i915_gem.c 118.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include <linux/swap.h>
J
Jesse Barnes 已提交
33
#include <linux/pci.h>
34

35 36
#define I915_GEM_GPU_DOMAINS	(~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))

37 38 39 40 41 42 43 44 45
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 48 49 50
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
static int i915_gem_evict_something(struct drm_device *dev);
51 52 53
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
54

J
Jesse Barnes 已提交
55 56
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
57 58 59
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
60 61 62
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
63 64 65
		return -EINVAL;
	}

J
Jesse Barnes 已提交
66 67
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
68

J
Jesse Barnes 已提交
69 70 71 72
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
73

J
Jesse Barnes 已提交
74 75 76 77 78 79 80 81 82
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
83 84
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
85
	return ret;
86 87
}

88 89 90 91 92 93 94 95 96 97
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
98 99
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
100 101 102 103

	return 0;
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
	int handle, ret;

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
	obj = drm_gem_object_alloc(dev, args->size);
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_handle_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	if (ret)
		return ret;

	args->handle = handle;

	return 0;
}

136 137 138 139 140 141 142
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
143
	int unwritten;
144 145 146 147

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
148
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
149 150
	kunmap_atomic(vaddr, KM_USER0);

151 152 153 154
	if (unwritten)
		return -EFAULT;

	return 0;
155 156
}

157 158 159 160 161 162 163 164 165
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
	if (dst_vaddr == NULL)
		return -ENOMEM;

	src_vaddr = kmap_atomic(src_page, KM_USER1);
	if (src_vaddr == NULL) {
		kunmap_atomic(dst_vaddr, KM_USER0);
		return -ENOMEM;
	}

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

	kunmap_atomic(src_vaddr, KM_USER1);
	kunmap_atomic(dst_vaddr, KM_USER0);

	return 0;
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static inline int
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

	gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
	if (gpu_vaddr == NULL)
		return -ENOMEM;

	cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
	if (cpu_vaddr == NULL) {
		kunmap_atomic(gpu_vaddr, KM_USER0);
		return -ENOMEM;
	}

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	kunmap_atomic(cpu_vaddr, KM_USER1);
	kunmap_atomic(gpu_vaddr, KM_USER0);

	return 0;
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
339
	int do_bit17_swizzling;
340 341 342 343 344 345 346 347 348 349 350

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

351
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
352 353 354 355 356
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
357
				      num_pages, 1, 0, user_pages, NULL);
358 359 360 361 362 363
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

364 365
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	mutex_lock(&dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

400 401 402 403 404 405 406 407 408 409 410 411 412 413
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    1);
		} else {
			ret = slow_shmem_copy(user_pages[data_page_index],
					      data_page_offset,
					      obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      page_length);
		}
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
431
	drm_free_large(user_pages);
432 433 434 435

	return ret;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

465
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
466
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
467 468 469 470 471 472
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
473 474 475

	drm_gem_object_unreference(obj);

476
	return ret;
477 478
}

479 480
/* This is the fast write path which cannot handle
 * page faults in the source data
481
 */
482 483 484 485 486 487

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
488 489
{
	char *vaddr_atomic;
490
	unsigned long unwritten;
491

492 493 494 495 496 497 498 499 500 501 502 503 504 505
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
	io_mapping_unmap_atomic(vaddr_atomic);
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

static inline int
506 507 508 509
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
510
{
511
	char *src_vaddr, *dst_vaddr;
512 513
	unsigned long unwritten;

514 515 516 517 518 519 520
	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
	src_vaddr = kmap_atomic(user_page, KM_USER1);
	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
						      src_vaddr + user_offset,
						      length);
	kunmap_atomic(src_vaddr, KM_USER1);
	io_mapping_unmap_atomic(dst_vaddr);
521 522
	if (unwritten)
		return -EFAULT;
523 524 525
	return 0;
}

526 527 528 529 530 531 532
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
533
	unsigned long unwritten;
534 535 536 537

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
538
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
539 540
	kunmap_atomic(vaddr, KM_USER0);

541 542
	if (unwritten)
		return -EFAULT;
543 544 545
	return 0;
}

546 547 548 549
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
550
static int
551 552 553
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
554 555
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
556
	drm_i915_private_t *dev_priv = dev->dev_private;
557
	ssize_t remain;
558
	loff_t offset, page_base;
559
	char __user *user_data;
560 561
	int page_offset, page_length;
	int ret;
562 563 564 565 566 567 568 569 570 571 572 573 574

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
575
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
576 577 578 579 580 581 582 583 584
	if (ret)
		goto fail;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
585 586 587
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
588
		 */
589 590 591 592 593 594 595 596 597 598
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
599 600
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
601
		 */
602 603
		if (ret)
			goto fail;
604

605 606 607
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
608 609 610 611 612 613 614 615 616
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

617 618 619 620 621 622 623
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
624
static int
625 626 627
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
628
{
629 630 631 632 633 634 635 636 637
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
638
	int ret;
639 640 641 642 643 644 645 646 647 648 649 650
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

651
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
652 653 654 655 656 657 658 659 660 661 662
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
663 664

	mutex_lock(&dev->struct_mutex);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
					gtt_page_base, gtt_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
			goto out_unpin_object;

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
721
	drm_free_large(user_pages);
722 723 724 725

	return ret;
}

726 727 728 729
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
730
static int
731 732 733
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
734
{
735 736 737 738 739
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
740
	int ret;
741 742 743

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
744 745 746

	mutex_lock(&dev->struct_mutex);

747 748 749
	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;
750

751
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
814
	int do_bit17_swizzling;
815 816 817 818 819 820 821 822 823 824 825

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

826
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
827 828 829 830 831 832 833 834 835 836
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
837 838
	}

839 840
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

841 842 843 844 845 846 847 848 849 850 851
	mutex_lock(&dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
852
	offset = args->offset;
853
	obj_priv->dirty = 1;
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

875 876 877 878 879 880 881 882 883 884 885 886 887 888
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    0);
		} else {
			ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length);
		}
889 890 891 892 893 894
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
895 896
	}

897 898 899
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
900
	mutex_unlock(&dev->struct_mutex);
901 902 903
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
904
	drm_free_large(user_pages);
905

906
	return ret;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
944 945 946
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
947 948 949 950 951 952
		 dev->gtt_total != 0) {
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
953 954
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
955 956 957 958 959 960 961
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
962 963 964 965 966 967 968 969 970 971 972 973

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

	drm_gem_object_unreference(obj);

	return ret;
}

/**
974 975
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
976 977 978 979 980
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
981
	struct drm_i915_private *dev_priv = dev->dev_private;
982 983
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
984 985
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
986 987 988 989 990
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

