRM core code, but
1372 1373 1374 1375 1376 1377 1378 1379 1380
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1381
void
1382 1383 1384
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1385
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1386 1387 1388 1389 1390 1391

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1392 1393 1394 1395
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1396
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1409
		kfree(list->map);
1410 1411 1412 1413 1414 1415
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1427
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1428 1429 1430 1431 1432 1433
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1434
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1435 1436 1437 1438 1439 1440
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1441
	if (INTEL_INFO(dev)->gen == 3)
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1479
	ret = i915_mutex_lock_interruptible(dev);
1480
	if (ret)
1481
		return ret;
1482

1483 1484 1485 1486 1487
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1488
	obj_priv = to_intel_bo(obj);
1489

1490 1491
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1492 1493
		ret = -EINVAL;
		goto out;
1494 1495
	}

1496 1497
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1498 1499
		if (ret)
			goto out;
1500 1501 1502 1503 1504 1505 1506 1507 1508
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1509
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1510 1511
		if (ret)
			goto out;
1512 1513
	}

1514
out:
1515
	drm_gem_object_unreference(obj);
1516
unlock:
1517
	mutex_unlock(&dev->struct_mutex);
1518
	return ret;
1519 1520
}

1521
static void
1522
i915_gem_object_put_pages(struct drm_gem_object *obj)
1523
{
1524
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1525 1526 1527
	int page_count = obj->size / PAGE_SIZE;
	int i;

1528
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1529
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1530

1531 1532
	if (--obj_priv->pages_refcount != 0)
		return;
1533

1534 1535 1536
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1537
	if (obj_priv->madv == I915_MADV_DONTNEED)
1538
		obj_priv->dirty = 0;
1539 1540 1541 1542 1543 1544

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1545
			mark_page_accessed(obj_priv->pages[i]);
1546 1547 1548

		page_cache_release(obj_priv->pages[i]);
	}
1549 1550
	obj_priv->dirty = 0;

1551
	drm_free_large(obj_priv->pages);
1552
	obj_priv->pages = NULL;
1553 1554
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1565
static void
1566
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1567
			       struct intel_ring_buffer *ring)
1568 1569
{
	struct drm_device *dev = obj->dev;
1570
	struct drm_i915_private *dev_priv = dev->dev_private;
1571
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1572
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1573

1574 1575
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1576 1577 1578 1579 1580 1581

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1582

1583
	/* Move from whatever list we were on to the tail of execution. */
1584 1585
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj_priv->ring_list, &ring->active_list);
1586
	obj_priv->last_rendering_seqno = seqno;
1587 1588
}

1589 1590 1591 1592 1593
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1594
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1595 1596

	BUG_ON(!obj_priv->active);
1597 1598
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
	list_del_init(&obj_priv->ring_list);
1599 1600
	obj_priv->last_rendering_seqno = 0;
}
1601

1602 1603 1604 1605
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1606
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1607
	struct inode *inode;
1608

1609 1610 1611 1612 1613 1614
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1615
	inode = obj->filp->f_path.dentry->d_inode;
1616 1617 1618
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1619 1620

	obj_priv->madv = __I915_MADV_PURGED;
1621 1622 1623 1624 1625 1626 1627 1628
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1629 1630 1631 1632 1633
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1634
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1635 1636

	if (obj_priv->pin_count != 0)
1637
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1638
	else
1639 1640
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
	list_del_init(&obj_priv->ring_list);
1641

1642 1643
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1644
	obj_priv->last_rendering_seqno = 0;
1645
	obj_priv->ring = NULL;
1646 1647 1648 1649
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1650
	WARN_ON(i915_verify_lists(dev));
1651 1652
}

1653 1654
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1655
			       uint32_t flush_domains,
1656
			       struct intel_ring_buffer *ring)
1657 1658 1659 1660 1661
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
1662
				 &ring->gpu_write_list,
1663
				 gpu_write_list) {
1664
		struct drm_gem_object *obj = &obj_priv->base;
1665

1666
		if (obj->write_domain & flush_domains) {
1667 1668 1669 1670
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1671
			i915_gem_object_move_to_active(obj, ring);
1672 1673

			/* update the fence lru list */
1674 1675 1676 1677
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1678
						&dev_priv->mm.fence_list);
1679
			}
1680 1681 1682 1683 1684 1685 1686

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1687

1688
int
1689
i915_add_request(struct drm_device *dev,
1690
		 struct drm_file *file,
C
Chris Wilson 已提交
1691
		 struct drm_i915_gem_request *request,
1692
		 struct intel_ring_buffer *ring)
1693 1694
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1695
	struct drm_i915_file_private *file_priv = NULL;
1696 1697
	uint32_t seqno;
	int was_empty;
1698 1699 1700
	int ret;

	BUG_ON(request == NULL);
1701

1702 1703
	if (file != NULL)
		file_priv = file->driver_priv;
1704

1705 1706 1707
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1708

1709
	ring->outstanding_lazy_request = false;
1710 1711

	request->seqno = seqno;
1712
	request->ring = ring;
1713
	request->emitted_jiffies = jiffies;
1714 1715 1716
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1717
	if (file_priv) {
1718
		spin_lock(&file_priv->mm.lock);
1719
		request->file_priv = file_priv;
1720
		list_add_tail(&request->client_list,
1721
			      &file_priv->mm.request_list);
1722
		spin_unlock(&file_priv->mm.lock);
1723
	}
1724

B
Ben Gamari 已提交
1725
	if (!dev_priv->mm.suspended) {
1726 1727
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1728
		if (was_empty)
1729 1730
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1731
	}
1732
	return 0;
1733 1734 1735 1736 1737 1738 1739 1740
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1741
static void
1742
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1743 1744 1745 1746
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1747
	if (INTEL_INFO(dev)->gen >= 4)
1748
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1749

1750
	ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1751 1752
}

1753 1754
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1755
{
1756
	struct drm_i915_file_private *file_priv = request->file_priv;
1757

1758 1759
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1760

1761 1762 1763 1764
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1765 1766
}

1767 1768
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1769
{
1770 1771
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1772

1773 1774 1775
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1776

1777
		list_del(&request->list);
1778
		i915_gem_request_remove_from_client(request);
1779 1780
		kfree(request);
	}
1781

1782
	while (!list_empty(&ring->active_list)) {
1783 1784
		struct drm_i915_gem_object *obj_priv;

