i915_gem.c 133.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/swap.h>
J
Jesse Barnes 已提交
35
#include <linux/pci.h>
36

37 38
#define I915_GEM_GPU_DOMAINS	(~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))

39 40 41 42 43 44 45 46 47
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 50 51
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52
static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53
static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 55 56
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
57

58 59 60
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

J
Jesse Barnes 已提交
61 62
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
63 64 65
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
66 67 68
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
69 70 71
		return -EINVAL;
	}

J
Jesse Barnes 已提交
72 73
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
74

J
Jesse Barnes 已提交
75 76 77 78
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
79

J
Jesse Barnes 已提交
80 81 82 83 84 85 86 87 88
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 90
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
91
	return ret;
92 93
}

94 95 96 97 98 99 100 101 102 103
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
104 105
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
106 107 108 109

	return 0;
}

110 111 112 113 114 115 116 117 118 119

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
120 121
	int ret;
	u32 handle;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
	obj = drm_gem_object_alloc(dev, args->size);
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_handle_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	if (ret)
		return ret;

	args->handle = handle;

	return 0;
}

143 144 145 146 147 148 149
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
150
	int unwritten;
151 152 153 154

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
155
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156 157
	kunmap_atomic(vaddr, KM_USER0);

158 159 160 161
	if (unwritten)
		return -EFAULT;

	return 0;
162 163
}

164 165 166 167 168 169 170 171 172
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static inline int
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
	if (dst_vaddr == NULL)
		return -ENOMEM;

	src_vaddr = kmap_atomic(src_page, KM_USER1);
	if (src_vaddr == NULL) {
		kunmap_atomic(dst_vaddr, KM_USER0);
		return -ENOMEM;
	}

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

	kunmap_atomic(src_vaddr, KM_USER1);
	kunmap_atomic(dst_vaddr, KM_USER0);

	return 0;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static inline int
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

	gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
	if (gpu_vaddr == NULL)
		return -ENOMEM;

	cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
	if (cpu_vaddr == NULL) {
		kunmap_atomic(gpu_vaddr, KM_USER0);
		return -ENOMEM;
	}

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	kunmap_atomic(cpu_vaddr, KM_USER1);
	kunmap_atomic(gpu_vaddr, KM_USER0);

	return 0;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

280
	ret = i915_gem_object_get_pages(obj, 0);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

324 325 326 327 328
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

329
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
330 331 332 333 334 335 336 337 338 339 340

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

		ret = i915_gem_evict_something(dev, obj->size);
		if (ret)
			return ret;

341
		ret = i915_gem_object_get_pages(obj, 0);
342 343 344 345 346
	}

	return ret;
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
369
	int do_bit17_swizzling;
370 371 372 373 374 375 376 377 378 379 380

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

381
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
382 383 384 385 386
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
387
				      num_pages, 1, 0, user_pages, NULL);
388 389 390 391 392 393
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

394 395
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

396 397
	mutex_lock(&dev->struct_mutex);

398 399
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

430 431 432 433 434 435 436 437 438 439 440 441 442 443
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    1);
		} else {
			ret = slow_shmem_copy(user_pages[data_page_index],
					      data_page_offset,
					      obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      page_length);
		}
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
461
	drm_free_large(user_pages);
462 463 464 465

	return ret;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

495
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
496
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
497 498 499 500 501 502
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
503 504 505

	drm_gem_object_unreference(obj);

506
	return ret;
507 508
}

509 510
/* This is the fast write path which cannot handle
 * page faults in the source data
511
 */
512 513 514 515 516 517

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
518 519
{
	char *vaddr_atomic;
520
	unsigned long unwritten;
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
	io_mapping_unmap_atomic(vaddr_atomic);
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

static inline int
536 537 538 539
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
540
{
541
	char *src_vaddr, *dst_vaddr;
542 543
	unsigned long unwritten;

544 545 546 547 548 549 550
	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
	src_vaddr = kmap_atomic(user_page, KM_USER1);
	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
						      src_vaddr + user_offset,
						      length);
	kunmap_atomic(src_vaddr, KM_USER1);
	io_mapping_unmap_atomic(dst_vaddr);
551 552
	if (unwritten)
		return -EFAULT;
553 554 555
	return 0;
}

556 557 558 559 560 561 562
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
563
	unsigned long unwritten;
564 565 566 567

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
568
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
569 570
	kunmap_atomic(vaddr, KM_USER0);

571 572
	if (unwritten)
		return -EFAULT;
573 574 575
	return 0;
}

576 577 578 579
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
580
static int
581 582 583
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
584 585
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
586
	drm_i915_private_t *dev_priv = dev->dev_private;
587
	ssize_t remain;
588
	loff_t offset, page_base;
589
	char __user *user_data;
590 591
	int page_offset, page_length;
	int ret;
592 593 594 595 596 597 598 599 600 601 602 603 604

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
605
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
606 607 608 609 610 611 612 613 614
	if (ret)
		goto fail;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
615 616 617
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
618
		 */
619 620 621 622 623 624 625 626 627 628
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
629 630
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
631
		 */
632 633
		if (ret)
			goto fail;
634

635 636 637
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
638 639 640 641 642 643 644 645 646
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

647 648 649 650 651 652 653
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
654
static int
655 656 657
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
658
{
659 660 661 662 663 664 665 666 667
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
668
	int ret;
669 670 671 672 673 674 675 676 677 678 679 680
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

681
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
682 683 684 685 686 687 688 689 690 691 692
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
693 694

	mutex_lock(&dev->struct_mutex);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
					gtt_page_base, gtt_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
			goto out_unpin_object;

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
751
	drm_free_large(user_pages);
752 753 754 755

	return ret;
}

756 757 758 759
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
760
static int
761 762 763
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
764
{
765 766 767 768 769
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
770
	int ret;
771 772 773

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
774 775 776

	mutex_lock(&dev->struct_mutex);

777
	ret = i915_gem_object_get_pages(obj, 0);
778 779
	if (ret != 0)
		goto fail_unlock;
780

781
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
844
	int do_bit17_swizzling;
845 846 847 848 849 850 851 852 853 854 855

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

856
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
857 858 859 860 861 862 863 864 865 866
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
867 868
	}

869 870
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

871 872
	mutex_lock(&dev->struct_mutex);

873 874
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
875 876 877 878 879 880 881
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
882
	offset = args->offset;
883
	obj_priv->dirty = 1;
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

905 906 907 908 909 910 911 912 913 914 915 916 917 918
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    0);
		} else {
			ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length);
		}
919 920 921 922 923 924
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
925 926
	}

927 928 929
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
930
	mutex_unlock(&dev->struct_mutex);
931 932 933
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
934
	drm_free_large(user_pages);
935

936
	return ret;
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
974 975 976
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
977 978 979 980 981 982
		 dev->gtt_total != 0) {
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
983 984
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
985 986 987 988 989 990 991
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
992 993 994 995 996 997 998 999 1000 1001 1002 1003

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

	drm_gem_object_unreference(obj);

	return ret;
}

/**
1004 1005
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1006 1007 1008 1009 1010
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1011
	struct drm_i915_private *dev_priv = dev->dev_private;
1012 1013
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1014
	struct drm_i915_gem_object *obj_priv;
1015 1016
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1017 1018 1019 1020 1021
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1022
	/* Only handle setting domains to types used by the CPU. */
1023
	if (write_domain & I915_GEM_GPU_DOMAINS)
1024 1025
		return -EINVAL;

