i915_gem.c 127.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
32
#include "intel_drv.h"
33
#include <linux/swap.h>
J
Jesse Barnes 已提交
34
#include <linux/pci.h>
35

36 37
#define I915_GEM_GPU_DOMAINS	(~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))

38 39 40 41 42 43 44 45 46
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 49 50
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 52 53
static int i915_gem_evict_something(struct drm_device *dev, int min_size);
static int i915_gem_evict_from_list(struct drm_device *dev,
				    struct list_head *head);
54 55 56
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
57

58 59 60
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

J
Jesse Barnes 已提交
61 62
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
63 64 65
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
66 67 68
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
69 70 71
		return -EINVAL;
	}

J
Jesse Barnes 已提交
72 73
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
74

J
Jesse Barnes 已提交
75 76 77 78
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
79

J
Jesse Barnes 已提交
80 81 82 83 84 85 86 87 88
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 90
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
91
	return ret;
92 93
}

94 95 96 97 98 99 100 101 102 103
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
104 105
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
106 107 108 109

	return 0;
}

110 111 112 113 114 115 116 117 118 119

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
120 121
	int ret;
	u32 handle;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
	obj = drm_gem_object_alloc(dev, args->size);
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_handle_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	if (ret)
		return ret;

	args->handle = handle;

	return 0;
}

143 144 145 146 147 148 149
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
150
	int unwritten;
151 152 153 154

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
155
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156 157
	kunmap_atomic(vaddr, KM_USER0);

158 159 160 161
	if (unwritten)
		return -EFAULT;

	return 0;
162 163
}

164 165 166 167 168 169 170 171 172
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static inline int
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
	if (dst_vaddr == NULL)
		return -ENOMEM;

	src_vaddr = kmap_atomic(src_page, KM_USER1);
	if (src_vaddr == NULL) {
		kunmap_atomic(dst_vaddr, KM_USER0);
		return -ENOMEM;
	}

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

	kunmap_atomic(src_vaddr, KM_USER1);
	kunmap_atomic(dst_vaddr, KM_USER0);

	return 0;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static inline int
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

	gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
	if (gpu_vaddr == NULL)
		return -ENOMEM;

	cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
	if (cpu_vaddr == NULL) {
		kunmap_atomic(gpu_vaddr, KM_USER0);
		return -ENOMEM;
	}

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	kunmap_atomic(cpu_vaddr, KM_USER1);
	kunmap_atomic(gpu_vaddr, KM_USER0);

	return 0;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static inline gfp_t
i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
{
	return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
}

static inline void
i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
{
	mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
}

static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

	ret = i915_gem_object_get_pages(obj);

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;
		gfp_t gfp;

		ret = i915_gem_evict_something(dev, obj->size);
		if (ret)
			return ret;

		gfp = i915_gem_object_get_page_gfp_mask(obj);
		i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
		ret = i915_gem_object_get_pages(obj);
		i915_gem_object_set_page_gfp_mask (obj, gfp);
	}

	return ret;
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
385
	int do_bit17_swizzling;
386 387 388 389 390 391 392 393 394 395 396

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

397
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398 399 400 401 402
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403
				      num_pages, 1, 0, user_pages, NULL);
404 405 406 407 408 409
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

410 411
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

412 413
	mutex_lock(&dev->struct_mutex);

414 415
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

446 447 448 449 450 451 452 453 454 455 456 457 458 459
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    1);
		} else {
			ret = slow_shmem_copy(user_pages[data_page_index],
					      data_page_offset,
					      obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      page_length);
		}
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
477
	drm_free_large(user_pages);
478 479 480 481

	return ret;
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

511
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
512
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513 514 515 516 517 518
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
519 520 521

	drm_gem_object_unreference(obj);

522
	return ret;
523 524
}

525 526
/* This is the fast write path which cannot handle
 * page faults in the source data
527
 */
528 529 530 531 532 533

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
534 535
{
	char *vaddr_atomic;
536
	unsigned long unwritten;
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
	io_mapping_unmap_atomic(vaddr_atomic);
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

static inline int
552 553 554 555
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
556
{
557
	char *src_vaddr, *dst_vaddr;
558 559
	unsigned long unwritten;

560 561 562 563 564 565 566
	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
	src_vaddr = kmap_atomic(user_page, KM_USER1);
	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
						      src_vaddr + user_offset,
						      length);
	kunmap_atomic(src_vaddr, KM_USER1);
	io_mapping_unmap_atomic(dst_vaddr);
567 568
	if (unwritten)
		return -EFAULT;
569 570 571
	return 0;
}