991
	/* Only handle setting domains to types used by the CPU. */
992
	if (write_domain & I915_GEM_GPU_DOMAINS)
993 994
		return -EINVAL;

995
	if (read_domains & I915_GEM_GPU_DOMAINS)
996 997 998 999 1000 1001 1002 1003
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1004 1005 1006 1007 1008 1009
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);
#if WATCH_BUF
1010
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1011
		 obj, obj->size, read_domains, write_domain);
1012
#endif
1013
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1014 1015
		struct drm_i915_gem_object *obj_priv = obj->driver_private;

1016
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1017

1018 1019 1020 1021 1022 1023 1024 1025
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
			list_move_tail(&obj_priv->fence_list,
				       &dev_priv->mm.fence_list);
		}

1026 1027 1028 1029 1030 1031
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1032
	} else {
1033
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1034 1035
	}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

#if WATCH_BUF
1064
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1065 1066 1067 1068 1069
		 __func__, args->handle, obj, obj->size);
#endif
	obj_priv = obj->driver_private;

	/* Pinned buffers may be scanout, so flush the cache */
1070 1071 1072
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1144
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
		ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return VM_FAULT_SIGBUS;
		}
1158 1159 1160 1161 1162 1163 1164

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return VM_FAULT_SIGBUS;
		}

J
Jesse Barnes 已提交
1165
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1166 1167 1168
	}

	/* Need a new fence register? */
1169
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1170
		ret = i915_gem_object_get_fence_reg(obj);
1171 1172
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
1173
			return VM_FAULT_SIGBUS;
1174
		}
1175
	}
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);

	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	case -EFAULT:
1190
	case -EINVAL:
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		return VM_FAULT_SIGBUS;
	default:
		return VM_FAULT_NOPAGE;
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_map_list *list;
1215
	struct drm_local_map *map;
1216 1217 1218 1219
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1220
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1260
	kfree(list->map);
1261 1262 1263 1264

	return ret;
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
 * Preserve the reservation of the mmaping with the DRM core code, but
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1279
void
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1307
		kfree(list->map);
1308 1309 1310 1311 1312 1313
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);

	obj_priv = obj->driver_private;

	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1388 1389 1390
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1391
			return ret;
1392
		}
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	}

	args->offset = obj_priv->mmap_offset;

	obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);

	/* Make sure the alignment is correct for fence regs etc */
	if (obj_priv->agp_mem &&
	    (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
		ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
J
Jesse Barnes 已提交
1418
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1419 1420 1421 1422 1423 1424 1425 1426
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1427
void
1428
i915_gem_object_put_pages(struct drm_gem_object *obj)
1429 1430 1431 1432 1433
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count = obj->size / PAGE_SIZE;
	int i;

1434
	BUG_ON(obj_priv->pages_refcount == 0);
1435

1436 1437
	if (--obj_priv->pages_refcount != 0)
		return;
1438

1439 1440 1441
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1442
	for (i = 0; i < page_count; i++)
1443
		if (obj_priv->pages[i] != NULL) {
1444
			if (obj_priv->dirty)
1445 1446 1447
				set_page_dirty(obj_priv->pages[i]);
			mark_page_accessed(obj_priv->pages[i]);
			page_cache_release(obj_priv->pages[i]);
1448 1449 1450
		}
	obj_priv->dirty = 0;

1451
	drm_free_large(obj_priv->pages);
1452
	obj_priv->pages = NULL;
1453 1454 1455
}

static void
1456
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1468
	spin_lock(&dev_priv->mm.active_list_lock);
1469 1470
	list_move_tail(&obj_priv->list,
		       &dev_priv->mm.active_list);
1471
	spin_unlock(&dev_priv->mm.active_list_lock);
1472
	obj_priv->last_rendering_seqno = seqno;
1473 1474
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1500
	obj_priv->last_rendering_seqno = 0;
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

/**
 * Creates a new sequence number, emitting a write of it to the status page
 * plus an interrupt, which will trigger i915_user_interrupt_handler.
 *
 * Must be called with struct_lock held.
 *
 * Returned sequence numbers are nonzero on success.
 */
static uint32_t
1517 1518
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
		 uint32_t flush_domains)
1519 1520
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1521
	struct drm_i915_file_private *i915_file_priv = NULL;
1522 1523 1524 1525 1526
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;
	RING_LOCALS;

1527 1528 1529
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1530
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	if (request == NULL)
		return 0;

	/* Grab the seqno we're going to make this request be, and bump the
	 * next (skipping 0 so it can be the reserved no-seqno value).
	 */
	seqno = dev_priv->mm.next_gem_seqno;
	dev_priv->mm.next_gem_seqno++;
	if (dev_priv->mm.next_gem_seqno == 0)
		dev_priv->mm.next_gem_seqno++;

	BEGIN_LP_RING(4);
	OUT_RING(MI_STORE_DWORD_INDEX);
	OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	OUT_RING(seqno);

	OUT_RING(MI_USER_INTERRUPT);
	ADVANCE_LP_RING();

	DRM_DEBUG("%d\n", seqno);

	request->seqno = seqno;
	request->emitted_jiffies = jiffies;
	was_empty = list_empty(&dev_priv->mm.request_list);
	list_add_tail(&request->list, &dev_priv->mm.request_list);
1556 1557 1558 1559 1560 1561
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
	if (flush_domains != 0) {
		struct drm_i915_gem_object *obj_priv, *next;

		list_for_each_entry_safe(obj_priv, next,
					 &dev_priv->mm.flushing_list, list) {
			struct drm_gem_object *obj = obj_priv->obj;

			if ((obj->write_domain & flush_domains) ==
			    obj->write_domain) {
				obj->write_domain = 0;
				i915_gem_object_move_to_active(obj, seqno);
			}
		}

	}

1582
	if (was_empty && !dev_priv->mm.suspended)
1583
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1584 1585 1586 1587 1588 1589 1590 1591 1592
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1593
static uint32_t
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
i915_retire_commands(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	uint32_t flush_domains = 0;
	RING_LOCALS;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
	BEGIN_LP_RING(2);
	OUT_RING(cmd);
	OUT_RING(0); /* noop */
	ADVANCE_LP_RING();
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1624
	spin_lock(&dev_priv->mm.active_list_lock);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	while (!list_empty(&dev_priv->mm.active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&dev_priv->mm.active_list,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1639
			goto out;
1640

1641 1642 1643 1644 1645
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1646 1647
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1648 1649 1650 1651 1652 1653 1654 1655
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1656
			i915_gem_object_move_to_inactive(obj);
1657 1658 1659 1660
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1661
	}
1662 1663
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
}

/**
 * Returns true if seq1 is later than seq2.
 */
static int
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
i915_get_gem_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1692 1693 1694
	if (!dev_priv->hw_status_page)
		return;