1026
	if (read_domains & I915_GEM_GPU_DOMAINS)
1027 1028 1029 1030 1031 1032 1033 1034
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1035 1036 1037
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
1038
	obj_priv = obj->driver_private;
1039 1040

	mutex_lock(&dev->struct_mutex);
1041 1042 1043

	intel_mark_busy(dev, obj);

1044
#if WATCH_BUF
1045
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1046
		 obj, obj->size, read_domains, write_domain);
1047
#endif
1048 1049
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1050

1051 1052 1053 1054 1055 1056 1057 1058
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
			list_move_tail(&obj_priv->fence_list,
				       &dev_priv->mm.fence_list);
		}

1059 1060 1061 1062 1063 1064
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1065
	} else {
1066
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

#if WATCH_BUF
1097
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1098 1099 1100 1101 1102
		 __func__, args->handle, obj, obj->size);
#endif
	obj_priv = obj->driver_private;

	/* Pinned buffers may be scanout, so flush the cache */
1103 1104 1105
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1177
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1178 1179 1180 1181 1182 1183 1184 1185

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1186
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1187 1188
		if (ret)
			goto unlock;
1189

J
Jesse Barnes 已提交
1190
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191 1192

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1193 1194
		if (ret)
			goto unlock;
1195 1196 1197
	}

	/* Need a new fence register? */
1198
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1199
		ret = i915_gem_object_get_fence_reg(obj);
1200 1201
		if (ret)
			goto unlock;
1202
	}
1203 1204 1205 1206 1207 1208

	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1209
unlock:
1210 1211 1212
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1213 1214 1215
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1216 1217 1218 1219
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1220
		return VM_FAULT_SIGBUS;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_map_list *list;
1242
	struct drm_local_map *map;
1243 1244 1245 1246
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1247
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1275
		ret = -ENOMEM;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1288
	kfree(list->map);
1289 1290 1291 1292

	return ret;
}

1293 1294 1295 1296
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1297
 * Preserve the reservation of the mmapping with the DRM core code, but
1298 1299 1300 1301 1302 1303 1304 1305 1306
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1307
void
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1335
		kfree(list->map);
1336 1337 1338 1339 1340 1341
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);

	obj_priv = obj->driver_private;

1414 1415 1416 1417 1418 1419 1420 1421
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1422 1423
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1424 1425 1426
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1427
			return ret;
1428
		}
1429 1430 1431 1432 1433 1434 1435 1436 1437
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1438
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1439 1440 1441 1442 1443
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
J
Jesse Barnes 已提交
1444
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1445 1446 1447 1448 1449 1450 1451 1452
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1453
void
1454
i915_gem_object_put_pages(struct drm_gem_object *obj)
1455 1456 1457 1458 1459
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count = obj->size / PAGE_SIZE;
	int i;

1460
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1461
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1462

1463 1464
	if (--obj_priv->pages_refcount != 0)
		return;
1465

1466 1467 1468
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1469
	if (obj_priv->madv == I915_MADV_DONTNEED)
1470
		obj_priv->dirty = 0;
1471 1472 1473 1474 1475 1476 1477 1478 1479

	for (i = 0; i < page_count; i++) {
		if (obj_priv->pages[i] == NULL)
			break;

		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1480
			mark_page_accessed(obj_priv->pages[i]);
1481 1482 1483

		page_cache_release(obj_priv->pages[i]);
	}
1484 1485
	obj_priv->dirty = 0;

1486
	drm_free_large(obj_priv->pages);
1487
	obj_priv->pages = NULL;
1488 1489 1490
}

static void
1491
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1503
	spin_lock(&dev_priv->mm.active_list_lock);
1504 1505
	list_move_tail(&obj_priv->list,
		       &dev_priv->mm.active_list);
1506
	spin_unlock(&dev_priv->mm.active_list_lock);
1507
	obj_priv->last_rendering_seqno = seqno;
1508 1509
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1521

1522 1523 1524 1525
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
1526 1527
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct inode *inode;
1528

C
Chris Wilson 已提交
1529 1530 1531 1532 1533
	inode = obj->filp->f_path.dentry->d_inode;
	if (inode->i_op->truncate)
		inode->i_op->truncate (inode);

	obj_priv->madv = __I915_MADV_PURGED;
1534 1535 1536 1537 1538 1539 1540 1541
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1555 1556
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1557
	obj_priv->last_rendering_seqno = 0;
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

/**
 * Creates a new sequence number, emitting a write of it to the status page
 * plus an interrupt, which will trigger i915_user_interrupt_handler.
 *
 * Must be called with struct_lock held.
 *
 * Returned sequence numbers are nonzero on success.
 */
1573
uint32_t
1574 1575
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
		 uint32_t flush_domains)
1576 1577
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1578
	struct drm_i915_file_private *i915_file_priv = NULL;
1579 1580 1581 1582 1583
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;
	RING_LOCALS;

1584 1585 1586
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1587
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	if (request == NULL)
		return 0;

	/* Grab the seqno we're going to make this request be, and bump the
	 * next (skipping 0 so it can be the reserved no-seqno value).
	 */
	seqno = dev_priv->mm.next_gem_seqno;
	dev_priv->mm.next_gem_seqno++;
	if (dev_priv->mm.next_gem_seqno == 0)
		dev_priv->mm.next_gem_seqno++;

	BEGIN_LP_RING(4);
	OUT_RING(MI_STORE_DWORD_INDEX);
	OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	OUT_RING(seqno);

	OUT_RING(MI_USER_INTERRUPT);
	ADVANCE_LP_RING();

1607
	DRM_DEBUG_DRIVER("%d\n", seqno);
1608 1609 1610 1611 1612

	request->seqno = seqno;
	request->emitted_jiffies = jiffies;
	was_empty = list_empty(&dev_priv->mm.request_list);
	list_add_tail(&request->list, &dev_priv->mm.request_list);
1613 1614 1615 1616 1617 1618
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1619

1620 1621 1622 1623 1624 1625 1626
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
	if (flush_domains != 0) {
		struct drm_i915_gem_object *obj_priv, *next;

		list_for_each_entry_safe(obj_priv, next,
1627 1628
					 &dev_priv->mm.gpu_write_list,
					 gpu_write_list) {
1629 1630 1631 1632
			struct drm_gem_object *obj = obj_priv->obj;

			if ((obj->write_domain & flush_domains) ==
			    obj->write_domain) {
C
Chris Wilson 已提交
1633 1634
				uint32_t old_write_domain = obj->write_domain;

1635
				obj->write_domain = 0;
1636
				list_del_init(&obj_priv->gpu_write_list);
1637
				i915_gem_object_move_to_active(obj, seqno);
C
Chris Wilson 已提交
1638 1639 1640 1641

				trace_i915_gem_object_change_domain(obj,
								    obj->read_domains,
								    old_write_domain);
1642 1643 1644 1645 1646
			}
		}

	}

B
Ben Gamari 已提交
1647 1648 1649 1650 1651
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1652 1653 1654 1655 1656 1657 1658 1659 1660
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1661
static uint32_t
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
i915_retire_commands(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	uint32_t flush_domains = 0;
	RING_LOCALS;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
	BEGIN_LP_RING(2);
	OUT_RING(cmd);
	OUT_RING(0); /* noop */
	ADVANCE_LP_RING();
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1689 1690
	trace_i915_gem_request_retire(dev, request->seqno);

1691 1692 1693
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1694
	spin_lock(&dev_priv->mm.active_list_lock);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	while (!list_empty(&dev_priv->mm.active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&dev_priv->mm.active_list,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1709
			goto out;
1710