572 573 574 575 576 577 578
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
579
	unsigned long unwritten;
580 581 582 583

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
584
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585 586
	kunmap_atomic(vaddr, KM_USER0);

587 588
	if (unwritten)
		return -EFAULT;
589 590 591
	return 0;
}

592 593 594 595
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
596
static int
597 598 599
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
600 601
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
602
	drm_i915_private_t *dev_priv = dev->dev_private;
603
	ssize_t remain;
604
	loff_t offset, page_base;
605
	char __user *user_data;
606 607
	int page_offset, page_length;
	int ret;
608 609 610 611 612 613 614 615 616 617 618 619 620

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
621
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622 623 624 625 626 627 628 629 630
	if (ret)
		goto fail;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
631 632 633
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
634
		 */
635 636 637 638 639 640 641 642 643 644
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
645 646
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
647
		 */
648 649
		if (ret)
			goto fail;
650

651 652 653
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
654 655 656 657 658 659 660 661 662
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

663 664 665 666 667 668 669
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
670
static int
671 672 673
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
674
{
675 676 677 678 679 680 681 682 683
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
684
	int ret;
685 686 687 688 689 690 691 692 693 694 695 696
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

697
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698 699 700 701 702 703 704 705 706 707 708
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
709 710

	mutex_lock(&dev->struct_mutex);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
					gtt_page_base, gtt_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
			goto out_unpin_object;

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
767
	drm_free_large(user_pages);
768 769 770 771

	return ret;
}

772 773 774 775
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
776
static int
777 778 779
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
780
{
781 782 783 784 785
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
786
	int ret;
787 788 789

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
790 791 792

	mutex_lock(&dev->struct_mutex);

793 794 795
	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;
796

797
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
860
	int do_bit17_swizzling;
861 862 863 864 865 866 867 868 869 870 871

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

872
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873 874 875 876 877 878 879 880 881 882
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
883 884
	}

885 886
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

887 888
	mutex_lock(&dev->struct_mutex);

889 890
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
891 892 893 894 895 896 897
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
898
	offset = args->offset;
899
	obj_priv->dirty = 1;
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

921 922 923 924 925 926 927 928 929 930 931 932 933 934
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    0);
		} else {
			ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length);
		}
935 936 937 938 939 940
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
941 942
	}

943 944 945
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
946
	mutex_unlock(&dev->struct_mutex);
947 948 949
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
950
	drm_free_large(user_pages);
951

952
	return ret;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
990 991 992
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993 994 995 996 997 998
		 dev->gtt_total != 0) {
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
999 1000
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001 1002 1003 1004 1005 1006 1007
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

	drm_gem_object_unreference(obj);

	return ret;
}

/**
1020 1021
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1022 1023 1024 1025 1026
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1027
	struct drm_i915_private *dev_priv = dev->dev_private;
1028 1029
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1030
	struct drm_i915_gem_object *obj_priv;
1031 1032
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1033 1034 1035 1036 1037
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1038
	/* Only handle setting domains to types used by the CPU. */
1039
	if (write_domain & I915_GEM_GPU_DOMAINS)
1040 1041
		return -EINVAL;

1042
	if (read_domains & I915_GEM_GPU_DOMAINS)
1043 1044 1045 1046 1047 1048 1049 1050
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1051 1052 1053
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
1054
	obj_priv = obj->driver_private;
1055 1056

	mutex_lock(&dev->struct_mutex);
1057 1058 1059

	intel_mark_busy(dev, obj);

1060
#if WATCH_BUF
1061
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062
		 obj, obj->size, read_domains, write_domain);
1063
#endif
1064 1065
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066

1067 1068 1069 1070 1071 1072 1073 1074
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
			list_move_tail(&obj_priv->fence_list,
				       &dev_priv->mm.fence_list);
		}

1075 1076 1077 1078 1079 1080
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1081
	} else {
1082
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083 1084
	}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

#if WATCH_BUF
1113
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114 1115 1116 1117 1118
		 __func__, args->handle, obj, obj->size);
#endif
	obj_priv = obj->driver_private;

	/* Pinned buffers may be scanout, so flush the cache */
1119 1120 1121
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1193
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194 1195 1196 1197 1198 1199 1200 1201