1785
		obj_priv = list_first_entry(&ring->active_list,
1786
					    struct drm_i915_gem_object,
1787
					    ring_list);
1788 1789

		obj_priv->base.write_domain = 0;
1790
		list_del_init(&obj_priv->gpu_write_list);
1791
		i915_gem_object_move_to_inactive(&obj_priv->base);
1792 1793 1794
	}
}

1795
void i915_gem_reset(struct drm_device *dev)
1796
{
1797 1798
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1799
	int i;
1800

1801
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1802
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1803
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1804 1805 1806 1807 1808 1809 1810 1811

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
1812
					    mm_list);
1813 1814 1815 1816 1817 1818 1819 1820 1821

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1822 1823
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
1824
			    mm_list)
1825 1826 1827
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1839 1840 1841 1842 1843
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1844 1845 1846
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1847 1848 1849 1850
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1851 1852
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1853 1854
		return;

1855
	WARN_ON(i915_verify_lists(dev));
1856

1857
	seqno = ring->get_seqno(ring);
1858
	while (!list_empty(&ring->request_list)) {
1859 1860
		struct drm_i915_gem_request *request;

1861
		request = list_first_entry(&ring->request_list,
1862 1863 1864
					   struct drm_i915_gem_request,
					   list);

1865
		if (!i915_seqno_passed(seqno, request->seqno))
1866 1867 1868 1869 1870
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1871
		i915_gem_request_remove_from_client(request);
1872 1873
		kfree(request);
	}
1874

1875 1876 1877 1878 1879 1880 1881 1882 1883
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
1884
					    ring_list);
1885

1886
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1887
			break;
1888 1889 1890 1891 1892 1893

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1894
	}
1895 1896 1897

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1898
		ring->user_irq_put(ring);
1899 1900
		dev_priv->trace_irq_seqno = 0;
	}
1901 1902

	WARN_ON(i915_verify_lists(dev));
1903 1904
}

1905 1906 1907 1908 1909
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
1920
				     mm_list)
1921 1922 1923
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1924
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1925
	i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1926
	i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1927 1928
}

1929
static void
1930 1931 1932 1933 1934 1935 1936 1937 1938
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1939 1940 1941 1942 1943 1944
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1945
	i915_gem_retire_requests(dev);
1946

1947
	if (!dev_priv->mm.suspended &&
1948
		(!list_empty(&dev_priv->render_ring.request_list) ||
1949 1950
		 !list_empty(&dev_priv->bsd_ring.request_list) ||
		 !list_empty(&dev_priv->blt_ring.request_list)))
1951
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1952 1953 1954
	mutex_unlock(&dev->struct_mutex);
}

1955
int
1956
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1957
		     bool interruptible, struct intel_ring_buffer *ring)
1958 1959
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1960
	u32 ier;
1961 1962 1963 1964
	int ret = 0;

	BUG_ON(seqno == 0);

1965
	if (atomic_read(&dev_priv->mm.wedged))
1966 1967
		return -EAGAIN;

1968
	if (ring->outstanding_lazy_request) {
1969 1970 1971 1972
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1973
			return -ENOMEM;
1974 1975 1976 1977 1978 1979 1980 1981

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1982
	}
1983
	BUG_ON(seqno == dev_priv->next_seqno);
1984

1985
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1986
		if (HAS_PCH_SPLIT(dev))
1987 1988 1989
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1990 1991 1992 1993 1994 1995 1996
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1997 1998
		trace_i915_gem_request_wait_begin(dev, seqno);

1999
		ring->waiting_seqno = seqno;
2000
		ring->user_irq_get(ring);
2001
		if (interruptible)
2002
			ret = wait_event_interruptible(ring->irq_queue,
2003
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2004
				|| atomic_read(&dev_priv->mm.wedged));
2005
		else
2006
			wait_event(ring->irq_queue,
2007
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2008
				|| atomic_read(&dev_priv->mm.wedged));
2009

2010
		ring->user_irq_put(ring);
2011
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2012 2013

		trace_i915_gem_request_wait_end(dev, seqno);
2014
	}
2015
	if (atomic_read(&dev_priv->mm.wedged))
2016
		ret = -EAGAIN;
2017 2018

	if (ret && ret != -ERESTARTSYS)
2019
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2020
			  __func__, ret, seqno, ring->get_seqno(ring),
2021
			  dev_priv->next_seqno);
2022 2023 2024 2025 2026 2027 2028

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2029
		i915_gem_retire_requests_ring(dev, ring);
2030 2031 2032 2033

	return ret;
}

2034 2035 2036 2037 2038
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2039
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2040
		  struct intel_ring_buffer *ring)
2041
{
2042
	return i915_do_wait_request(dev, seqno, 1, ring);
2043 2044
}

2045
static void
2046
i915_gem_flush_ring(struct drm_device *dev,
2047
		    struct drm_file *file_priv,
2048 2049 2050 2051
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2052
	ring->flush(ring, invalidate_domains, flush_domains);
2053 2054 2055
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2056 2057
static void
i915_gem_flush(struct drm_device *dev,
2058
	       struct drm_file *file_priv,
2059
	       uint32_t invalidate_domains,
2060 2061
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2062 2063
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2064

2065 2066
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2067

2068 2069
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2070
			i915_gem_flush_ring(dev, file_priv,
2071 2072 2073
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2074
			i915_gem_flush_ring(dev, file_priv,
2075 2076
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
2077 2078 2079 2080
		if (flush_rings & RING_BLT)
			i915_gem_flush_ring(dev, file_priv,
					    &dev_priv->blt_ring,
					    invalidate_domains, flush_domains);
2081
	}
2082 2083
}

2084 2085 2086 2087 2088
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2089 2090
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2091 2092
{
	struct drm_device *dev = obj->dev;
2093
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2094 2095
	int ret;

2096 2097
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2098
	 */
2099
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2100 2101 2102 2103 2104

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2105 2106 2107 2108 2109
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2110 2111 2112 2113 2114 2115 2116 2117 2118
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2119
int
2120 2121 2122
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2123
	struct drm_i915_private *dev_priv = dev->dev_private;
2124
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2135 2136 2137
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2138 2139 2140 2141 2142 2143
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2144
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2145
	if (ret == -ERESTARTSYS)
2146
		return ret;
2147 2148 2149 2150
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2151 2152 2153 2154
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2155

2156 2157 2158 2159
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2160 2161
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2162

2163
	i915_gem_object_put_pages(obj);
2164
	BUG_ON(obj_priv->pages_refcount);
2165

2166
	i915_gem_info_remove_gtt(dev_priv, obj->size);
2167
	list_del_init(&obj_priv->mm_list);
2168