1711 1712 1713 1714 1715
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1716 1717
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1718 1719 1720 1721 1722 1723 1724 1725
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1726
			i915_gem_object_move_to_inactive(obj);
1727 1728 1729 1730
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1731
	}
1732 1733
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1734 1735 1736 1737 1738
}

/**
 * Returns true if seq1 is later than seq2.
 */
1739
bool
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
i915_get_gem_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1762
	if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1763 1764
		return;

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	seqno = i915_get_gem_seqno(dev);

	while (!list_empty(&dev_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

		request = list_first_entry(&dev_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1777
		    atomic_read(&dev_priv->mm.wedged)) {
1778 1779 1780
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1781
			list_del(&request->client_list);
1782
			kfree(request);
1783 1784 1785
		} else
			break;
	}
1786 1787 1788 1789 1790 1791

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
		i915_user_irq_put(dev);
		dev_priv->trace_irq_seqno = 0;
	}
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
}

void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
	i915_gem_retire_requests(dev);
1806 1807
	if (!dev_priv->mm.suspended &&
	    !list_empty(&dev_priv->mm.request_list))
1808
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1809 1810 1811
	mutex_unlock(&dev->struct_mutex);
}

1812
int
1813
i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1814 1815
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1816
	u32 ier;
1817 1818 1819 1820
	int ret = 0;

	BUG_ON(seqno == 0);

1821
	if (atomic_read(&dev_priv->mm.wedged))
1822 1823
		return -EIO;

1824
	if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1825
		if (IS_IRONLAKE(dev))
1826 1827 1828
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1829 1830 1831 1832 1833 1834 1835
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1836 1837
		trace_i915_gem_request_wait_begin(dev, seqno);

1838 1839
		dev_priv->mm.waiting_gem_seqno = seqno;
		i915_user_irq_get(dev);
1840 1841 1842 1843 1844 1845 1846 1847 1848
		if (interruptible)
			ret = wait_event_interruptible(dev_priv->irq_queue,
				i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
				atomic_read(&dev_priv->mm.wedged));
		else
			wait_event(dev_priv->irq_queue,
				i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
				atomic_read(&dev_priv->mm.wedged));

1849 1850
		i915_user_irq_put(dev);
		dev_priv->mm.waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1851 1852

		trace_i915_gem_request_wait_end(dev, seqno);
1853
	}
1854
	if (atomic_read(&dev_priv->mm.wedged))
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
			  __func__, ret, seqno, i915_get_gem_seqno(dev));

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
		i915_gem_retire_requests(dev);

	return ret;
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
i915_wait_request(struct drm_device *dev, uint32_t seqno)
{
	return i915_do_wait_request(dev, seqno, 1);
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd;
	RING_LOCALS;

#if WATCH_EXEC
	DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
		  invalidate_domains, flush_domains);
#endif
C
Chris Wilson 已提交
1895 1896
	trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
				     invalidate_domains, flush_domains);
1897 1898 1899 1900

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);

1901
	if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		/*
		 * read/write caches:
		 *
		 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
		 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
		 * also flushed at 2d versus 3d pipeline switches.
		 *
		 * read-only caches:
		 *
		 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
		 * MI_READ_FLUSH is set, and is always flushed on 965.
		 *
		 * I915_GEM_DOMAIN_COMMAND may not exist?
		 *
		 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
		 * invalidated when MI_EXE_FLUSH is set.
		 *
		 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
		 * invalidated with every MI_FLUSH.
		 *
		 * TLBs:
		 *
		 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
		 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
		 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
		 * are flushed at any MI_FLUSH.
		 */

		cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
		if ((invalidate_domains|flush_domains) &
		    I915_GEM_DOMAIN_RENDER)
			cmd &= ~MI_NO_WRITE_FLUSH;
		if (!IS_I965G(dev)) {
			/*
			 * On the 965, the sampler cache always gets flushed
			 * and this bit is reserved.
			 */
			if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
				cmd |= MI_READ_FLUSH;
		}
		if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
			cmd |= MI_EXE_FLUSH;

#if WATCH_EXEC
		DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
#endif
		BEGIN_LP_RING(2);
		OUT_RING(cmd);
1950
		OUT_RING(MI_NOOP);
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		ADVANCE_LP_RING();
	}
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

1966 1967
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1968
	 */
1969
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
		ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1990
int
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2009 2010 2011
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2012 2013 2014 2015 2016 2017
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2018
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2019
	if (ret) {
2020 2021
		if (ret != -ERESTARTSYS)
			DRM_ERROR("set_domain failed: %d\n", ret);
2022 2023 2024
		return ret;
	}

2025 2026
	BUG_ON(obj_priv->active);

2027 2028 2029 2030
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2031 2032 2033 2034 2035 2036
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2037
	i915_gem_object_put_pages(obj);
2038
	BUG_ON(obj_priv->pages_refcount);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);

2052 2053 2054
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2055 2056
	trace_i915_gem_object_unbind(obj);

2057 2058 2059
	return 0;
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
static struct drm_gem_object *
i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	struct drm_gem_object *best = NULL;
	struct drm_gem_object *first = NULL;

	/* Try to find the smallest clean object */
	list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
		struct drm_gem_object *obj = obj_priv->obj;
		if (obj->size >= min_size) {
2072 2073
			if ((!obj_priv->dirty ||
			     i915_gem_object_is_purgeable(obj_priv)) &&
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
			    (!best || obj->size < best->size)) {
				best = obj;
				if (best->size == min_size)
					return best;
			}
			if (!first)
			    first = obj;
		}
	}

	return best ? best : first;
}

2087
static int
2088 2089 2090 2091
i915_gem_evict_everything(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
2092
	uint32_t seqno;
2093 2094 2095 2096 2097 2098 2099 2100
	bool lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->mm.active_list));
	spin_unlock(&dev_priv->mm.active_list_lock);

2101
	if (lists_empty)
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		return -ENOSPC;

	/* Flush everything (on to the inactive lists) and evict */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
	if (seqno == 0)
		return -ENOMEM;

	ret = i915_wait_request(dev, seqno);
	if (ret)
		return ret;

2114 2115
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));

2116
	ret = i915_gem_evict_from_inactive_list(dev);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	if (ret)
		return ret;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->mm.active_list));
	spin_unlock(&dev_priv->mm.active_list_lock);
	BUG_ON(!lists_empty);

	return 0;
}

2130
static int
2131
i915_gem_evict_something(struct drm_device *dev, int min_size)
2132 2133 2134
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
2135
	int ret;
2136 2137

	for (;;) {
2138 2139
		i915_gem_retire_requests(dev);

2140 2141 2142
		/* If there's an inactive buffer available now, grab it
		 * and be done.
		 */
2143 2144 2145 2146
		obj = i915_gem_find_inactive_object(dev, min_size);
		if (obj) {
			struct drm_i915_gem_object *obj_priv;

2147 2148 2149
#if WATCH_LRU
			DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
2150 2151
			obj_priv = obj->driver_private;
			BUG_ON(obj_priv->pin_count != 0);
2152 2153 2154
			BUG_ON(obj_priv->active);

			/* Wait on the rendering and unbind the buffer. */
2155
			return i915_gem_object_unbind(obj);
2156 2157 2158
		}