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1202
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1203 1204 1205 1206
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return VM_FAULT_SIGBUS;
		}
1207
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1208 1209 1210 1211 1212 1213

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return VM_FAULT_SIGBUS;
		}
1214 1215 1216
	}

	/* Need a new fence register? */
1217
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1218
		ret = i915_gem_object_get_fence_reg(obj);
1219 1220
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
1221
			return VM_FAULT_SIGBUS;
1222
		}
1223
	}
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);

	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	case -EFAULT:
1238
	case -EINVAL:
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		return VM_FAULT_SIGBUS;
	default:
		return VM_FAULT_NOPAGE;
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_map_list *list;
1263
	struct drm_local_map *map;
1264 1265 1266 1267
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1268
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1308
	kfree(list->map);
1309 1310 1311 1312

	return ret;
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
 * Preserve the reservation of the mmaping with the DRM core code, but
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1327
void
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1355
		kfree(list->map);
1356 1357 1358 1359 1360 1361
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);

	obj_priv = obj->driver_private;

	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1436 1437 1438
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1439
			return ret;
1440
		}
1441 1442 1443 1444 1445 1446 1447 1448 1449
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1450
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1451 1452 1453 1454 1455
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
J
Jesse Barnes 已提交
1456
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1457 1458 1459 1460 1461 1462 1463 1464
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1465
void
1466
i915_gem_object_put_pages(struct drm_gem_object *obj)
1467 1468 1469 1470 1471
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count = obj->size / PAGE_SIZE;
	int i;

1472
	BUG_ON(obj_priv->pages_refcount == 0);
1473

1474 1475
	if (--obj_priv->pages_refcount != 0)
		return;
1476

1477 1478 1479
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	if (obj_priv->madv == I915_MADV_DONTNEED)
	    obj_priv->dirty = 0;

	for (i = 0; i < page_count; i++) {
		if (obj_priv->pages[i] == NULL)
			break;

		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
		    mark_page_accessed(obj_priv->pages[i]);

		page_cache_release(obj_priv->pages[i]);
	}
1495 1496
	obj_priv->dirty = 0;

1497
	drm_free_large(obj_priv->pages);
1498
	obj_priv->pages = NULL;
1499 1500 1501
}

static void
1502
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1514
	spin_lock(&dev_priv->mm.active_list_lock);
1515 1516
	list_move_tail(&obj_priv->list,
		       &dev_priv->mm.active_list);
1517
	spin_unlock(&dev_priv->mm.active_list_lock);
1518
	obj_priv->last_rendering_seqno = seqno;
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1546
	obj_priv->last_rendering_seqno = 0;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

/**
 * Creates a new sequence number, emitting a write of it to the status page
 * plus an interrupt, which will trigger i915_user_interrupt_handler.
 *
 * Must be called with struct_lock held.
 *
 * Returned sequence numbers are nonzero on success.
 */
static uint32_t
1563 1564
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
		 uint32_t flush_domains)
1565 1566
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1567
	struct drm_i915_file_private *i915_file_priv = NULL;
1568 1569 1570 1571 1572
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;
	RING_LOCALS;

1573 1574 1575
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1576
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	if (request == NULL)
		return 0;

	/* Grab the seqno we're going to make this request be, and bump the
	 * next (skipping 0 so it can be the reserved no-seqno value).
	 */
	seqno = dev_priv->mm.next_gem_seqno;
	dev_priv->mm.next_gem_seqno++;
	if (dev_priv->mm.next_gem_seqno == 0)
		dev_priv->mm.next_gem_seqno++;

	BEGIN_LP_RING(4);
	OUT_RING(MI_STORE_DWORD_INDEX);
	OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	OUT_RING(seqno);

	OUT_RING(MI_USER_INTERRUPT);
	ADVANCE_LP_RING();

	DRM_DEBUG("%d\n", seqno);

	request->seqno = seqno;
	request->emitted_jiffies = jiffies;
	was_empty = list_empty(&dev_priv->mm.request_list);
	list_add_tail(&request->list, &dev_priv->mm.request_list);
1602 1603 1604 1605 1606 1607
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
	if (flush_domains != 0) {
		struct drm_i915_gem_object *obj_priv, *next;

		list_for_each_entry_safe(obj_priv, next,
					 &dev_priv->mm.flushing_list, list) {
			struct drm_gem_object *obj = obj_priv->obj;

			if ((obj->write_domain & flush_domains) ==
			    obj->write_domain) {
				obj->write_domain = 0;
				i915_gem_object_move_to_active(obj, seqno);
			}
		}