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	seqno = i915_get_gem_seqno(dev);

	while (!list_empty(&dev_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

		request = list_first_entry(&dev_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
		    dev_priv->mm.wedged) {
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1711
			list_del(&request->client_list);
1712
			kfree(request);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		} else
			break;
	}
}

void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
	i915_gem_retire_requests(dev);
1730 1731
	if (!dev_priv->mm.suspended &&
	    !list_empty(&dev_priv->mm.request_list))
1732
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1733 1734 1735 1736 1737 1738 1739
	mutex_unlock(&dev->struct_mutex);
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1740
static int
1741 1742 1743
i915_wait_request(struct drm_device *dev, uint32_t seqno)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1744
	u32 ier;
1745 1746 1747 1748 1749
	int ret = 0;

	BUG_ON(seqno == 0);

	if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1750 1751 1752 1753
		if (IS_IGDNG(dev))
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1754 1755 1756 1757 1758 1759 1760
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
		dev_priv->mm.waiting_gem_seqno = seqno;
		i915_user_irq_get(dev);
		ret = wait_event_interruptible(dev_priv->irq_queue,
					       i915_seqno_passed(i915_get_gem_seqno(dev),
								 seqno) ||
					       dev_priv->mm.wedged);
		i915_user_irq_put(dev);
		dev_priv->mm.waiting_gem_seqno = 0;
	}
	if (dev_priv->mm.wedged)
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
			  __func__, ret, seqno, i915_get_gem_seqno(dev));

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
		i915_gem_retire_requests(dev);

	return ret;
}

static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd;
	RING_LOCALS;

#if WATCH_EXEC
	DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
		  invalidate_domains, flush_domains);
#endif

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);

1805
	if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
		/*
		 * read/write caches:
		 *
		 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
		 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
		 * also flushed at 2d versus 3d pipeline switches.
		 *
		 * read-only caches:
		 *
		 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
		 * MI_READ_FLUSH is set, and is always flushed on 965.
		 *
		 * I915_GEM_DOMAIN_COMMAND may not exist?
		 *
		 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
		 * invalidated when MI_EXE_FLUSH is set.
		 *
		 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
		 * invalidated with every MI_FLUSH.
		 *
		 * TLBs:
		 *
		 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
		 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
		 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
		 * are flushed at any MI_FLUSH.
		 */

		cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
		if ((invalidate_domains|flush_domains) &
		    I915_GEM_DOMAIN_RENDER)
			cmd &= ~MI_NO_WRITE_FLUSH;
		if (!IS_I965G(dev)) {
			/*
			 * On the 965, the sampler cache always gets flushed
			 * and this bit is reserved.
			 */
			if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
				cmd |= MI_READ_FLUSH;
		}
		if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
			cmd |= MI_EXE_FLUSH;

#if WATCH_EXEC
		DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
#endif
		BEGIN_LP_RING(2);
		OUT_RING(cmd);
		OUT_RING(0); /* noop */
		ADVANCE_LP_RING();
	}
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

1870 1871
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1872
	 */
1873
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
		ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1894
int
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1919
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1920
	if (ret) {
1921 1922
		if (ret != -ERESTARTSYS)
			DRM_ERROR("set_domain failed: %d\n", ret);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		return ret;
	}

	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

	BUG_ON(obj_priv->active);

1934
	/* blow away mappings if mapped through GTT */
1935
	i915_gem_release_mmap(obj);
1936 1937 1938 1939

	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

1940
	i915_gem_object_put_pages(obj);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);

	return 0;
}

static int
i915_gem_evict_something(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	for (;;) {
		/* If there's an inactive buffer available now, grab it
		 * and be done.
		 */
		if (!list_empty(&dev_priv->mm.inactive_list)) {
			obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
						    struct drm_i915_gem_object,
						    list);
			obj = obj_priv->obj;
			BUG_ON(obj_priv->pin_count != 0);
#if WATCH_LRU
			DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
			BUG_ON(obj_priv->active);

			/* Wait on the rendering and unbind the buffer. */
			ret = i915_gem_object_unbind(obj);
			break;
		}

		/* If we didn't get anything, but the ring is still processing
		 * things, wait for one of those things to finish and hopefully
		 * leave us a buffer to evict.
		 */
		if (!list_empty(&dev_priv->mm.request_list)) {
			struct drm_i915_gem_request *request;

			request = list_first_entry(&dev_priv->mm.request_list,
						   struct drm_i915_gem_request,
						   list);

			ret = i915_wait_request(dev, request->seqno);
			if (ret)
				break;

			/* if waiting caused an object to become inactive,
			 * then loop around and wait for it. Otherwise, we
			 * assume that waiting freed and unbound something,
			 * so there should now be some space in the GTT
			 */
			if (!list_empty(&dev_priv->mm.inactive_list))
				continue;
			break;
		}

		/* If we didn't have anything on the request list but there
		 * are buffers awaiting a flush, emit one and try again.
		 * When we wait on it, those buffers waiting for that flush
		 * will get moved to inactive.
		 */
		if (!list_empty(&dev_priv->mm.flushing_list)) {
			obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
						    struct drm_i915_gem_object,
						    list);
			obj = obj_priv->obj;

			i915_gem_flush(dev,
				       obj->write_domain,
				       obj->write_domain);
2024
			i915_add_request(dev, NULL, obj->write_domain);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

			obj = NULL;
			continue;
		}

		DRM_ERROR("inactive empty %d request empty %d "
			  "flushing empty %d\n",
			  list_empty(&dev_priv->mm.inactive_list),
			  list_empty(&dev_priv->mm.request_list),
			  list_empty(&dev_priv->mm.flushing_list));
		/* If we didn't do any of the above, there's nothing to be done
		 * and we just can't fit it in.
		 */
C
Chris Wilson 已提交
2038
		return -ENOSPC;
2039 2040 2041 2042
	}
	return ret;
}

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
static int
i915_gem_evict_everything(struct drm_device *dev)
{
	int ret;

	for (;;) {
		ret = i915_gem_evict_something(dev);
		if (ret != 0)
			break;
	}
C
Chris Wilson 已提交
2053
	if (ret == -ENOSPC)
2054
		return 0;
2055 2056 2057
	return ret;
}

2058
int
2059
i915_gem_object_get_pages(struct drm_gem_object *obj)
2060 2061 2062 2063 2064 2065 2066 2067
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;
	int ret;