2169 2170
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;
2171
	obj_priv->gtt_offset = 0;
2172

2173 2174 2175
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2176 2177
	trace_i915_gem_object_unbind(obj);

2178
	return ret;
2179 2180
}

2181 2182 2183
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2184 2185 2186
	if (list_empty(&ring->gpu_write_list))
		return 0;

2187 2188 2189 2190 2191 2192 2193
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2194
int
2195 2196 2197 2198
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2199
	int ret;
2200

2201 2202
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
2203 2204
		       list_empty(&dev_priv->bsd_ring.active_list) &&
		       list_empty(&dev_priv->blt_ring.active_list));
2205 2206 2207 2208
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2209
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2210 2211
	if (ret)
		return ret;
2212

2213 2214 2215
	ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
	if (ret)
		return ret;
2216

2217 2218 2219
	ret = i915_ring_idle(dev, &dev_priv->blt_ring);
	if (ret)
		return ret;
2220

2221
	return 0;
2222 2223
}

2224
static int
2225 2226
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2227
{
2228
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2229 2230 2231 2232 2233
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2234 2235 2236
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2237
	if (obj_priv->pages_refcount++ != 0)
2238 2239 2240 2241 2242 2243
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2244
	BUG_ON(obj_priv->pages != NULL);
2245
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2246 2247
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2248 2249 2250 2251 2252 2253
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2254
		page = read_cache_page_gfp(mapping, i,
2255
					   GFP_HIGHUSER |
2256
					   __GFP_COLD |
2257
					   __GFP_RECLAIMABLE |
2258
					   gfpmask);
2259 2260 2261
		if (IS_ERR(page))
			goto err_pages;

2262
		obj_priv->pages[i] = page;
2263
	}
2264 2265 2266 2267

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2268
	return 0;
2269 2270 2271 2272 2273 2274 2275 2276 2277

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2278 2279
}

2280 2281 2282 2283 2284
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2285
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2302 2303 2304 2305 2306
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2307
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2327
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2328
	int regnum = obj_priv->fence_reg;
2329
	int tile_width;
2330
	uint32_t fence_reg, val;
2331 2332 2333 2334
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2335
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2336
		     __func__, obj_priv->gtt_offset, obj->size);
2337 2338 2339
		return;
	}

2340 2341 2342
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2343
	else
2344 2345 2346 2347 2348
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2349

2350 2351 2352 2353 2354 2355
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2356 2357 2358 2359 2360 2361 2362
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2363 2364 2365 2366 2367
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2368 2369 2370 2371 2372 2373 2374
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2375
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2376 2377 2378
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2379
	uint32_t fence_size_bits;
2380

2381
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2382
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2383
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2384
		     __func__, obj_priv->gtt_offset);
2385 2386 2387
		return;
	}

2388 2389 2390 2391
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2392 2393 2394
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2395 2396 2397
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2398 2399 2400 2401 2402 2403
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2404 2405
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2420
		obj_priv = to_intel_bo(reg->obj);
2421 2422 2423 2424 2425 2426 2427 2428 2429
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2430 2431 2432 2433
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2450
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2451 2452 2453 2454 2455 2456 2457
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2471
int
2472 2473
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2474 2475
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2476
	struct drm_i915_private *dev_priv = dev->dev_private;
2477
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2478
	struct drm_i915_fence_reg *reg = NULL;
2479
	int ret;
2480

2481 2482
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2483 2484
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2485 2486 2487
		return 0;
	}

2488 2489 2490 2491 2492
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2493 2494 2495 2496 2497
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2498 2499
		break;
	case I915_TILING_Y:
2500 2501 2502 2503 2504
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2505 2506 2507
		break;
	}

2508
	ret = i915_find_fence_reg(dev, interruptible);
2509 2510
	if (ret < 0)
		return ret;
2511

2512 2513
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2514
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2515

2516 2517
	reg->obj = obj;

2518 2519
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2520
		sandybridge_write_fence_reg(reg);
2521 2522 2523
		break;
	case 5:
	case 4:
2524
		i965_write_fence_reg(reg);
2525 2526
		break;
	case 3:
2527
		i915_write_fence_reg(reg);
2528 2529
		break;
	case 2:
2530
		i830_write_fence_reg(reg);
2531 2532
		break;
	}
2533

2534 2535
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2536

2537
	return 0;
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2551
	drm_i915_private_t *dev_priv = dev->dev_private;
2552
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2553 2554
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2555
	uint32_t fence_reg;
2556

2557 2558
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2559 2560
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2561 2562 2563
		break;
	case 5:
	case 4:
2564
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2565 2566
		break;
	case 3:
2567
		if (obj_priv->fence_reg >= 8)
2568
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2569
		else
2570 2571
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2572 2573

		I915_WRITE(fence_reg, 0);
2574
		break;
2575
	}
2576

2577
	reg->obj = NULL;
2578
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2579
	list_del_init(&reg->lru_list);
2580 2581
}

2582 2583 2584 2585
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2586
 * @bool: whether the wait upon the fence is interruptible
2587 2588 2589 2590 2591
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2592 2593
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2594 2595
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2596
	struct drm_i915_private *dev_priv = dev->dev_private;
2597
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2598
	struct drm_i915_fence_reg *reg;
2599 2600 2601 2602

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2603 2604 2605 2606 2607 2608
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2609 2610 2611 2612
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2613 2614
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2615 2616
		int ret;

2617
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2618
		if (ret)
2619 2620
			return ret;

2621
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2622
		if (ret)
2623
			return ret;
C
Chris Wilson 已提交
2624 2625

		reg->gpu = false;
2626 2627
	}

2628
	i915_gem_object_flush_gtt_write_domain(obj);
2629
	i915_gem_clear_fence_reg(obj);
2630 2631 2632 2633

	return 0;
}

2634 2635 2636 2637 2638 2639 2640 2641
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2642
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2643
	struct drm_mm_node *free_space;
2644
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2645
	int ret;
2646

C
Chris Wilson 已提交
2647
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2648 2649 2650 2651
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2652
	if (alignment == 0)
2653
		alignment = i915_gem_get_gtt_alignment(obj);
2654
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2655 2656 2657 2658
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2659 2660 2661
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2662
	if (obj->size > dev_priv->mm.gtt_total) {
2663 2664 2665 2666
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2667 2668 2669
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
2670
	if (free_space != NULL)
2671 2672 2673 2674 2675 2676
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2677
		ret = i915_gem_evict_something(dev, obj->size, alignment, true);
2678
		if (ret)
2679
			return ret;
2680