		/* If we didn't get anything, but the ring is still processing
2159 2160
		 * things, wait for the next to finish and hopefully leave us
		 * a buffer to evict.
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
		 */
		if (!list_empty(&dev_priv->mm.request_list)) {
			struct drm_i915_gem_request *request;

			request = list_first_entry(&dev_priv->mm.request_list,
						   struct drm_i915_gem_request,
						   list);

			ret = i915_wait_request(dev, request->seqno);
			if (ret)
2171
				return ret;
2172

2173
			continue;
2174 2175 2176 2177 2178 2179 2180 2181
		}

		/* If we didn't have anything on the request list but there
		 * are buffers awaiting a flush, emit one and try again.
		 * When we wait on it, those buffers waiting for that flush
		 * will get moved to inactive.
		 */
		if (!list_empty(&dev_priv->mm.flushing_list)) {
2182
			struct drm_i915_gem_object *obj_priv;
2183

2184 2185 2186 2187 2188
			/* Find an object that we can immediately reuse */
			list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
				obj = obj_priv->obj;
				if (obj->size >= min_size)
					break;
2189

2190 2191
				obj = NULL;
			}
2192

2193 2194
			if (obj != NULL) {
				uint32_t seqno;
2195

2196 2197 2198 2199 2200 2201
				i915_gem_flush(dev,
					       obj->write_domain,
					       obj->write_domain);
				seqno = i915_add_request(dev, NULL, obj->write_domain);
				if (seqno == 0)
					return -ENOMEM;
2202

2203 2204 2205 2206 2207 2208
				ret = i915_wait_request(dev, seqno);
				if (ret)
					return ret;

				continue;
			}
2209 2210
		}

2211 2212 2213
		/* If we didn't do any of the above, there's no single buffer
		 * large enough to swap out for the new one, so just evict
		 * everything and start again. (This should be rare.)
2214
		 */
2215
		if (!list_empty (&dev_priv->mm.inactive_list))
2216
			return i915_gem_evict_from_inactive_list(dev);
2217
		else
2218
			return i915_gem_evict_everything(dev);
2219 2220 2221
	}
}

2222
int
2223 2224
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2225 2226 2227 2228 2229 2230 2231 2232
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;
	int ret;

2233
	if (obj_priv->pages_refcount++ != 0)
2234 2235 2236 2237 2238 2239
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2240
	BUG_ON(obj_priv->pages != NULL);
2241
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2242 2243
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2244 2245 2246 2247 2248 2249
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2250 2251 2252 2253
		page = read_cache_page_gfp(mapping, i,
					   mapping_gfp_mask (mapping) |
					   __GFP_COLD |
					   gfpmask);
2254 2255
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
2256
			i915_gem_object_put_pages(obj);
2257 2258
			return ret;
		}
2259
		obj_priv->pages[i] = page;
2260
	}
2261 2262 2263 2264

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2265 2266 2267
	return 0;
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
2295
	int tile_width;
2296
	uint32_t fence_reg, val;
2297 2298 2299 2300
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2301
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2302
		     __func__, obj_priv->gtt_offset, obj->size);
2303 2304 2305
		return;
	}

2306 2307 2308
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2309
	else
2310 2311 2312 2313 2314
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2315 2316 2317 2318 2319 2320 2321 2322

	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2323 2324 2325 2326 2327
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2339
	uint32_t fence_size_bits;
2340

2341
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2342
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2343
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2344
		     __func__, obj_priv->gtt_offset);
2345 2346 2347
		return;
	}

2348 2349 2350 2351
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2352 2353 2354
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2355 2356 2357
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2377 2378
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2379 2380
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2381
	struct drm_i915_private *dev_priv = dev->dev_private;
2382 2383
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_i915_fence_reg *reg = NULL;
2384 2385
	struct drm_i915_gem_object *old_obj_priv = NULL;
	int i, ret, avail;
2386

2387 2388 2389 2390 2391 2392
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
		list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
		return 0;
	}

2393 2394 2395 2396 2397
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2398 2399 2400 2401 2402
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2403 2404
		break;
	case I915_TILING_Y:
2405 2406 2407 2408 2409
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2410 2411 2412 2413
		break;
	}

	/* First try to find a free reg */
2414
	avail = 0;
2415 2416 2417 2418
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			break;
2419 2420 2421 2422

		old_obj_priv = reg->obj->driver_private;
		if (!old_obj_priv->pin_count)
		    avail++;
2423 2424 2425 2426
	}

	/* None available, try to steal one or wait for a user to finish */
	if (i == dev_priv->num_fence_regs) {
2427
		struct drm_gem_object *old_obj = NULL;
2428

2429
		if (avail == 0)
C
Chris Wilson 已提交
2430
			return -ENOSPC;
2431

2432 2433 2434
		list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
				    fence_list) {
			old_obj = old_obj_priv->obj;
2435 2436 2437 2438

			if (old_obj_priv->pin_count)
				continue;

2439 2440 2441 2442 2443 2444
			/* Take a reference, as otherwise the wait_rendering
			 * below may cause the object to get freed out from
			 * under us.
			 */
			drm_gem_object_reference(old_obj);

2445 2446
			/* i915 uses fences for GPU access to tiled buffers */
			if (IS_I965G(dev) || !old_obj_priv->active)
2447
				break;
2448

2449 2450 2451 2452 2453 2454 2455 2456
			/* This brings the object to the head of the LRU if it
			 * had been written to.  The only way this should
			 * result in us waiting longer than the expected
			 * optimal amount of time is if there was a
			 * fence-using buffer later that was read-only.
			 */
			i915_gem_object_flush_gpu_write_domain(old_obj);
			ret = i915_gem_object_wait_rendering(old_obj);
2457 2458
			if (ret != 0) {
				drm_gem_object_unreference(old_obj);
2459
				return ret;
2460 2461
			}

2462
			break;
2463 2464 2465 2466 2467 2468
		}

		/*
		 * Zap this virtual mapping so we can set up a fence again
		 * for this object next time we need it.
		 */
2469 2470
		i915_gem_release_mmap(old_obj);

2471
		i = old_obj_priv->fence_reg;
2472 2473
		reg = &dev_priv->fence_regs[i];

2474
		old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2475
		list_del_init(&old_obj_priv->fence_list);
2476

2477
		drm_gem_object_unreference(old_obj);
2478 2479 2480
	}

	obj_priv->fence_reg = i;
2481 2482
	list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);

2483 2484 2485 2486 2487 2488 2489 2490
	reg->obj = obj;

	if (IS_I965G(dev))
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2491

C
Chris Wilson 已提交
2492 2493
	trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);

2494
	return 0;
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2508
	drm_i915_private_t *dev_priv = dev->dev_private;
2509 2510 2511 2512
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (IS_I965G(dev))
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	else {
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2524 2525 2526

	dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2527
	list_del_init(&obj_priv->fence_list);
2528 2529
}

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

		i915_gem_object_flush_gpu_write_domain(obj);
		i915_gem_object_flush_gtt_write_domain(obj);
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

	i915_gem_clear_fence_reg (obj);

	return 0;
}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_mm_node *free_space;
2576
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2577
	int ret;
2578

C
Chris Wilson 已提交
2579
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2580 2581 2582 2583
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2584
	if (alignment == 0)
2585
		alignment = i915_gem_get_gtt_alignment(obj);
2586
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
		if (obj_priv->gtt_space != NULL) {
			obj_priv->gtt_space->private = obj;
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
		}
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2609
		ret = i915_gem_evict_something(dev, obj->size);
2610
		if (ret)
2611
			return ret;
2612