2068
	if (obj_priv->pages_refcount++ != 0)
2069 2070 2071 2072 2073 2074
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2075
	BUG_ON(obj_priv->pages != NULL);
2076
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2077
	if (obj_priv->pages == NULL) {
2078
		DRM_ERROR("Faled to allocate page list\n");
2079
		obj_priv->pages_refcount--;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_mapping_page(mapping, i, NULL);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			DRM_ERROR("read_mapping_page failed: %d\n", ret);
2090
			i915_gem_object_put_pages(obj);
2091 2092
			return ret;
		}
2093
		obj_priv->pages[i] = page;
2094
	}
2095 2096 2097 2098

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2099 2100 2101
	return 0;
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
2129
	int tile_width;
2130
	uint32_t fence_reg, val;
2131 2132 2133 2134
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2135
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2136
		     __func__, obj_priv->gtt_offset, obj->size);
2137 2138 2139
		return;
	}

2140 2141 2142
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2143
	else
2144 2145 2146 2147 2148
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2149 2150 2151 2152 2153 2154 2155 2156

	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2157 2158 2159 2160 2161
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2173
	uint32_t fence_size_bits;
2174

2175
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2176
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2177
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2178
		     __func__, obj_priv->gtt_offset);
2179 2180 2181
		return;
	}

2182 2183 2184 2185
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2186 2187 2188
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2189 2190 2191
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2211 2212
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2213 2214
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2215
	struct drm_i915_private *dev_priv = dev->dev_private;
2216 2217
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_i915_fence_reg *reg = NULL;
2218 2219
	struct drm_i915_gem_object *old_obj_priv = NULL;
	int i, ret, avail;
2220

2221 2222 2223 2224 2225 2226
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
		list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
		return 0;
	}

2227 2228 2229 2230 2231
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2232 2233 2234 2235 2236
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2237 2238
		break;
	case I915_TILING_Y:
2239 2240 2241 2242 2243
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2244 2245 2246 2247
		break;
	}

	/* First try to find a free reg */
2248
	avail = 0;
2249 2250 2251 2252
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			break;
2253 2254 2255 2256

		old_obj_priv = reg->obj->driver_private;
		if (!old_obj_priv->pin_count)
		    avail++;
2257 2258 2259 2260
	}

	/* None available, try to steal one or wait for a user to finish */
	if (i == dev_priv->num_fence_regs) {
2261
		struct drm_gem_object *old_obj = NULL;
2262

2263
		if (avail == 0)
C
Chris Wilson 已提交
2264
			return -ENOSPC;
2265

2266 2267 2268
		list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
				    fence_list) {
			old_obj = old_obj_priv->obj;
2269 2270 2271 2272

			if (old_obj_priv->pin_count)
				continue;

2273 2274 2275 2276 2277 2278
			/* Take a reference, as otherwise the wait_rendering
			 * below may cause the object to get freed out from
			 * under us.
			 */
			drm_gem_object_reference(old_obj);

2279 2280
			/* i915 uses fences for GPU access to tiled buffers */
			if (IS_I965G(dev) || !old_obj_priv->active)
2281
				break;
2282

2283 2284 2285 2286 2287 2288 2289 2290
			/* This brings the object to the head of the LRU if it
			 * had been written to.  The only way this should
			 * result in us waiting longer than the expected
			 * optimal amount of time is if there was a
			 * fence-using buffer later that was read-only.
			 */
			i915_gem_object_flush_gpu_write_domain(old_obj);
			ret = i915_gem_object_wait_rendering(old_obj);
2291 2292
			if (ret != 0) {
				drm_gem_object_unreference(old_obj);
2293
				return ret;
2294 2295
			}

2296
			break;
2297 2298 2299 2300 2301 2302
		}

		/*
		 * Zap this virtual mapping so we can set up a fence again
		 * for this object next time we need it.
		 */
2303 2304
		i915_gem_release_mmap(old_obj);

2305
		i = old_obj_priv->fence_reg;
2306 2307
		reg = &dev_priv->fence_regs[i];

2308
		old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2309
		list_del_init(&old_obj_priv->fence_list);
2310

2311
		drm_gem_object_unreference(old_obj);
2312 2313 2314
	}

	obj_priv->fence_reg = i;
2315 2316
	list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);

2317 2318 2319 2320 2321 2322 2323 2324
	reg->obj = obj;

	if (IS_I965G(dev))
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2325 2326

	return 0;
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2340
	drm_i915_private_t *dev_priv = dev->dev_private;
2341 2342 2343 2344
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (IS_I965G(dev))
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	else {
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2356 2357 2358

	dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2359
	list_del_init(&obj_priv->fence_list);
2360 2361
}

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

		i915_gem_object_flush_gpu_write_domain(obj);
		i915_gem_object_flush_gtt_write_domain(obj);
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

	i915_gem_clear_fence_reg (obj);

	return 0;
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_mm_node *free_space;
	int page_count, ret;

2410 2411
	if (dev_priv->mm.suspended)
		return -EBUSY;
2412
	if (alignment == 0)
2413
		alignment = i915_gem_get_gtt_alignment(obj);
2414
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
		if (obj_priv->gtt_space != NULL) {
			obj_priv->gtt_space->private = obj;
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
		}
	}
	if (obj_priv->gtt_space == NULL) {
2431 2432
		bool lists_empty;

2433 2434 2435 2436 2437 2438
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2439 2440 2441 2442 2443 2444
		spin_lock(&dev_priv->mm.active_list_lock);
		lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
			       list_empty(&dev_priv->mm.flushing_list) &&
			       list_empty(&dev_priv->mm.active_list));
		spin_unlock(&dev_priv->mm.active_list_lock);
		if (lists_empty) {
2445
			DRM_ERROR("GTT full, but LRU list empty\n");
C
Chris Wilson 已提交
2446
			return -ENOSPC;
2447 2448 2449 2450
		}

		ret = i915_gem_evict_something(dev);
		if (ret != 0) {
2451 2452
			if (ret != -ERESTARTSYS)
				DRM_ERROR("Failed to evict a buffer %d\n", ret);
2453 2454 2455 2456 2457 2458
			return ret;
		}
		goto search_free;
	}

#if WATCH_BUF
2459
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2460 2461
		 obj->size, obj_priv->gtt_offset);
#endif
2462
	ret = i915_gem_object_get_pages(obj);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
		return ret;
	}

	page_count = obj->size / PAGE_SIZE;
	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2474
					       obj_priv->pages,
2475
					       page_count,
2476 2477
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2478
	if (obj_priv->agp_mem == NULL) {
2479
		i915_gem_object_put_pages(obj);
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
		return -ENOMEM;
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2491 2492
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2506
	if (obj_priv->pages == NULL)
2507 2508
		return;

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/* XXX: The 865 in particular appears to be weird in how it handles
	 * cache flushing.  We haven't figured it out, but the
	 * clflush+agp_chipset_flush doesn't appear to successfully get the
	 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
	 */
	if (IS_I865G(obj->dev)) {
		wbinvd();
		return;
	}