2681 2682 2683
		goto search_free;
	}

2684
	ret = i915_gem_object_get_pages(obj, gfpmask);
2685 2686 2687
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2688 2689 2690

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2691
			ret = i915_gem_evict_something(dev, obj->size,
2692
						       alignment, true);
2693 2694
			if (ret) {
				/* now try to shrink everyone else */
2695 2696 2697
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2698 2699 2700 2701 2702 2703 2704 2705
				}

				return ret;
			}

			goto search_free;
		}

2706 2707 2708 2709 2710 2711 2712
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2713
					       obj_priv->pages,
2714
					       obj->size >> PAGE_SHIFT,
2715
					       obj_priv->gtt_space->start,
2716
					       obj_priv->agp_type);
2717
	if (obj_priv->agp_mem == NULL) {
2718
		i915_gem_object_put_pages(obj);
2719 2720
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2721

2722
		ret = i915_gem_evict_something(dev, obj->size, alignment, true);
2723
		if (ret)
2724 2725 2726
			return ret;

		goto search_free;
2727 2728
	}

2729
	/* keep track of bounds object by adding it to the inactive list */
2730
	list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2731
	i915_gem_info_add_gtt(dev_priv, obj->size);
2732

2733 2734 2735 2736
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2737 2738
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2739

2740
	obj_priv->gtt_offset = obj_priv->gtt_space->start;
C
Chris Wilson 已提交
2741 2742
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2743 2744 2745 2746 2747 2748
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2749
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2750 2751 2752 2753 2754

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2755
	if (obj_priv->pages == NULL)
2756 2757
		return;

C
Chris Wilson 已提交
2758
	trace_i915_gem_object_clflush(obj);
2759

2760
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2761 2762
}

2763
/** Flushes any GPU write domain for the object if it's dirty. */
2764
static int
2765 2766
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2767 2768
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2769
	uint32_t old_write_domain;
2770 2771

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2772
		return 0;
2773 2774

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2775
	old_write_domain = obj->write_domain;
2776
	i915_gem_flush_ring(dev, NULL,
2777 2778
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2779
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2780 2781 2782 2783

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2784 2785 2786 2787

	if (pipelined)
		return 0;

2788
	return i915_gem_object_wait_rendering(obj, true);
2789 2790 2791 2792 2793 2794
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2795 2796
	uint32_t old_write_domain;

2797 2798 2799 2800 2801 2802 2803
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2804
	old_write_domain = obj->write_domain;
2805
	obj->write_domain = 0;
C
Chris Wilson 已提交
2806 2807 2808 2809

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2810 2811 2812 2813 2814 2815 2816
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2817
	uint32_t old_write_domain;
2818 2819 2820 2821 2822 2823

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2824
	old_write_domain = obj->write_domain;
2825
	obj->write_domain = 0;
C
Chris Wilson 已提交
2826 2827 2828 2829

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2830 2831
}

2832 2833 2834 2835 2836 2837
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2838
int
2839 2840
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2841
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2842
	uint32_t old_write_domain, old_read_domains;
2843
	int ret;
2844

2845 2846 2847 2848
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2849
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2850 2851 2852
	if (ret != 0)
		return ret;

2853
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2854

2855
	if (write) {
2856
		ret = i915_gem_object_wait_rendering(obj, true);
2857 2858 2859
		if (ret)
			return ret;
	}
2860

C
Chris Wilson 已提交
2861 2862 2863
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2864 2865 2866 2867 2868 2869
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2870
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2871 2872
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2873 2874
	}

C
Chris Wilson 已提交
2875 2876 2877 2878
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2879 2880 2881
	return 0;
}

2882 2883 2884 2885 2886
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2887 2888
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2889
{
2890
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2891
	uint32_t old_read_domains;
2892 2893 2894 2895 2896 2897
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2898
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2899 2900
	if (ret)
		return ret;
2901

2902 2903 2904 2905
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
2906 2907 2908
			return ret;
	}

2909 2910
	i915_gem_object_flush_cpu_write_domain(obj);

2911
	old_read_domains = obj->read_domains;
2912
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2913 2914 2915

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2916
					    obj->write_domain);
2917 2918 2919 2920

	return 0;
}

2921 2922 2923 2924 2925 2926 2927 2928 2929
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2930
	uint32_t old_write_domain, old_read_domains;
2931 2932
	int ret;

2933
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2934 2935
	if (ret != 0)
		return ret;
2936

2937
	i915_gem_object_flush_gtt_write_domain(obj);
2938

2939 2940
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2941
	 */
2942
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2943

2944
	if (write) {
2945
		ret = i915_gem_object_wait_rendering(obj, true);
2946 2947 2948 2949
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2950 2951 2952
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2953 2954
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2955 2956
		i915_gem_clflush_object(obj);

2957
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2958 2959 2960 2961 2962
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2963 2964 2965 2966 2967 2968
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2969
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2970 2971
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2972

C
Chris Wilson 已提交
2973 2974 2975 2976
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2977 2978 2979
	return 0;
}

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3091
static void
3092 3093
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
				  struct intel_ring_buffer *ring)
3094 3095
{
	struct drm_device		*dev = obj->dev;
3096
	struct drm_i915_private		*dev_priv = dev->dev_private;
3097
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3098 3099
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
3100

3101 3102 3103 3104
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3105 3106
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3107 3108 3109 3110 3111 3112 3113

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3114 3115
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3116
		flush_domains |= obj->write_domain;
3117 3118
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3119 3120 3121 3122 3123
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3124
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3125
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3126 3127
		i915_gem_clflush_object(obj);

3128 3129 3130 3131 3132 3133 3134 3135
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3136 3137 3138

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3139
	if (flush_domains & I915_GEM_GPU_DOMAINS)
3140
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
3141 3142
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
		dev_priv->mm.flush_rings |= ring->id;
3143 3144 3145
}

/**
3146
 * Moves the object from a partially CPU read to a full one.
3147
 *
3148 3149
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3150
 */
3151 3152
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3153
{
3154
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3167
			drm_clflush_pages(obj_priv->pages + i, 1);
3168 3169 3170 3171 3172 3173
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3174
	kfree(obj_priv->page_cpu_valid);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3194
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3195
	uint32_t old_read_domains;
3196
	int i, ret;
3197

3198 3199
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3200

3201
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3202
	if (ret != 0)
3203
		return ret;
3204 3205 3206 3207 3208 3209
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3210

3211 3212 3213
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3214
	if (obj_priv->page_cpu_valid == NULL) {
3215 3216
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3217 3218 3219 3220
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3221 3222 3223 3224