2613 2614 2615 2616
		goto search_free;
	}

#if WATCH_BUF
2617
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2618 2619
		 obj->size, obj_priv->gtt_offset);
#endif
2620
	ret = i915_gem_object_get_pages(obj, gfpmask);
2621 2622 2623
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2624 2625 2626 2627 2628 2629

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
			ret = i915_gem_evict_something(dev, obj->size);
			if (ret) {
				/* now try to shrink everyone else */
2630 2631 2632
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2633 2634 2635 2636 2637 2638 2639 2640
				}

				return ret;
			}

			goto search_free;
		}

2641 2642 2643 2644 2645 2646 2647
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2648
					       obj_priv->pages,
2649
					       obj->size >> PAGE_SHIFT,
2650 2651
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2652
	if (obj_priv->agp_mem == NULL) {
2653
		i915_gem_object_put_pages(obj);
2654 2655
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2656 2657

		ret = i915_gem_evict_something(dev, obj->size);
2658
		if (ret)
2659 2660 2661
			return ret;

		goto search_free;
2662 2663 2664 2665 2666 2667 2668 2669
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2670 2671
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2672

C
Chris Wilson 已提交
2673 2674
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2687
	if (obj_priv->pages == NULL)
2688 2689
		return;

C
Chris Wilson 已提交
2690
	trace_i915_gem_object_clflush(obj);
2691

2692
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2693 2694
}

2695 2696 2697 2698 2699 2700
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	uint32_t seqno;
C
Chris Wilson 已提交
2701
	uint32_t old_write_domain;
2702 2703 2704 2705 2706

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
		return;

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2707
	old_write_domain = obj->write_domain;
2708
	i915_gem_flush(dev, 0, obj->write_domain);
2709
	seqno = i915_add_request(dev, NULL, obj->write_domain);
2710
	BUG_ON(obj->write_domain);
2711
	i915_gem_object_move_to_active(obj, seqno);
C
Chris Wilson 已提交
2712 2713 2714 2715

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2716 2717 2718 2719 2720 2721
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2722 2723
	uint32_t old_write_domain;

2724 2725 2726 2727 2728 2729 2730
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2731
	old_write_domain = obj->write_domain;
2732
	obj->write_domain = 0;
C
Chris Wilson 已提交
2733 2734 2735 2736

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2737 2738 2739 2740 2741 2742 2743
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2744
	uint32_t old_write_domain;
2745 2746 2747 2748 2749 2750

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2751
	old_write_domain = obj->write_domain;
2752
	obj->write_domain = 0;
C
Chris Wilson 已提交
2753 2754 2755 2756

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2757 2758
}

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
void
i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
{
	switch (obj->write_domain) {
	case I915_GEM_DOMAIN_GTT:
		i915_gem_object_flush_gtt_write_domain(obj);
		break;
	case I915_GEM_DOMAIN_CPU:
		i915_gem_object_flush_cpu_write_domain(obj);
		break;
	default:
		i915_gem_object_flush_gpu_write_domain(obj);
		break;
	}
}

2775 2776 2777 2778 2779 2780
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2781
int
2782 2783 2784
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
C
Chris Wilson 已提交
2785
	uint32_t old_write_domain, old_read_domains;
2786
	int ret;
2787

2788 2789 2790 2791
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2792 2793 2794 2795 2796 2797
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2798 2799 2800
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2801 2802
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2803
	 */
2804 2805
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2806

2807
	i915_gem_object_flush_cpu_write_domain(obj);
2808

2809 2810 2811 2812 2813 2814 2815 2816
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2817 2818
	}

C
Chris Wilson 已提交
2819 2820 2821 2822
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2823 2824 2825
	return 0;
}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	uint32_t old_write_domain, old_read_domains;
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

	i915_gem_object_flush_gpu_write_domain(obj);

	/* Wait on any GPU rendering and flushing to occur. */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
		ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
		if (ret != 0)
			return ret;
	}

	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

	obj->read_domains &= I915_GEM_DOMAIN_GTT;

	i915_gem_object_flush_cpu_write_domain(obj);

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	obj->write_domain = I915_GEM_DOMAIN_GTT;
	obj_priv->dirty = 1;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

	return 0;
}

2877 2878 2879 2880 2881 2882 2883 2884 2885
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2886
	uint32_t old_write_domain, old_read_domains;
2887 2888 2889
	int ret;

	i915_gem_object_flush_gpu_write_domain(obj);
2890
	/* Wait on any GPU rendering and flushing to occur. */
2891 2892 2893
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2894

2895
	i915_gem_object_flush_gtt_write_domain(obj);
2896

2897 2898
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2899
	 */
2900
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2901

C
Chris Wilson 已提交
2902 2903 2904
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2905 2906
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2907 2908
		i915_gem_clflush_object(obj);

2909
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2910 2911 2912 2913 2914
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2915 2916 2917 2918 2919 2920 2921 2922 2923
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2924

C
Chris Wilson 已提交
2925 2926 2927 2928
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2929 2930 2931
	return 0;
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3043
static void
3044
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3045 3046 3047 3048 3049
{
	struct drm_device		*dev = obj->dev;
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3050
	uint32_t			old_read_domains;
3051

3052 3053
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3054

3055 3056
	intel_mark_busy(dev, obj);

3057 3058 3059
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
3060 3061
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
3062 3063 3064 3065 3066
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3067 3068
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3069 3070 3071 3072 3073 3074 3075 3076 3077
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3078 3079
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3080
		flush_domains |= obj->write_domain;
3081 3082
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3083 3084 3085 3086 3087
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3088
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3089 3090 3091 3092 3093 3094 3095 3096
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3097 3098
	old_read_domains = obj->read_domains;

3099 3100 3101 3102 3103 3104 3105 3106
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3107
	obj->read_domains = obj->pending_read_domains;
3108 3109 3110 3111 3112 3113 3114 3115 3116

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3117 3118 3119 3120

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3121 3122 3123
}

/**
3124
 * Moves the object from a partially CPU read to a full one.
3125
 *
3126 3127
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3128
 */
3129 3130
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3131 3132 3133
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3145
			drm_clflush_pages(obj_priv->pages + i, 1);
3146 3147 3148 3149 3150 3151
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3152
	kfree(obj_priv->page_cpu_valid);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
C
Chris Wilson 已提交
3173
	uint32_t old_read_domains;
3174
	int i, ret;
3175

3176 3177
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3178

3179 3180
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
3181
	ret = i915_gem_object_wait_rendering(obj);
3182
	if (ret != 0)
3183
		return ret;
3184 3185 3186 3187 3188 3189
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3190

3191 3192 3193
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3194
	if (obj_priv->page_cpu_valid == NULL) {
3195 3196
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3197 3198 3199 3200
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3201 3202 3203 3204

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3205 3206
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3207 3208 3209
		if (obj_priv->page_cpu_valid[i])
			continue;

3210
		drm_clflush_pages(obj_priv->pages + i, 1);
3211 3212 3213 3214

		obj_priv->page_cpu_valid[i] = 1;
	}

3215 3216 3217 3218 3219
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3220
	old_read_domains = obj->read_domains;
3221 3222
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3223 3224 3225 3226
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3227 3228 3229 3230 3231 3232 3233 3234 3235
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3236
				 struct drm_i915_gem_exec_object2 *entry,
3237
				 struct drm_i915_gem_relocation_entry *relocs)
3238 3239
{
	struct drm_device *dev = obj->dev;
3240
	drm_i915_private_t *dev_priv = dev->dev_private;
3241 3242
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int i, ret;
3243
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3244 3245 3246 3247 3248 3249 3250 3251
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
	if (need_fence && !i915_obj_fenceable(dev, obj))
		i915_gem_object_unbind(obj);
3252 3253 3254 3255 3256 3257