2519
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2520 2521
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	uint32_t seqno;

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
		return;

	/* Queue the GPU write cache flushing we need. */
	i915_gem_flush(dev, 0, obj->write_domain);
2534
	seqno = i915_add_request(dev, NULL, obj->write_domain);
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	obj->write_domain = 0;
	i915_gem_object_move_to_active(obj, seqno);
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
	obj->write_domain = 0;
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
	obj->write_domain = 0;
}

2567 2568 2569 2570 2571 2572
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2573
int
2574 2575 2576
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2577
	int ret;
2578

2579 2580 2581 2582
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2583 2584 2585 2586 2587 2588 2589 2590
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2591
	 */
2592 2593
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2594

2595
	i915_gem_object_flush_cpu_write_domain(obj);
2596

2597 2598 2599 2600 2601 2602 2603 2604
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2605 2606
	}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	return 0;
}

/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
	int ret;

	i915_gem_object_flush_gpu_write_domain(obj);
2622
	/* Wait on any GPU rendering and flushing to occur. */
2623 2624 2625
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2626

2627
	i915_gem_object_flush_gtt_write_domain(obj);
2628

2629 2630
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2631
	 */
2632
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2633

2634 2635
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2636 2637
		i915_gem_clflush_object(obj);

2638
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2639 2640 2641 2642 2643
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2644 2645 2646 2647 2648 2649 2650 2651 2652
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2653 2654 2655 2656

	return 0;
}

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2768
static void
2769
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2770 2771 2772 2773 2774
{
	struct drm_device		*dev = obj->dev;
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
2775

2776 2777
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2778 2779 2780 2781

#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2782 2783
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
2784 2785 2786 2787 2788
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
2789 2790
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
2791 2792 2793 2794 2795 2796 2797 2798 2799
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
2800 2801
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
2802
		flush_domains |= obj->write_domain;
2803 2804
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
2805 2806 2807 2808 2809
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
2810
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2811 2812 2813 2814 2815 2816 2817 2818
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

2819 2820 2821 2822 2823 2824 2825 2826
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
2827
	obj->read_domains = obj->pending_read_domains;
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
}

/**
2840
 * Moves the object from a partially CPU read to a full one.
2841
 *
2842 2843
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2844
 */
2845 2846
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2847 2848 2849
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
2861
			drm_clflush_pages(obj_priv->pages + i, 1);
2862 2863 2864 2865 2866 2867
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
2868
	kfree(obj_priv->page_cpu_valid);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int i, ret;
2890

2891 2892
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
2893

2894 2895
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
2896
	ret = i915_gem_object_wait_rendering(obj);
2897
	if (ret != 0)
2898
		return ret;
2899 2900 2901 2902 2903 2904
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
2905

2906 2907 2908
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
2909
	if (obj_priv->page_cpu_valid == NULL) {
2910 2911
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
2912 2913 2914 2915
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2916 2917 2918 2919

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
2920 2921
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
2922 2923 2924
		if (obj_priv->page_cpu_valid[i])
			continue;

2925
		drm_clflush_pages(obj_priv->pages + i, 1);
2926 2927 2928 2929

		obj_priv->page_cpu_valid[i] = 1;
	}

2930 2931 2932 2933 2934 2935 2936
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	obj->read_domains |= I915_GEM_DOMAIN_CPU;

2937 2938 2939 2940 2941 2942 2943 2944 2945
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
2946 2947
				 struct drm_i915_gem_exec_object *entry,
				 struct drm_i915_gem_relocation_entry *relocs)
2948 2949
{
	struct drm_device *dev = obj->dev;
2950
	drm_i915_private_t *dev_priv = dev->dev_private;
2951 2952
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int i, ret;
2953
	void __iomem *reloc_page;
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
2966
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2967 2968
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
2969 2970
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
2971 2972

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2973
						   reloc->target_handle);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
			return -EBADF;
		}
		target_obj_priv = target_obj->driver_private;

		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
2985
				  reloc->target_handle);
2986 2987 2988 2989 2990
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

2991
		if (reloc->offset > obj->size - 4) {
2992 2993
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
2994 2995
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
2996 2997 2998 2999
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
3000
		if (reloc->offset & 3) {
3001 3002
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3003 3004
				  obj, reloc->target_handle,
				  (int) reloc->offset);
3005 3006 3007 3008 3009
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3010 3011
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3012 3013 3014
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3015 3016 3017 3018
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3019 3020
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3021 3022 3023
			return -EINVAL;
		}

3024 3025
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3026 3027 3028
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3029 3030 3031
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3044 3045 3046 3047
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
3048
			 (int) target_obj_priv->gtt_offset,
3049 3050
			 (int) reloc->presumed_offset,
			 reloc->delta);
3051 3052
#endif

3053 3054
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3055 3056 3057 3058

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3059
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3060 3061 3062 3063
			drm_gem_object_unreference(target_obj);
			continue;
		}

3064 3065 3066 3067 3068
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3069 3070 3071 3072 3073
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3074
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3075 3076 3077
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
						       ~(PAGE_SIZE - 1)));
3078
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3079
						   (reloc_offset & (PAGE_SIZE - 1)));
3080
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3081 3082 3083

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3084
			  obj, (unsigned int) reloc->offset,
3085 3086 3087
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3088
		io_mapping_unmap_atomic(reloc_page);
3089

3090 3091
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3092
		 */
3093
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/** Dispatch a batchbuffer to the ring
 */
static int
i915_dispatch_gem_execbuffer(struct drm_device *dev,
			      struct drm_i915_gem_execbuffer *exec,
3110
			      struct drm_clip_rect *cliprects,
3111 3112 3113 3114 3115
			      uint64_t exec_offset)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int nbox = exec->num_cliprects;
	int i = 0, count;
3116
	uint32_t exec_start, exec_len;
3117 3118 3119 3120 3121 3122 3123 3124 3125
	RING_LOCALS;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	count = nbox ? nbox : 1;

	for (i = 0; i < count; i++) {
		if (i < nbox) {
3126
			int ret = i915_emit_box(dev, cliprects, i,
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
						exec->DR1, exec->DR4);
			if (ret)
				return ret;
		}

		if (IS_I830(dev) || IS_845G(dev)) {
			BEGIN_LP_RING(4);
			OUT_RING(MI_BATCH_BUFFER);
			OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			OUT_RING(exec_start + exec_len - 4);
			OUT_RING(0);
			ADVANCE_LP_RING();
		} else {
			BEGIN_LP_RING(2);
			if (IS_I965G(dev)) {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6) |
					 MI_BATCH_NON_SECURE_I965);
				OUT_RING(exec_start);
			} else {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6));
				OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			}
			ADVANCE_LP_RING();
		}
	}