	}

B
Ben Gamari 已提交
1628 1629 1630 1631 1632
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1633 1634 1635 1636 1637 1638 1639 1640 1641
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1642
static uint32_t
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
i915_retire_commands(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	uint32_t flush_domains = 0;
	RING_LOCALS;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
	BEGIN_LP_RING(2);
	OUT_RING(cmd);
	OUT_RING(0); /* noop */
	ADVANCE_LP_RING();
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1673
	spin_lock(&dev_priv->mm.active_list_lock);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	while (!list_empty(&dev_priv->mm.active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&dev_priv->mm.active_list,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1688
			goto out;
1689

1690 1691 1692 1693 1694
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1695 1696
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1697 1698 1699 1700 1701 1702 1703 1704
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1705
			i915_gem_object_move_to_inactive(obj);
1706 1707 1708 1709
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1710
	}
1711 1712
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1713 1714 1715 1716 1717
}

/**
 * Returns true if seq1 is later than seq2.
 */
1718
bool
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
i915_get_gem_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1741 1742 1743
	if (!dev_priv->hw_status_page)
		return;

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	seqno = i915_get_gem_seqno(dev);

	while (!list_empty(&dev_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

		request = list_first_entry(&dev_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1756
		    atomic_read(&dev_priv->mm.wedged)) {
1757 1758 1759
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1760
			list_del(&request->client_list);
1761
			kfree(request);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		} else
			break;
	}
}

void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
	i915_gem_retire_requests(dev);
1779 1780
	if (!dev_priv->mm.suspended &&
	    !list_empty(&dev_priv->mm.request_list))
1781
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1782 1783 1784 1785 1786 1787 1788
	mutex_unlock(&dev->struct_mutex);
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1789
static int
1790 1791 1792
i915_wait_request(struct drm_device *dev, uint32_t seqno)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1793
	u32 ier;
1794 1795 1796 1797
	int ret = 0;

	BUG_ON(seqno == 0);

1798
	if (atomic_read(&dev_priv->mm.wedged))
1799 1800
		return -EIO;

1801
	if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1802 1803 1804 1805
		if (IS_IGDNG(dev))
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1806 1807 1808 1809 1810 1811 1812
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

1813 1814 1815 1816 1817
		dev_priv->mm.waiting_gem_seqno = seqno;
		i915_user_irq_get(dev);
		ret = wait_event_interruptible(dev_priv->irq_queue,
					       i915_seqno_passed(i915_get_gem_seqno(dev),
								 seqno) ||
1818
					       atomic_read(&dev_priv->mm.wedged));
1819 1820 1821
		i915_user_irq_put(dev);
		dev_priv->mm.waiting_gem_seqno = 0;
	}
1822
	if (atomic_read(&dev_priv->mm.wedged))
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
			  __func__, ret, seqno, i915_get_gem_seqno(dev));

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
		i915_gem_retire_requests(dev);

	return ret;
}

static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd;
	RING_LOCALS;

#if WATCH_EXEC
	DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
		  invalidate_domains, flush_domains);
#endif

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);

1857
	if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
		/*
		 * read/write caches:
		 *
		 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
		 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
		 * also flushed at 2d versus 3d pipeline switches.
		 *
		 * read-only caches:
		 *
		 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
		 * MI_READ_FLUSH is set, and is always flushed on 965.
		 *
		 * I915_GEM_DOMAIN_COMMAND may not exist?
		 *
		 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
		 * invalidated when MI_EXE_FLUSH is set.
		 *
		 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
		 * invalidated with every MI_FLUSH.
		 *
		 * TLBs:
		 *
		 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
		 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
		 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
		 * are flushed at any MI_FLUSH.
		 */

		cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
		if ((invalidate_domains|flush_domains) &
		    I915_GEM_DOMAIN_RENDER)
			cmd &= ~MI_NO_WRITE_FLUSH;
		if (!IS_I965G(dev)) {
			/*
			 * On the 965, the sampler cache always gets flushed
			 * and this bit is reserved.
			 */
			if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
				cmd |= MI_READ_FLUSH;
		}
		if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
			cmd |= MI_EXE_FLUSH;

#if WATCH_EXEC
		DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
#endif
		BEGIN_LP_RING(2);
		OUT_RING(cmd);
		OUT_RING(0); /* noop */
		ADVANCE_LP_RING();
	}
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