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
		ret = i915_gem_object_get_fence_reg(obj);
		if (ret != 0) {
			if (ret != -EBUSY && ret != -ERESTARTSYS)
				DRM_ERROR("Failure to install fence: %d\n",
					  ret);
			i915_gem_object_unpin(obj);
			return ret;
		}
	}

3273 3274 3275 3276 3277 3278
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3279
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3280 3281
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3282 3283
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3284 3285

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3286
						   reloc->target_handle);
3287 3288 3289 3290 3291 3292
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
			return -EBADF;
		}
		target_obj_priv = target_obj->driver_private;

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3308 3309 3310 3311 3312
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3313
				  reloc->target_handle);
3314 3315 3316 3317 3318
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3319
		/* Validate that the target is in a valid r/w GPU domain */
3320 3321
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3322 3323 3324
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3325 3326 3327 3328
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3329 3330
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3331 3332
			return -EINVAL;
		}
3333 3334
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3335 3336 3337
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3338 3339 3340
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3341 3342 3343 3344 3345 3346
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3347 3348
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3349 3350 3351 3352

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3353
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3354 3355 3356 3357
			drm_gem_object_unreference(target_obj);
			continue;
		}

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3389 3390 3391 3392 3393
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3394 3395 3396 3397 3398
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3399
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3400 3401 3402
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
						       ~(PAGE_SIZE - 1)));
3403
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3404
						   (reloc_offset & (PAGE_SIZE - 1)));
3405
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3406 3407 3408

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3409
			  obj, (unsigned int) reloc->offset,
3410 3411 3412
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3413
		io_mapping_unmap_atomic(reloc_page);
3414

3415 3416
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3417
		 */
3418
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/** Dispatch a batchbuffer to the ring
 */
static int
i915_dispatch_gem_execbuffer(struct drm_device *dev,
J
Jesse Barnes 已提交
3434
			      struct drm_i915_gem_execbuffer2 *exec,
3435
			      struct drm_clip_rect *cliprects,
3436 3437 3438 3439 3440
			      uint64_t exec_offset)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int nbox = exec->num_cliprects;
	int i = 0, count;
3441
	uint32_t exec_start, exec_len;
3442 3443 3444 3445 3446
	RING_LOCALS;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

3447
	trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
C
Chris Wilson 已提交
3448

3449 3450 3451 3452
	count = nbox ? nbox : 1;

	for (i = 0; i < count; i++) {
		if (i < nbox) {
3453
			int ret = i915_emit_box(dev, cliprects, i,
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
						exec->DR1, exec->DR4);
			if (ret)
				return ret;
		}

		if (IS_I830(dev) || IS_845G(dev)) {
			BEGIN_LP_RING(4);
			OUT_RING(MI_BATCH_BUFFER);
			OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			OUT_RING(exec_start + exec_len - 4);
			OUT_RING(0);
			ADVANCE_LP_RING();
		} else {
			BEGIN_LP_RING(2);
			if (IS_I965G(dev)) {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6) |
					 MI_BATCH_NON_SECURE_I965);
				OUT_RING(exec_start);
			} else {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6));
				OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			}
			ADVANCE_LP_RING();
		}
	}

	/* XXX breadcrumb */
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3489 3490 3491 3492
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3493 3494 3495 3496 3497 3498 3499 3500
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3501
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3502 3503

	mutex_lock(&dev->struct_mutex);
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

		ret = i915_wait_request(dev, request->seqno);
		if (ret != 0)
			break;
	}
3518
	mutex_unlock(&dev->struct_mutex);
3519

3520 3521 3522
	return ret;
}

3523
static int
J
Jesse Barnes 已提交
3524
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3538
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3539 3540
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3541
		return -ENOMEM;
J
Jesse Barnes 已提交
3542
	}
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3554
			drm_free_large(*relocs);
3555
			*relocs = NULL;
3556
			return -EFAULT;
3557 3558 3559 3560 3561
		}

		reloc_index += exec_list[i].relocation_count;
	}

3562
	return 0;
3563 3564 3565
}

static int
J
Jesse Barnes 已提交
3566
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3567 3568 3569 3570
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3571
	int ret = 0;
3572

3573 3574 3575
	if (relocs == NULL)
	    return 0;

3576 3577
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3578
		int unwritten;
3579 3580 3581

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3582 3583 3584 3585 3586 3587 3588 3589
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3590 3591 3592 3593 3594
		}

		reloc_count += exec_list[i].relocation_count;
	}

3595
err:
3596
	drm_free_large(relocs);
3597 3598 3599 3600

	return ret;
}

3601
static int
J
Jesse Barnes 已提交
3602
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
			obj_priv = object_list[i]->driver_private;
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

3654
int
J
Jesse Barnes 已提交
3655 3656 3657 3658
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3659 3660 3661 3662
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3663
	struct drm_i915_gem_object *obj_priv;
3664
	struct drm_clip_rect *cliprects = NULL;
3665
	struct drm_i915_gem_relocation_entry *relocs = NULL;
J
Jesse Barnes 已提交
3666
	int ret = 0, ret2, i, pinned = 0;
3667
	uint64_t exec_offset;
3668
	uint32_t seqno, flush_domains, reloc_index;
3669
	int pin_tries, flips;
3670 3671 3672 3673 3674 3675

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

3676 3677 3678 3679
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3680
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3681 3682
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3683 3684 3685 3686 3687
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3688
	if (args->num_cliprects != 0) {
3689 3690
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3691 3692
		if (cliprects == NULL) {
			ret = -ENOMEM;
3693
			goto pre_mutex_err;
3694
		}
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3707 3708 3709 3710 3711
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3712 3713 3714 3715
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3716
	if (atomic_read(&dev_priv->mm.wedged)) {
3717
		mutex_unlock(&dev->struct_mutex);
3718 3719
		ret = -EIO;
		goto pre_mutex_err;
3720 3721 3722 3723
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3724 3725
		ret = -EBUSY;
		goto pre_mutex_err;
3726 3727
	}

3728
	/* Look up object handles */
3729
	flips = 0;
3730 3731 3732 3733 3734 3735
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3736 3737
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3738 3739 3740
			ret = -EBADF;
			goto err;
		}
3741 3742 3743 3744 3745

		obj_priv = object_list[i]->driver_private;
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3746 3747
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3748 3749 3750 3751
			ret = -EBADF;
			goto err;
		}
		obj_priv->in_execbuffer = true;
3752 3753 3754 3755 3756 3757 3758 3759
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3760
	}
3761

3762 3763 3764
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3765 3766
		reloc_index = 0;

3767 3768 3769 3770 3771
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3772 3773
							       &exec_list[i],
							       &relocs[reloc_index]);
3774 3775 3776
			if (ret)
				break;
			pinned = i + 1;
3777
			reloc_index += exec_list[i].relocation_count;
3778 3779 3780 3781 3782 3783
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3784
		if (ret != -ENOSPC || pin_tries >= 1) {
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
				for (i = 0; i < args->buffer_count; i++)
					total_size += object_list[i]->size;
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
					  pinned+1, args->buffer_count,
					  total_size, ret);
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3802 3803
			goto err;
		}
3804 3805 3806 3807

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3808
		pinned = 0;
3809 3810 3811

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3812
		if (ret && ret != -ENOSPC)
3813
			goto err;
3814 3815 3816 3817
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3818 3819 3820 3821 3822 3823
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3824