	/* XXX breadcrumb */
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3162 3163 3164 3165
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3166 3167 3168 3169 3170 3171 3172 3173
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3174
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3175 3176

	mutex_lock(&dev->struct_mutex);
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

		ret = i915_wait_request(dev, request->seqno);
		if (ret != 0)
			break;
	}
3191
	mutex_unlock(&dev->struct_mutex);
3192

3193 3194 3195
	return ret;
}

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
static int
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3211
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	if (*relocs == NULL)
		return -ENOMEM;

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3225
			drm_free_large(*relocs);
3226
			*relocs = NULL;
3227
			return -EFAULT;
3228 3229 3230 3231 3232
		}

		reloc_index += exec_list[i].relocation_count;
	}

3233
	return 0;
3234 3235 3236 3237 3238 3239 3240 3241
}

static int
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3242
	int ret = 0;
3243 3244 3245

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3246
		int unwritten;
3247 3248 3249

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3250 3251 3252 3253 3254 3255 3256 3257
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3258 3259 3260 3261 3262
		}

		reloc_count += exec_list[i].relocation_count;
	}

3263
err:
3264
	drm_free_large(relocs);
3265 3266 3267 3268

	return ret;
}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
static int
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3287 3288 3289 3290 3291 3292 3293 3294 3295
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3296
	struct drm_i915_gem_object *obj_priv;
3297
	struct drm_clip_rect *cliprects = NULL;
3298 3299
	struct drm_i915_gem_relocation_entry *relocs;
	int ret, ret2, i, pinned = 0;
3300
	uint64_t exec_offset;
3301
	uint32_t seqno, flush_domains, reloc_index;
3302
	int pin_tries;
3303 3304 3305 3306 3307 3308

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

3309 3310 3311 3312
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3313
	/* Copy in the exec list from userland */
3314 3315
	exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
	object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	if (exec_list == NULL || object_list == NULL) {
		DRM_ERROR("Failed to allocate exec or object list "
			  "for %d buffers\n",
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		goto pre_mutex_err;
	}

3333
	if (args->num_cliprects != 0) {
3334 3335
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
		if (cliprects == NULL)
			goto pre_mutex_err;

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3350 3351 3352 3353 3354
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3355 3356 3357 3358 3359 3360 3361
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

	if (dev_priv->mm.wedged) {
		DRM_ERROR("Execbuf while wedged\n");
		mutex_unlock(&dev->struct_mutex);
3362 3363
		ret = -EIO;
		goto pre_mutex_err;
3364 3365 3366 3367 3368
	}

	if (dev_priv->mm.suspended) {
		DRM_ERROR("Execbuf while VT-switched.\n");
		mutex_unlock(&dev->struct_mutex);
3369 3370
		ret = -EBUSY;
		goto pre_mutex_err;
3371 3372
	}

3373
	/* Look up object handles */
3374 3375 3376 3377 3378 3379 3380 3381 3382
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
			ret = -EBADF;
			goto err;
		}
3383 3384 3385 3386 3387 3388 3389 3390 3391

		obj_priv = object_list[i]->driver_private;
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
			ret = -EBADF;
			goto err;
		}
		obj_priv->in_execbuffer = true;
3392
	}
3393

3394 3395 3396
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3397 3398
		reloc_index = 0;

3399 3400 3401 3402 3403
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3404 3405
							       &exec_list[i],
							       &relocs[reloc_index]);
3406 3407 3408
			if (ret)
				break;
			pinned = i + 1;
3409
			reloc_index += exec_list[i].relocation_count;
3410 3411 3412 3413 3414 3415
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3416
		if (ret != -ENOSPC || pin_tries >= 1) {
3417 3418
			if (ret != -ERESTARTSYS)
				DRM_ERROR("Failed to pin buffers %d\n", ret);
3419 3420
			goto err;
		}
3421 3422 3423 3424

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3425
		pinned = 0;
3426 3427 3428 3429 3430

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
		if (ret)
			goto err;
3431 3432 3433 3434
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3435 3436 3437 3438 3439 3440
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3441

3442 3443 3444 3445 3446 3447 3448 3449
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3450 3451
	i915_verify_inactive(dev, __FILE__, __LINE__);

3452 3453 3454 3455 3456 3457 3458
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3459 3460 3461
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3462
		/* Compute new gpu domains and update invalidate/flush */
3463
		i915_gem_object_set_to_gpu_domain(obj);
3464 3465 3466 3467
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
		if (dev->flush_domains)
3479 3480
			(void)i915_add_request(dev, file_priv,
					       dev->flush_domains);
3481
	}
3482

3483 3484 3485 3486 3487 3488
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

		obj->write_domain = obj->pending_write_domain;
	}

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3499
	i915_gem_dump_object(batch_obj,
3500 3501 3502 3503 3504 3505
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3506
	ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	flush_domains = i915_retire_commands(dev);

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3527
	seqno = i915_add_request(dev, file_priv, flush_domains);
3528 3529 3530 3531
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3532
		i915_gem_object_move_to_active(obj, seqno);
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3544 3545 3546
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3547 3548 3549 3550 3551
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
			obj_priv = object_list[i]->driver_private;
			obj_priv->in_execbuffer = false;
		}
3552
		drm_gem_object_unreference(object_list[i]);
3553
	}
3554 3555 3556

	mutex_unlock(&dev->struct_mutex);

3557 3558 3559 3560 3561 3562
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
3563 3564
		if (ret) {
			ret = -EFAULT;
3565 3566 3567
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
3568
		}
3569 3570
	}

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3585
pre_mutex_err:
3586 3587
	drm_free_large(object_list);
	drm_free_large(exec_list);
3588
	kfree(cliprects);
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603

	return ret;
}

int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
		if (ret != 0) {
3604
			if (ret != -EBUSY && ret != -ERESTARTSYS)
3605
				DRM_ERROR("Failure to bind: %d\n", ret);
3606 3607
			return ret;
		}
3608 3609 3610 3611 3612
	}
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle tiled surfaces.
	 */
3613
	if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3614
		ret = i915_gem_object_get_fence_reg(obj);
3615 3616 3617 3618 3619 3620
		if (ret != 0) {
			if (ret != -EBUSY && ret != -ERESTARTSYS)
				DRM_ERROR("Failure to install fence: %d\n",
					  ret);
			return ret;
		}
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	}
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
3631
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
		    !list_empty(&obj_priv->list))
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
3658
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}
	obj_priv = obj->driver_private;

J
Jesse Barnes 已提交
3687 3688 3689
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3690
		drm_gem_object_unreference(obj);
3691
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
3704 3705 3706 3707 3708
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3709
	i915_gem_object_flush_cpu_write_domain(obj);
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
3723
	struct drm_i915_gem_object *obj_priv;
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