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3225 3226
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3227 3228 3229
		if (obj_priv->page_cpu_valid[i])
			continue;

3230
		drm_clflush_pages(obj_priv->pages + i, 1);
3231 3232 3233 3234

		obj_priv->page_cpu_valid[i] = 1;
	}

3235 3236 3237 3238 3239
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3240
	old_read_domains = obj->read_domains;
3241 3242
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3243 3244 3245 3246
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3247 3248 3249 3250 3251 3252 3253
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
3254 3255 3256
i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
			     struct drm_file *file_priv,
			     struct drm_i915_gem_exec_object2 *entry)
3257
{
3258
	struct drm_device *dev = obj->base.dev;
3259
	drm_i915_private_t *dev_priv = dev->dev_private;
3260
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3261 3262 3263
	struct drm_gem_object *target_obj = NULL;
	uint32_t target_handle = 0;
	int i, ret = 0;
3264

3265
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3266
	for (i = 0; i < entry->relocation_count; i++) {
3267
		struct drm_i915_gem_relocation_entry reloc;
3268
		uint32_t target_offset;
3269

3270 3271 3272 3273 3274
		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc))) {
			ret = -EFAULT;
			break;
J
Jesse Barnes 已提交
3275 3276
		}

3277 3278
		if (reloc.target_handle != target_handle) {
			drm_gem_object_unreference(target_obj);
3279

3280 3281 3282 3283 3284 3285 3286 3287
			target_obj = drm_gem_object_lookup(dev, file_priv,
							   reloc.target_handle);
			if (target_obj == NULL) {
				ret = -ENOENT;
				break;
			}

			target_handle = reloc.target_handle;
3288
		}
3289
		target_offset = to_intel_bo(target_obj)->gtt_offset;
3290

3291 3292 3293 3294 3295 3296
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3297 3298 3299 3300
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3301
			 (int) target_offset,
3302 3303
			 (int) reloc.presumed_offset,
			 reloc.delta);
3304 3305
#endif

3306 3307 3308
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
3309
		if (target_offset == 0) {
3310
			DRM_ERROR("No GTT space found for object %d\n",
3311
				  reloc.target_handle);
3312 3313
			ret = -EINVAL;
			break;
3314 3315
		}

3316
		/* Validate that the target is in a valid r/w GPU domain */
3317
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3318 3319 3320
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3321 3322 3323 3324
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3325 3326
			ret = -EINVAL;
			break;
3327
		}
3328 3329
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3330 3331 3332
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3333 3334 3335 3336
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3337 3338
			ret = -EINVAL;
			break;
3339
		}
3340 3341
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3342 3343 3344
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3345 3346 3347
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3348
				  target_obj->pending_write_domain);
3349 3350
			ret = -EINVAL;
			break;
3351 3352
		}

3353
		target_obj->pending_read_domains |= reloc.read_domains;
3354
		target_obj->pending_write_domain |= reloc.write_domain;
3355 3356 3357 3358

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3359
		if (target_offset == reloc.presumed_offset)
3360 3361
			continue;

3362
		/* Check that the relocation address is valid... */
3363
		if (reloc.offset > obj->base.size - 4) {
3364 3365
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3366
				  obj, reloc.target_handle,
3367 3368 3369
				  (int) reloc.offset, (int) obj->base.size);
			ret = -EINVAL;
			break;
3370
		}
3371
		if (reloc.offset & 3) {
3372 3373
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3374 3375
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3376 3377
			ret = -EINVAL;
			break;
3378 3379 3380
		}

		/* and points to somewhere within the target object. */
3381
		if (reloc.delta >= target_obj->size) {
3382 3383
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3384 3385
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3386 3387
			ret = -EINVAL;
			break;
3388 3389
		}

3390 3391
		reloc.delta += target_offset;
		if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3392 3393
			uint32_t page_offset = reloc.offset & ~PAGE_MASK;
			char *vaddr;
3394

3395
			vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3396
			*(uint32_t *)(vaddr + page_offset) = reloc.delta;
3397
			kunmap_atomic(vaddr);
3398 3399 3400
		} else {
			uint32_t __iomem *reloc_entry;
			void __iomem *reloc_page;
3401

3402 3403 3404
			ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
			if (ret)
				break;
3405

3406
			/* Map the page containing the relocation we're going to perform.  */
3407
			reloc.offset += obj->gtt_offset;
3408
			reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3409
							      reloc.offset & PAGE_MASK);
3410 3411 3412
			reloc_entry = (uint32_t __iomem *)
				(reloc_page + (reloc.offset & ~PAGE_MASK));
			iowrite32(reloc.delta, reloc_entry);
3413
			io_mapping_unmap_atomic(reloc_page);
3414
		}
3415

3416 3417 3418 3419 3420 3421 3422 3423
		/* and update the user's relocation entry */
		reloc.presumed_offset = target_offset;
		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					      &reloc.presumed_offset,
					      sizeof(reloc.presumed_offset))) {
		    ret = -EFAULT;
		    break;
		}
3424 3425
	}

3426
	drm_gem_object_unreference(target_obj);
3427 3428 3429
	return ret;
}

3430
static int
3431 3432 3433 3434 3435
i915_gem_execbuffer_pin(struct drm_device *dev,
			struct drm_file *file,
			struct drm_gem_object **object_list,
			struct drm_i915_gem_exec_object2 *exec_list,
			int count)
3436
{
3437 3438
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret, i, retry;
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	/* attempt to pin all of the buffers into the GTT */
	for (retry = 0; retry < 2; retry++) {
		ret = 0;
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
			struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
			bool need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

			/* Check fence reg constraints and rebind if necessary */
			if (need_fence &&
			    !i915_gem_object_fence_offset_ok(&obj->base,
							     obj->tiling_mode)) {
				ret = i915_gem_object_unbind(&obj->base);
				if (ret)
					break;
			}
3458

3459 3460 3461
			ret = i915_gem_object_pin(&obj->base, entry->alignment);
			if (ret)
				break;
3462

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
			/*
			 * Pre-965 chips need a fence register set up in order
			 * to properly handle blits to/from tiled surfaces.
			 */
			if (need_fence) {
				ret = i915_gem_object_get_fence_reg(&obj->base, true);
				if (ret) {
					i915_gem_object_unpin(&obj->base);
					break;
				}
3473