3825 3826 3827 3828 3829 3830 3831 3832
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3833 3834
	i915_verify_inactive(dev, __FILE__, __LINE__);

3835 3836 3837 3838 3839 3840 3841
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3842 3843 3844
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3845
		/* Compute new gpu domains and update invalidate/flush */
3846
		i915_gem_object_set_to_gpu_domain(obj);
3847 3848 3849 3850
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
3861
		if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3862 3863
			(void)i915_add_request(dev, file_priv,
					       dev->flush_domains);
3864
	}
3865

3866 3867
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3868
		struct drm_i915_gem_object *obj_priv = obj->driver_private;
C
Chris Wilson 已提交
3869
		uint32_t old_write_domain = obj->write_domain;
3870 3871

		obj->write_domain = obj->pending_write_domain;
3872 3873 3874 3875 3876 3877
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3878 3879 3880
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3881 3882
	}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3893
	i915_gem_dump_object(batch_obj,
3894 3895 3896 3897 3898 3899
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3900
	ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	flush_domains = i915_retire_commands(dev);

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3921
	seqno = i915_add_request(dev, file_priv, flush_domains);
3922 3923 3924 3925
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3926
		i915_gem_object_move_to_active(obj, seqno);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3938 3939 3940
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3941 3942 3943 3944 3945
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
			obj_priv = object_list[i]->driver_private;
			obj_priv->in_execbuffer = false;
		}
3946
		drm_gem_object_unreference(object_list[i]);
3947
	}
3948 3949 3950

	mutex_unlock(&dev->struct_mutex);

3951
pre_mutex_err:
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3966
	drm_free_large(object_list);
3967
	kfree(cliprects);
3968 3969 3970 3971

	return ret;
}

J
Jesse Barnes 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (!IS_I965G(dev))
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = 0;

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4127
		if (ret)
4128
			return ret;
4129
	}
J
Jesse Barnes 已提交
4130

4131 4132 4133 4134 4135 4136 4137 4138 4139
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4140
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
		    !list_empty(&obj_priv->list))
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4167
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}
	obj_priv = obj->driver_private;

C
Chris Wilson 已提交
4196 4197
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4198 4199 4200 4201 4202
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4203 4204 4205
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4206
		drm_gem_object_unreference(obj);
4207
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4220 4221 4222 4223 4224
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4225
	i915_gem_object_flush_cpu_write_domain(obj);
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4239
	struct drm_i915_gem_object *obj_priv;
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

J
Jesse Barnes 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
	obj_priv = obj->driver_private;
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

4285
	mutex_lock(&dev->struct_mutex);
4286 4287 4288 4289 4290 4291 4292
	/* Update the active list for the hardware's current position.
	 * Otherwise this only updates on a delayed timer or when irqs are
	 * actually unmasked, and our working set ends up being larger than
	 * required.
	 */
	i915_gem_retire_requests(dev);

4293
	obj_priv = obj->driver_private;
4294 4295 4296 4297 4298 4299 4300 4301
	/* Don't count being on the flushing list against the object being
	 * done.  Otherwise, a buffer left on the flushing list but not getting
	 * flushed (because nobody's flushing that domain) won't ever return
	 * unbusy and get reused by libdrm's bo cache.  The other expected
	 * consumer of this interface, OpenGL's occlusion queries, also specs
	 * that the objects get unbusy "eventually" without any interference.
	 */
	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

	mutex_lock(&dev->struct_mutex);
	obj_priv = obj->driver_private;

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4349 4350
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4351

4352 4353 4354 4355 4356
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4357 4358
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4359 4360 4361 4362 4363 4364
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4365 4366 4367 4368
int i915_gem_init_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;

4369
	obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
	if (obj_priv == NULL)
		return -ENOMEM;

	/*
	 * We've just allocated pages from the kernel,
	 * so they've just been written by the CPU with
	 * zeros. They'll need to be clflushed before we
	 * use them with the GPU.
	 */
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;

4382 4383
	obj_priv->agp_type = AGP_USER_MEMORY;

4384 4385
	obj->driver_private = obj_priv;
	obj_priv->obj = obj;
4386
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
4387
	INIT_LIST_HEAD(&obj_priv->list);
4388
	INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4389
	INIT_LIST_HEAD(&obj_priv->fence_list);
4390
	obj_priv->madv = I915_MADV_WILLNEED;
4391

C
Chris Wilson 已提交
4392
	trace_i915_gem_object_create(obj);
4393

4394 4395 4396 4397 4398
	return 0;
}

void i915_gem_free_object(struct drm_gem_object *obj)
{
4399
	struct drm_device *dev = obj->dev;
4400 4401
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

C
Chris Wilson 已提交
4402 4403
	trace_i915_gem_object_destroy(obj);

4404 4405 4406
	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

4407 4408 4409
	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

4410 4411
	i915_gem_object_unbind(obj);

4412 4413
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4414

4415
	kfree(obj_priv->page_cpu_valid);
4416
	kfree(obj_priv->bit_17);
4417
	kfree(obj->driver_private);
4418 4419
}

4420
/** Unbinds all inactive objects. */
4421
static int
4422
i915_gem_evict_from_inactive_list(struct drm_device *dev)
4423
{
4424
	drm_i915_private_t *dev_priv = dev->dev_private;
4425

4426 4427 4428
	while (!list_empty(&dev_priv->mm.inactive_list)) {
		struct drm_gem_object *obj;
		int ret;
4429

4430 4431 4432
		obj = list_first_entry(&dev_priv->mm.inactive_list,
				       struct drm_i915_gem_object,
				       list)->obj;
4433 4434 4435

		ret = i915_gem_object_unbind(obj);
		if (ret != 0) {
4436
			DRM_ERROR("Error unbinding object: %d\n", ret);
4437 4438 4439 4440 4441 4442 4443
			return ret;
		}
	}

	return 0;
}

4444 4445
static int
i915_gpu_idle(struct drm_device *dev)
4446 4447
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4448 4449
	bool lists_empty;
	uint32_t seqno;
4450

4451 4452 4453 4454
	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
		      list_empty(&dev_priv->mm.active_list);
	spin_unlock(&dev_priv->mm.active_list_lock);
4455

4456
	if (lists_empty)
4457
		return 0;
4458

4459
	/* Flush everything onto the inactive list. */
4460 4461
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4462
	if (seqno == 0)
4463
		return -ENOMEM;
C
Chris Wilson 已提交
4464

4465 4466
	return i915_wait_request(dev, seqno);
}
4467

4468 4469 4470 4471 4472
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4473

4474
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4475

4476 4477 4478
	if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return 0;
4479 4480
	}

4481
	ret = i915_gpu_idle(dev);
4482 4483
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4484
		return ret;
4485
	}
4486

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
		ret = i915_gem_evict_from_inactive_list(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
	del_timer(&dev_priv->hangcheck_timer);

	i915_kernel_lost_context(dev);
4504
	i915_gem_cleanup_ringbuffer(dev);
4505

4506 4507
	mutex_unlock(&dev->struct_mutex);

4508 4509 4510
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
	return 0;
}

static int
i915_gem_init_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	/* If we need a physical address for the status page, it's already
	 * initialized at driver load time.
	 */
	if (!I915_NEED_GFX_HWS(dev))
		return 0;

	obj = drm_gem_object_alloc(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;
4534
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4535 4536 4537 4538 4539 4540 4541 4542 4543