J
Jesse Barnes 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	obj_priv = obj->driver_private;
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

3769
	mutex_lock(&dev->struct_mutex);
3770 3771 3772 3773 3774 3775 3776
	/* Update the active list for the hardware's current position.
	 * Otherwise this only updates on a delayed timer or when irqs are
	 * actually unmasked, and our working set ends up being larger than
	 * required.
	 */
	i915_gem_retire_requests(dev);

3777
	obj_priv = obj->driver_private;
3778 3779 3780 3781 3782 3783 3784 3785
	/* Don't count being on the flushing list against the object being
	 * done.  Otherwise, a buffer left on the flushing list but not getting
	 * flushed (because nobody's flushing that domain) won't ever return
	 * unbusy and get reused by libdrm's bo cache.  The other expected
	 * consumer of this interface, OpenGL's occlusion queries, also specs
	 * that the objects get unbusy "eventually" without any interference.
	 */
	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;

3803
	obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	if (obj_priv == NULL)
		return -ENOMEM;

	/*
	 * We've just allocated pages from the kernel,
	 * so they've just been written by the CPU with
	 * zeros. They'll need to be clflushed before we
	 * use them with the GPU.
	 */
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;

3816 3817
	obj_priv->agp_type = AGP_USER_MEMORY;

3818 3819
	obj->driver_private = obj_priv;
	obj_priv->obj = obj;
3820
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
3821
	INIT_LIST_HEAD(&obj_priv->list);
3822
	INIT_LIST_HEAD(&obj_priv->fence_list);
3823

3824 3825 3826 3827 3828
	return 0;
}

void i915_gem_free_object(struct drm_gem_object *obj)
{
3829
	struct drm_device *dev = obj->dev;
3830 3831 3832 3833 3834
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

3835 3836 3837
	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

3838 3839
	i915_gem_object_unbind(obj);

3840
	i915_gem_free_mmap_offset(obj);
3841

3842
	kfree(obj_priv->page_cpu_valid);
3843
	kfree(obj_priv->bit_17);
3844
	kfree(obj->driver_private);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
}

/** Unbinds all objects that are on the given buffer list. */
static int
i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
{
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	while (!list_empty(head)) {
		obj_priv = list_first_entry(head,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		if (obj_priv->pin_count != 0) {
			DRM_ERROR("Pinned object in unbind list\n");
			mutex_unlock(&dev->struct_mutex);
			return -EINVAL;
		}

		ret = i915_gem_object_unbind(obj);
		if (ret != 0) {
			DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
				  ret);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}


	return 0;
}

3880
int
3881 3882 3883 3884 3885 3886
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno, cur_seqno, last_seqno;
	int stuck, ret;

3887 3888 3889 3890
	mutex_lock(&dev->struct_mutex);

	if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
3891
		return 0;
3892
	}
3893 3894 3895 3896 3897 3898

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 */
	dev_priv->mm.suspended = 1;

3899 3900 3901 3902 3903 3904
	/* Cancel the retire work handler, wait for it to finish if running
	 */
	mutex_unlock(&dev->struct_mutex);
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
	mutex_lock(&dev->struct_mutex);

3905 3906 3907 3908
	i915_kernel_lost_context(dev);

	/* Flush the GPU along with all non-CPU write domains
	 */
3909 3910
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938

	if (seqno == 0) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOMEM;
	}

	dev_priv->mm.waiting_gem_seqno = seqno;
	last_seqno = 0;
	stuck = 0;
	for (;;) {
		cur_seqno = i915_get_gem_seqno(dev);
		if (i915_seqno_passed(cur_seqno, seqno))
			break;
		if (last_seqno == cur_seqno) {
			if (stuck++ > 100) {
				DRM_ERROR("hardware wedged\n");
				dev_priv->mm.wedged = 1;
				DRM_WAKEUP(&dev_priv->irq_queue);
				break;
			}
		}
		msleep(10);
		last_seqno = cur_seqno;
	}
	dev_priv->mm.waiting_gem_seqno = 0;

	i915_gem_retire_requests(dev);

3939
	spin_lock(&dev_priv->mm.active_list_lock);
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
	if (!dev_priv->mm.wedged) {
		/* Active and flushing should now be empty as we've
		 * waited for a sequence higher than any pending execbuffer
		 */
		WARN_ON(!list_empty(&dev_priv->mm.active_list));
		WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
		/* Request should now be empty as we've also waited
		 * for the last request in the list
		 */
		WARN_ON(!list_empty(&dev_priv->mm.request_list));
	}
3951

3952 3953 3954 3955
	/* Empty the active and flushing lists to inactive.  If there's
	 * anything left at this point, it means that we're wedged and
	 * nothing good's going to happen by leaving them there.  So strip
	 * the GPU domains and just stuff them onto inactive.
3956
	 */
3957 3958
	while (!list_empty(&dev_priv->mm.active_list)) {
		struct drm_i915_gem_object *obj_priv;
3959

3960 3961 3962 3963 3964 3965
		obj_priv = list_first_entry(&dev_priv->mm.active_list,
					    struct drm_i915_gem_object,
					    list);
		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj_priv->obj);
	}
3966
	spin_unlock(&dev_priv->mm.active_list_lock);
3967 3968 3969 3970

	while (!list_empty(&dev_priv->mm.flushing_list)) {
		struct drm_i915_gem_object *obj_priv;

3971
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3972 3973 3974 3975 3976 3977 3978 3979
					    struct drm_i915_gem_object,
					    list);
		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj_priv->obj);
	}


	/* Move all inactive buffers out of the GTT. */
3980
	ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3981
	WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3982 3983
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3984
		return ret;
3985
	}
3986

3987 3988 3989
	i915_gem_cleanup_ringbuffer(dev);
	mutex_unlock(&dev->struct_mutex);

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
	return 0;
}

static int
i915_gem_init_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	/* If we need a physical address for the status page, it's already
	 * initialized at driver load time.
	 */
	if (!I915_NEED_GFX_HWS(dev))
		return 0;

	obj = drm_gem_object_alloc(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;
4013
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4014 4015 4016 4017 4018 4019 4020 4021 4022

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
		return ret;
	}

	dev_priv->status_gfx_addr = obj_priv->gtt_offset;

4023
	dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4024
	if (dev_priv->hw_status_page == NULL) {
4025 4026
		DRM_ERROR("Failed to map status page.\n");
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4027
		i915_gem_object_unpin(obj);
4028 4029 4030 4031 4032 4033
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}
	dev_priv->hws_obj = obj;
	memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
	I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4034
	I915_READ(HWS_PGA); /* posting read */
4035 4036 4037 4038 4039
	DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);

	return 0;
}

4040 4041 4042 4043
static void
i915_gem_cleanup_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4044 4045
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4046 4047 4048 4049

	if (dev_priv->hws_obj == NULL)
		return;