3474 3475
				dev_priv->fence_regs[obj->fence_reg].gpu = true;
			}
3476

3477
			entry->offset = obj->gtt_offset;
3478 3479
		}

3480 3481 3482 3483 3484
		while (i--)
			i915_gem_object_unpin(object_list[i]);

		if (ret == 0)
			break;
3485

3486 3487 3488 3489 3490 3491
		if (ret != -ENOSPC || retry)
			return ret;

		ret = i915_gem_evict_everything(dev);
		if (ret)
			return ret;
3492 3493
	}

3494
	return 0;
3495 3496
}

3497 3498 3499
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3500 3501 3502 3503
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3504 3505 3506
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3507
static int
3508
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3509
{
3510 3511
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3512
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3513 3514 3515 3516
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3517

3518
	spin_lock(&file_priv->mm.lock);
3519
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3520 3521
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3522

3523 3524
		ring = request->ring;
		seqno = request->seqno;
3525
	}
3526
	spin_unlock(&file_priv->mm.lock);
3527

3528 3529
	if (seqno == 0)
		return 0;
3530

3531
	ret = 0;
3532
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3533 3534 3535 3536 3537
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3538
		ring->user_irq_get(ring);
3539
		ret = wait_event_interruptible(ring->irq_queue,
3540
					       i915_seqno_passed(ring->get_seqno(ring), seqno)
3541
					       || atomic_read(&dev_priv->mm.wedged));
3542
		ring->user_irq_put(ring);
3543

3544 3545
		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
3546 3547
	}

3548 3549
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3550 3551 3552 3553

	return ret;
}

3554
static int
3555 3556
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3572
static int
3573 3574
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3575
{
3576
	int i;
3577

3578 3579 3580
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3581

3582 3583
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3584

3585 3586 3587 3588
		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

3589 3590
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3591 3592
	}

3593
	return 0;
3594 3595
}

C
Chris Wilson 已提交
3596
static int
J
Jesse Barnes 已提交
3597
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3598
		       struct drm_file *file,
J
Jesse Barnes 已提交
3599 3600
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3601 3602 3603 3604
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3605
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3606
	struct drm_i915_gem_request *request = NULL;
3607
	int ret, i, flips;
3608 3609
	uint64_t exec_offset;

3610 3611
	struct intel_ring_buffer *ring = NULL;

3612 3613 3614 3615
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3616 3617 3618 3619
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3620 3621 3622 3623
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3624 3625 3626 3627 3628 3629
	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
		ring = &dev_priv->render_ring;
		break;
	case I915_EXEC_BSD:
3630
		if (!HAS_BSD(dev)) {
3631
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
3632 3633 3634
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
		ring = &dev_priv->blt_ring;
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
3647 3648
	}

3649 3650 3651 3652
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3653
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3654 3655
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3656 3657 3658 3659 3660
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3661
	if (args->num_cliprects != 0) {
3662 3663
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3664 3665
		if (cliprects == NULL) {
			ret = -ENOMEM;
3666
			goto pre_mutex_err;
3667
		}
3668 3669 3670 3671 3672 3673 3674 3675

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3676
			ret = -EFAULT;
3677 3678 3679 3680
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3681 3682 3683
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
3684
		goto pre_mutex_err;
C
Chris Wilson 已提交
3685
	}
3686

3687 3688
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3689
		goto pre_mutex_err;
3690 3691 3692

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3693 3694
		ret = -EBUSY;
		goto pre_mutex_err;
3695 3696
	}

3697
	/* Look up object handles */
3698
	for (i = 0; i < args->buffer_count; i++) {
3699 3700
		struct drm_i915_gem_object *obj_priv;

3701
		object_list[i] = drm_gem_object_lookup(dev, file,
3702 3703 3704 3705
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3706 3707
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3708
			ret = -ENOENT;
3709 3710
			goto err;
		}
3711

3712
		obj_priv = to_intel_bo(object_list[i]);
3713 3714 3715
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3716 3717
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3718
			ret = -EINVAL;
3719 3720 3721
			goto err;
		}
		obj_priv->in_execbuffer = true;
3722
	}
3723

3724 3725 3726 3727 3728 3729
	/* Move the objects en-masse into the GTT, evicting if necessary. */
	ret = i915_gem_execbuffer_pin(dev, file,
				      object_list, exec_list,
				      args->buffer_count);
	if (ret)
		goto err;
3730

3731 3732 3733 3734 3735 3736 3737
	/* The objects are in their final locations, apply the relocations. */
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
		if (ret)
3738
			goto err;
3739 3740 3741 3742
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3743 3744 3745 3746 3747 3748
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3749

3750 3751 3752
	/* Sanity check the batch buffer */
	exec_offset = to_intel_bo(batch_obj)->gtt_offset;
	ret = i915_gem_check_execbuffer(args, exec_offset);
3753 3754 3755 3756 3757
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3758 3759 3760 3761 3762 3763
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3764
	dev_priv->mm.flush_rings = 0;
3765 3766
	for (i = 0; i < args->buffer_count; i++)
		i915_gem_object_set_to_gpu_domain(object_list[i], ring);
3767

3768 3769 3770 3771 3772 3773 3774
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3775
		i915_gem_flush(dev, file,
3776
			       dev->invalidate_domains,
3777 3778
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3779
	}
3780 3781 3782 3783 3784 3785 3786 3787 3788

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3789
	i915_gem_dump_object(batch_obj,
3790 3791 3792 3793 3794
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

3816 3817 3818 3819
			ret = intel_ring_begin(ring, 2);
			if (ret)
				goto err;

3820 3821 3822
			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
3823 3824 3825
		}
	}

3826
	/* Exec the batchbuffer */
3827
	ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3828 3829 3830 3831 3832 3833 3834 3835
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3836 3837 3838
		obj->read_domains = obj->pending_read_domains;
		obj->write_domain = obj->pending_write_domain;

3839
		i915_gem_object_move_to_active(obj, ring);
3840 3841 3842 3843
		if (obj->write_domain) {
			struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
			obj_priv->dirty = 1;
			list_move_tail(&obj_priv->gpu_write_list,
3844
				       &ring->gpu_write_list);
3845 3846 3847 3848 3849 3850
			intel_mark_busy(dev, obj);
		}

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    obj->write_domain);
3851 3852
	}

3853 3854 3855 3856 3857 3858
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	i915_retire_commands(dev, ring);

3859 3860 3861 3862
	if (i915_add_request(dev, file, request, ring))
		ring->outstanding_lazy_request = true;
	else
		request = NULL;
3863 3864

err:
3865
	for (i = 0; i < args->buffer_count; i++) {
3866 3867 3868 3869
		if (object_list[i] == NULL)
		    break;

		to_intel_bo(object_list[i])->in_execbuffer = false;
3870
		drm_gem_object_unreference(object_list[i]);
3871
	}
3872 3873 3874

	mutex_unlock(&dev->struct_mutex);