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
		return ret;
	}

	dev_priv->status_gfx_addr = obj_priv->gtt_offset;

4544
	dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4545
	if (dev_priv->hw_status_page == NULL) {
4546 4547
		DRM_ERROR("Failed to map status page.\n");
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4548
		i915_gem_object_unpin(obj);
4549 4550 4551 4552 4553 4554
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}
	dev_priv->hws_obj = obj;
	memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
	I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4555
	I915_READ(HWS_PGA); /* posting read */
4556
	DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4557 4558 4559 4560

	return 0;
}

4561 4562 4563 4564
static void
i915_gem_cleanup_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4565 4566
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4567 4568 4569 4570

	if (dev_priv->hws_obj == NULL)
		return;

4571 4572 4573
	obj = dev_priv->hws_obj;
	obj_priv = obj->driver_private;

4574
	kunmap(obj_priv->pages[0]);
4575 4576 4577
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->hws_obj = NULL;
4578

4579 4580 4581 4582 4583 4584 4585
	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
	dev_priv->hw_status_page = NULL;

	/* Write high address into HWS_PGA when disabling. */
	I915_WRITE(HWS_PGA, 0x1ffff000);
}

J
Jesse Barnes 已提交
4586
int
4587 4588 4589 4590 4591
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
J
Jesse Barnes 已提交
4592
	drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4593
	int ret;
4594
	u32 head;
4595 4596 4597 4598 4599 4600 4601 4602

	ret = i915_gem_init_hws(dev);
	if (ret != 0)
		return ret;

	obj = drm_gem_object_alloc(dev, 128 * 1024);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
4603
		i915_gem_cleanup_hws(dev);
4604 4605 4606 4607 4608 4609 4610
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
4611
		i915_gem_cleanup_hws(dev);
4612 4613 4614 4615
		return ret;
	}

	/* Set up the kernel mapping for the ring. */
J
Jesse Barnes 已提交
4616
	ring->Size = obj->size;
4617

J
Jesse Barnes 已提交
4618 4619 4620 4621 4622
	ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
	ring->map.size = obj->size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;
4623

J
Jesse Barnes 已提交
4624 4625
	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
4626 4627
		DRM_ERROR("Failed to map ringbuffer.\n");
		memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4628
		i915_gem_object_unpin(obj);
4629
		drm_gem_object_unreference(obj);
4630
		i915_gem_cleanup_hws(dev);
4631 4632
		return -EINVAL;
	}
J
Jesse Barnes 已提交
4633 4634
	ring->ring_obj = obj;
	ring->virtual_start = ring->map.handle;
4635 4636 4637 4638

	/* Stop the ring if it's running. */
	I915_WRITE(PRB0_CTL, 0);
	I915_WRITE(PRB0_TAIL, 0);
4639
	I915_WRITE(PRB0_HEAD, 0);
4640 4641 4642

	/* Initialize the ring. */
	I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
		DRM_ERROR("Ring head not reset to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		I915_WRITE(PRB0_HEAD, 0);

		DRM_ERROR("Ring head forced to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
	}

4663 4664 4665 4666 4667
	I915_WRITE(PRB0_CTL,
		   ((obj->size - 4096) & RING_NR_PAGES) |
		   RING_NO_REPORT |
		   RING_VALID);

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* If the head is still not zero, the ring is dead */
	if (head != 0) {
		DRM_ERROR("Ring initialization failed "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		return -EIO;
	}

4681
	/* Update our cache of the ring state */
J
Jesse Barnes 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_kernel_lost_context(dev);
	else {
		ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
		ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
		ring->space = ring->head - (ring->tail + 8);
		if (ring->space < 0)
			ring->space += ring->Size;
	}
4691 4692 4693 4694

	return 0;
}

J
Jesse Barnes 已提交
4695
void
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (dev_priv->ring.ring_obj == NULL)
		return;

	drm_core_ioremapfree(&dev_priv->ring.map, dev);

	i915_gem_object_unpin(dev_priv->ring.ring_obj);
	drm_gem_object_unreference(dev_priv->ring.ring_obj);
	dev_priv->ring.ring_obj = NULL;
	memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));

4710
	i915_gem_cleanup_hws(dev);
4711 4712 4713 4714 4715 4716 4717 4718 4719
}

int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4720 4721 4722
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4723
	if (atomic_read(&dev_priv->mm.wedged)) {
4724
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4725
		atomic_set(&dev_priv->mm.wedged, 0);
4726 4727 4728
	}

	mutex_lock(&dev->struct_mutex);
4729 4730 4731
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4732 4733
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4734
		return ret;
4735
	}
4736

4737
	spin_lock(&dev_priv->mm.active_list_lock);
4738
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4739 4740
	spin_unlock(&dev_priv->mm.active_list_lock);

4741 4742 4743 4744
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	BUG_ON(!list_empty(&dev_priv->mm.request_list));
	mutex_unlock(&dev->struct_mutex);
4745 4746 4747

	drm_irq_install(dev);

4748 4749 4750 4751 4752 4753 4754
	return 0;
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4755 4756 4757
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4758
	drm_irq_uninstall(dev);
4759
	return i915_gem_idle(dev);
4760 4761 4762 4763 4764 4765 4766
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4767 4768 4769
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4770 4771 4772
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4773 4774 4775 4776 4777
}

void
i915_gem_load(struct drm_device *dev)
{
4778
	int i;
4779 4780
	drm_i915_private_t *dev_priv = dev->dev_private;

4781
	spin_lock_init(&dev_priv->mm.active_list_lock);
4782 4783
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4784
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4785 4786
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
	INIT_LIST_HEAD(&dev_priv->mm.request_list);
4787
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4788 4789 4790 4791
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
	dev_priv->mm.next_gem_seqno = 1;

4792 4793 4794 4795
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4796 4797 4798
	/* Old X drivers will take 0-2 for front, back, depth buffers */
	dev_priv->fence_reg_start = 3;

4799
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4800 4801 4802 4803
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}
4815
	i915_gem_detect_bit_6_swizzle(dev);
4816
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4817
}
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
			      int id, int size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4833
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4834 4835 4836 4837 4838
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4839
	phys_obj->handle = drm_pci_alloc(dev, size, 0);
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4852
	kfree(phys_obj);
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4881
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

	obj_priv = obj->driver_private;
	if (!obj_priv->phys_obj)
		return;

4897
	ret = i915_gem_object_get_pages(obj, 0);
4898 4899 4900 4901 4902 4903
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4904
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4905 4906 4907 4908 4909
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4910
	drm_clflush_pages(obj_priv->pages, page_count);
4911
	drm_agp_chipset_flush(dev);
4912 4913

	i915_gem_object_put_pages(obj);
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
			    struct drm_gem_object *obj, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

	obj_priv = obj->driver_private;

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}


	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
						obj->size);
		if (ret) {
4946
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4947 4948 4949 4950 4951 4952 4953 4954
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4955
	ret = i915_gem_object_get_pages(obj, 0);
4956 4957 4958 4959 4960 4961 4962 4963
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4964
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4965 4966 4967 4968 4969 4970
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4971 4972
	i915_gem_object_put_pages(obj);

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4991
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4992 4993 4994 4995 4996 4997 4998
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058

static int
i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		i915_gem_retire_requests(dev);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
5059
				i915_gem_object_unbind(obj_priv->obj);
5060 5061 5062 5063 5064 5065 5066 5067
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5068 5069
		would_deadlock = 0;

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5088
				i915_gem_object_unbind(obj_priv->obj);
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}