4050 4051 4052
	obj = dev_priv->hws_obj;
	obj_priv = obj->driver_private;

4053
	kunmap(obj_priv->pages[0]);
4054 4055 4056
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->hws_obj = NULL;
4057

4058 4059 4060 4061 4062 4063 4064
	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
	dev_priv->hw_status_page = NULL;

	/* Write high address into HWS_PGA when disabling. */
	I915_WRITE(HWS_PGA, 0x1ffff000);
}

J
Jesse Barnes 已提交
4065
int
4066 4067 4068 4069 4070
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
J
Jesse Barnes 已提交
4071
	drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4072
	int ret;
4073
	u32 head;
4074 4075 4076 4077 4078 4079 4080 4081

	ret = i915_gem_init_hws(dev);
	if (ret != 0)
		return ret;

	obj = drm_gem_object_alloc(dev, 128 * 1024);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
4082
		i915_gem_cleanup_hws(dev);
4083 4084 4085 4086 4087 4088 4089
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
4090
		i915_gem_cleanup_hws(dev);
4091 4092 4093 4094
		return ret;
	}

	/* Set up the kernel mapping for the ring. */
J
Jesse Barnes 已提交
4095 4096
	ring->Size = obj->size;
	ring->tail_mask = obj->size - 1;
4097

J
Jesse Barnes 已提交
4098 4099 4100 4101 4102
	ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
	ring->map.size = obj->size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;
4103

J
Jesse Barnes 已提交
4104 4105
	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
4106 4107
		DRM_ERROR("Failed to map ringbuffer.\n");
		memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4108
		i915_gem_object_unpin(obj);
4109
		drm_gem_object_unreference(obj);
4110
		i915_gem_cleanup_hws(dev);
4111 4112
		return -EINVAL;
	}
J
Jesse Barnes 已提交
4113 4114
	ring->ring_obj = obj;
	ring->virtual_start = ring->map.handle;
4115 4116 4117 4118

	/* Stop the ring if it's running. */
	I915_WRITE(PRB0_CTL, 0);
	I915_WRITE(PRB0_TAIL, 0);
4119
	I915_WRITE(PRB0_HEAD, 0);
4120 4121 4122

	/* Initialize the ring. */
	I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
		DRM_ERROR("Ring head not reset to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		I915_WRITE(PRB0_HEAD, 0);

		DRM_ERROR("Ring head forced to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
	}

4143 4144 4145 4146 4147
	I915_WRITE(PRB0_CTL,
		   ((obj->size - 4096) & RING_NR_PAGES) |
		   RING_NO_REPORT |
		   RING_VALID);

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* If the head is still not zero, the ring is dead */
	if (head != 0) {
		DRM_ERROR("Ring initialization failed "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		return -EIO;
	}

4161
	/* Update our cache of the ring state */
J
Jesse Barnes 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_kernel_lost_context(dev);
	else {
		ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
		ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
		ring->space = ring->head - (ring->tail + 8);
		if (ring->space < 0)
			ring->space += ring->Size;
	}
4171 4172 4173 4174

	return 0;
}

J
Jesse Barnes 已提交
4175
void
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (dev_priv->ring.ring_obj == NULL)
		return;

	drm_core_ioremapfree(&dev_priv->ring.map, dev);

	i915_gem_object_unpin(dev_priv->ring.ring_obj);
	drm_gem_object_unreference(dev_priv->ring.ring_obj);
	dev_priv->ring.ring_obj = NULL;
	memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));

4190
	i915_gem_cleanup_hws(dev);
4191 4192 4193 4194 4195 4196 4197 4198 4199
}

int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4200 4201 4202
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4203 4204 4205 4206 4207 4208
	if (dev_priv->mm.wedged) {
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
		dev_priv->mm.wedged = 0;
	}

	mutex_lock(&dev->struct_mutex);
4209 4210 4211
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4212 4213
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4214
		return ret;
4215
	}
4216

4217
	spin_lock(&dev_priv->mm.active_list_lock);
4218
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4219 4220
	spin_unlock(&dev_priv->mm.active_list_lock);

4221 4222 4223 4224
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	BUG_ON(!list_empty(&dev_priv->mm.request_list));
	mutex_unlock(&dev->struct_mutex);
4225 4226 4227

	drm_irq_install(dev);

4228 4229 4230 4231 4232 4233 4234 4235 4236
	return 0;
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	int ret;

J
Jesse Barnes 已提交
4237 4238 4239
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4240
	ret = i915_gem_idle(dev);
4241 4242
	drm_irq_uninstall(dev);

4243
	return ret;
4244 4245 4246 4247 4248 4249 4250
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4251 4252 4253
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4254 4255 4256
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4257 4258 4259 4260 4261
}

void
i915_gem_load(struct drm_device *dev)
{
4262
	int i;
4263 4264
	drm_i915_private_t *dev_priv = dev->dev_private;

4265
	spin_lock_init(&dev_priv->mm.active_list_lock);
4266 4267 4268 4269
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
	INIT_LIST_HEAD(&dev_priv->mm.request_list);
4270
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4271 4272 4273 4274
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
	dev_priv->mm.next_gem_seqno = 1;

4275 4276 4277
	/* Old X drivers will take 0-2 for front, back, depth buffers */
	dev_priv->fence_reg_start = 3;

4278
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4279 4280 4281 4282
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}

4295 4296
	i915_gem_detect_bit_6_swizzle(dev);
}
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
			      int id, int size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4312
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

	phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4331
	kfree(phys_obj);
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4360
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

	obj_priv = obj->driver_private;
	if (!obj_priv->phys_obj)
		return;

4376
	ret = i915_gem_object_get_pages(obj);
4377 4378 4379 4380 4381 4382
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4383
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4384 4385 4386 4387 4388
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4389
	drm_clflush_pages(obj_priv->pages, page_count);
4390
	drm_agp_chipset_flush(dev);
4391 4392

	i915_gem_object_put_pages(obj);
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
			    struct drm_gem_object *obj, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

	obj_priv = obj->driver_private;

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}


	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
						obj->size);
		if (ret) {
4425
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4426 4427 4428 4429 4430 4431 4432 4433
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4434
	ret = i915_gem_object_get_pages(obj);
4435 4436 4437 4438 4439 4440 4441 4442
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4443
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4444 4445 4446 4447 4448 4449
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4450 4451
	i915_gem_object_put_pages(obj);

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4470
	DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4471 4472 4473 4474 4475 4476 4477
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}