3875
pre_mutex_err:
3876
	drm_free_large(object_list);
3877
	kfree(cliprects);
C
Chris Wilson 已提交
3878
	kfree(request);
3879 3880 3881 3882

	return ret;
}

J
Jesse Barnes 已提交
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3935
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3949
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4028 4029 4030 4031
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4032
	struct drm_i915_private *dev_priv = dev->dev_private;
4033
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4034 4035
	int ret;

4036
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4037
	WARN_ON(i915_verify_lists(dev));
4038 4039 4040 4041 4042

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4043 4044 4045 4046
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4047 4048 4049 4050 4051 4052
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4053 4054
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4055
		if (ret)
4056
			return ret;
4057
	}
J
Jesse Barnes 已提交
4058

4059 4060 4061 4062 4063 4064
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4065
		i915_gem_info_add_pin(dev_priv, obj->size);
C
Chris Wilson 已提交
4066
		if (!obj_priv->active)
4067
			list_move_tail(&obj_priv->mm_list,
C
Chris Wilson 已提交
4068
				       &dev_priv->mm.pinned_list);
4069 4070
	}

4071
	WARN_ON(i915_verify_lists(dev));
4072 4073 4074 4075 4076 4077 4078 4079
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4080
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4081

4082
	WARN_ON(i915_verify_lists(dev));
4083 4084 4085 4086 4087 4088 4089 4090 4091
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4092
		if (!obj_priv->active)
4093
			list_move_tail(&obj_priv->mm_list,
4094
				       &dev_priv->mm.inactive_list);
4095
		i915_gem_info_remove_pin(dev_priv, obj->size);
4096
	}
4097
	WARN_ON(i915_verify_lists(dev));
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4109 4110 4111
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4112 4113 4114

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4115 4116
		ret = -ENOENT;
		goto unlock;
4117
	}
4118
	obj_priv = to_intel_bo(obj);
4119

C
Chris Wilson 已提交
4120 4121
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4122 4123
		ret = -EINVAL;
		goto out;
4124 4125
	}

J
Jesse Barnes 已提交
4126 4127 4128
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4129 4130
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4131 4132 4133 4134 4135 4136
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
4137 4138
		if (ret)
			goto out;
4139 4140 4141 4142 4143
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4144
	i915_gem_object_flush_cpu_write_domain(obj);
4145
	args->offset = obj_priv->gtt_offset;
4146
out:
4147
	drm_gem_object_unreference(obj);
4148
unlock:
4149
	mutex_unlock(&dev->struct_mutex);
4150
	return ret;
4151 4152 4153 4154 4155 4156 4157 4158
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4159
	struct drm_i915_gem_object *obj_priv;
4160
	int ret;
4161

4162 4163 4164
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4165 4166 4167

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4168 4169
		ret = -ENOENT;
		goto unlock;
4170
	}
4171
	obj_priv = to_intel_bo(obj);
4172

J
Jesse Barnes 已提交
4173 4174 4175
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4176 4177
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4178 4179 4180 4181 4182 4183
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4184

4185
out:
4186
	drm_gem_object_unreference(obj);
4187
unlock:
4188
	mutex_unlock(&dev->struct_mutex);
4189
	return ret;
4190 4191 4192 4193 4194 4195 4196 4197 4198
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4199 4200
	int ret;

4201
	ret = i915_mutex_lock_interruptible(dev);
4202
	if (ret)
4203
		return ret;
4204 4205 4206

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4207 4208
		ret = -ENOENT;
		goto unlock;
4209
	}
4210
	obj_priv = to_intel_bo(obj);
4211

4212 4213 4214 4215
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4216
	 */
4217 4218 4219 4220 4221 4222 4223
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4224 4225
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4226 4227
					    obj_priv->ring,
					    0, obj->write_domain);
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4238 4239

	drm_gem_object_unreference(obj);
4240
unlock:
4241
	mutex_unlock(&dev->struct_mutex);
4242
	return ret;
4243 4244 4245 4246 4247 4248 4249 4250 4251
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4252 4253 4254 4255 4256 4257 4258
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4259
	int ret;
4260 4261 4262 4263 4264 4265 4266 4267 4268

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4269 4270 4271 4272
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4273 4274
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4275 4276
		ret = -ENOENT;
		goto unlock;
4277
	}
4278
	obj_priv = to_intel_bo(obj);
4279 4280

	if (obj_priv->pin_count) {
4281 4282
		ret = -EINVAL;
		goto out;
4283 4284
	}

C
Chris Wilson 已提交
4285 4286
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4287

4288 4289 4290 4291 4292
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4293 4294
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4295
out:
4296
	drm_gem_object_unreference(obj);
4297
unlock:
4298
	mutex_unlock(&dev->struct_mutex);
4299
	return ret;
4300 4301
}

4302 4303 4304
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4305
	struct drm_i915_private *dev_priv = dev->dev_private;
4306
	struct drm_i915_gem_object *obj;
4307

4308 4309 4310
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4311

4312 4313 4314 4315
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4316

4317 4318
	i915_gem_info_add_obj(dev_priv, size);

4319 4320
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4321

4322
	obj->agp_type = AGP_USER_MEMORY;
4323
	obj->base.driver_private = NULL;
4324
	obj->fence_reg = I915_FENCE_REG_NONE;
4325 4326
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->ring_list);
4327 4328
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4329

4330 4331 4332 4333 4334 4335
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4336

4337 4338 4339
	return 0;
}

4340
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4341
{
4342
	struct drm_device *dev = obj->dev;
4343
	drm_i915_private_t *dev_priv = dev->dev_private;
4344
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4345
	int ret;
4346

4347 4348
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
4349
		list_move(&obj_priv->mm_list,
4350 4351 4352
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4353

4354 4355
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4356

4357
	drm_gem_object_release(obj);
4358
	i915_gem_info_remove_obj(dev_priv, obj->size);
4359

4360
	kfree(obj_priv->page_cpu_valid);
4361
	kfree(obj_priv->bit_17);
4362
	kfree(obj_priv);
4363 4364
}

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4381 4382 4383 4384 4385
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4386

4387
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4388

4389
	if (dev_priv->mm.suspended) {
4390 4391
		mutex_unlock(&dev->struct_mutex);
		return 0;
4392 4393
	}

4394
	ret = i915_gpu_idle(dev);
4395 4396
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4397
		return ret;
4398
	}
4399

4400 4401
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4402
		ret = i915_gem_evict_inactive(dev);
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4414
	del_timer_sync(&dev_priv->hangcheck_timer);
4415 4416

	i915_kernel_lost_context(dev);
4417
	i915_gem_cleanup_ringbuffer(dev);
4418

4419 4420
	mutex_unlock(&dev->struct_mutex);

4421 4422 4423
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4424 4425 4426
	return 0;
}

4427 4428 4429 4430
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4431
static int
4432 4433 4434 4435 4436 4437 4438
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4439
	obj = i915_gem_alloc_object(dev, 4096);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4470 4471

static void
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4486 4487
}

4488 4489 4490 4491 4492
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4493

4494 4495 4496 4497 4498
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4499

4500
	ret = intel_init_render_ring_buffer(dev);
4501 4502 4503 4504
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4505
		ret = intel_init_bsd_ring_buffer(dev);
4506 4507
		if (ret)
			goto cleanup_render_ring;
4508
	}
4509

4510 4511 4512 4513 4514 4515
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

4516 4517
	dev_priv->next_seqno = 1;

4518 4519
	return 0;

4520
cleanup_bsd_ring:
4521
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4522
cleanup_render_ring:
4523
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
4524 4525 4526
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4527 4528 4529 4530 4531 4532 4533 4534
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

4535 4536 4537
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
	intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4538 4539 4540 4541
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4542 4543 4544 4545 4546 4547 4548
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4549 4550 4551
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4552
	if (atomic_read(&dev_priv->mm.wedged)) {
4553
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4554
		atomic_set(&dev_priv->mm.wedged, 0);
4555 4556 4557
	}

	mutex_lock(&dev->struct_mutex);
4558 4559 4560
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4561 4562
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4563
		return ret;
4564
	}
4565

4566
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4567
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4568
	BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4569
	BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4570 4571
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4572
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4573
	BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4574
	BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4575
	mutex_unlock(&dev->struct_mutex);
4576

4577 4578 4579
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4580

4581
	return 0;
4582 4583 4584 4585 4586 4587 4588 4589

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4590 4591 4592 4593 4594 4595
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4596 4597 4598
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4599
	drm_irq_uninstall(dev);
4600
	return i915_gem_idle(dev);
4601 4602 4603 4604 4605 4606 4607
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4608 4609 4610
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4611 4612 4613
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4614 4615
}

4616 4617 4618 4619 4620 4621 4622 4623
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

4624 4625 4626
void
i915_gem_load(struct drm_device *dev)
{
4627
	int i;
4628 4629
	drm_i915_private_t *dev_priv = dev->dev_private;

4630
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4631 4632
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4633
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4634
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4635
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4636 4637 4638
	init_ring_lists(&dev_priv->render_ring);
	init_ring_lists(&dev_priv->bsd_ring);
	init_ring_lists(&dev_priv->blt_ring);
4639 4640
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4641 4642
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4643
	init_completion(&dev_priv->error_completion);
4644 4645 4646 4647
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4658
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4659 4660
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4661

4662
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4663 4664 4665 4666
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4667
	/* Initialize fence registers to zero */
4668 4669 4670 4671 4672 4673 4674
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4675 4676
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4677 4678
		break;
	case 3:
4679 4680 4681
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4682 4683 4684 4685
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4686
	}
4687
	i915_gem_detect_bit_6_swizzle(dev);
4688
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4689
}
4690 4691 4692 4693 4694

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4695 4696
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4697 4698 4699 4700 4701 4702 4703 4704
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4705
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4706 4707 4708 4709 4710
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4711
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4724
	kfree(phys_obj);
4725 4726 4727
	return ret;
}

4728
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4753
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4765
	obj_priv = to_intel_bo(obj);
4766 4767 4768
	if (!obj_priv->phys_obj)
		return;

4769
	ret = i915_gem_object_get_pages(obj, 0);
4770 4771 4772 4773 4774 4775
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
P
Peter Zijlstra 已提交
4776
		char *dst = kmap_atomic(obj_priv->pages[i]);
4777 4778 4779
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4780
		kunmap_atomic(dst);
4781
	}
4782
	drm_clflush_pages(obj_priv->pages, page_count);
4783
	drm_agp_chipset_flush(dev);
4784 4785

	i915_gem_object_put_pages(obj);
4786 4787 4788 4789 4790 4791 4792
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4793 4794 4795
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4806
	obj_priv = to_intel_bo(obj);
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4817
						obj->size, align);
4818
		if (ret) {
4819
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4820 4821 4822 4823 4824 4825 4826 4827
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4828
	ret = i915_gem_object_get_pages(obj, 0);
4829 4830 4831 4832 4833 4834 4835 4836
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
P
Peter Zijlstra 已提交
4837
		char *src = kmap_atomic(obj_priv->pages[i]);
4838 4839 4840
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4841
		kunmap_atomic(src);
4842 4843
	}

4844 4845
	i915_gem_object_put_pages(obj);

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4856
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4857 4858 4859 4860 4861 4862 4863
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4864
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4865 4866 4867 4868 4869 4870 4871
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4872

4873
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4874
{
4875
	struct drm_i915_file_private *file_priv = file->driver_priv;
4876 4877 4878 4879 4880

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4881
	spin_lock(&file_priv->mm.lock);
4882 4883 4884 4885 4886 4887 4888 4889 4890
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4891
	spin_unlock(&file_priv->mm.lock);
4892
}
4893

4894 4895 4896 4897 4898 4899 4900
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4901
		      list_empty(&dev_priv->render_ring.active_list) &&
4902 4903
		      list_empty(&dev_priv->bsd_ring.active_list) &&
		      list_empty(&dev_priv->blt_ring.active_list);
4904 4905 4906 4907

	return !lists_empty;
}

4908
static int
4909
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
4925
						    mm_list)
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4937
rescan:
4938 4939 4940 4941 4942 4943 4944 4945 4946
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4947
		i915_gem_retire_requests(dev);
4948 4949 4950

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
4951
					 mm_list) {
4952
			if (i915_gem_object_is_purgeable(obj_priv)) {
4953
				i915_gem_object_unbind(&obj_priv->base);
4954 4955 4956 4957 4958 4959 4960 4961
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4962 4963
		would_deadlock = 0;

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
4980
					 mm_list) {
4981
			if (nr_to_scan > 0) {
4982
				i915_gem_object_unbind(&obj_priv->base);
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}