1922 1923
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1924
	 */
1925
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
		ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1946
int
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1965 1966 1967 1968 1969 1970
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

1971 1972 1973 1974 1975 1976
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1977
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1978
	if (ret) {
1979 1980
		if (ret != -ERESTARTSYS)
			DRM_ERROR("set_domain failed: %d\n", ret);
1981 1982 1983
		return ret;
	}

1984 1985
	BUG_ON(obj_priv->active);

1986 1987 1988 1989 1990 1991
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

1992
	i915_gem_object_put_pages(obj);
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);

	return 0;
}

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return !obj_priv->dirty || obj_priv->madv == I915_MADV_DONTNEED;
}

static struct drm_gem_object *
i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	struct drm_gem_object *best = NULL;
	struct drm_gem_object *first = NULL;

	/* Try to find the smallest clean object */
	list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
		struct drm_gem_object *obj = obj_priv->obj;
		if (obj->size >= min_size) {
			if (i915_gem_object_is_purgeable(obj_priv) &&
			    (!best || obj->size < best->size)) {
				best = obj;
				if (best->size == min_size)
					return best;
			}
			if (!first)
			    first = obj;
		}
	}

	return best ? best : first;
}

static int
i915_gem_evict_everything(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;
	int ret;
	bool lists_empty;

	DRM_INFO("GTT full, evicting everything: "
		 "%d objects [%d pinned], "
		 "%d object bytes [%d pinned], "
		 "%d/%d gtt bytes\n",
		 atomic_read(&dev->object_count),
		 atomic_read(&dev->pin_count),
		 atomic_read(&dev->object_memory),
		 atomic_read(&dev->pin_memory),
		 atomic_read(&dev->gtt_memory),
		 dev->gtt_total);

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->mm.active_list));
	spin_unlock(&dev_priv->mm.active_list_lock);

	if (lists_empty) {
		DRM_ERROR("GTT full, but lists empty!\n");
		return -ENOSPC;
	}

	/* Flush everything (on to the inactive lists) and evict */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
	if (seqno == 0)
		return -ENOMEM;

	ret = i915_wait_request(dev, seqno);
	if (ret)
		return ret;

	ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
	if (ret)
		return ret;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->mm.active_list));
	spin_unlock(&dev_priv->mm.active_list_lock);
	BUG_ON(!lists_empty);

	return 0;
}

2095
static int
2096
i915_gem_evict_something(struct drm_device *dev, int min_size)
2097 2098 2099
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
2100 2101
	int have_waited = 0;
	int ret;
2102 2103

	for (;;) {
2104 2105
		i915_gem_retire_requests(dev);

2106 2107 2108
		/* If there's an inactive buffer available now, grab it
		 * and be done.
		 */
2109 2110 2111 2112
		obj = i915_gem_find_inactive_object(dev, min_size);
		if (obj) {
			struct drm_i915_gem_object *obj_priv;

2113 2114 2115
#if WATCH_LRU
			DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
2116 2117
			obj_priv = obj->driver_private;
			BUG_ON(obj_priv->pin_count != 0);
2118 2119 2120
			BUG_ON(obj_priv->active);

			/* Wait on the rendering and unbind the buffer. */
2121
			return i915_gem_object_unbind(obj);
2122 2123
		}

2124 2125 2126
		if (have_waited)
			return 0;

2127
		/* If we didn't get anything, but the ring is still processing
2128 2129
		 * things, wait for the next to finish and hopefully leave us
		 * a buffer to evict.
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
		 */
		if (!list_empty(&dev_priv->mm.request_list)) {
			struct drm_i915_gem_request *request;

			request = list_first_entry(&dev_priv->mm.request_list,
						   struct drm_i915_gem_request,
						   list);

			ret = i915_wait_request(dev, request->seqno);
			if (ret)
2140
				return ret;
2141

2142 2143
			have_waited = 1;
			continue;
2144 2145 2146 2147 2148 2149 2150 2151
		}

		/* If we didn't have anything on the request list but there
		 * are buffers awaiting a flush, emit one and try again.
		 * When we wait on it, those buffers waiting for that flush
		 * will get moved to inactive.
		 */
		if (!list_empty(&dev_priv->mm.flushing_list)) {
2152 2153 2154
			struct drm_i915_gem_object *obj_priv;
			uint32_t seqno;

2155 2156 2157 2158 2159 2160 2161 2162
			obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
						    struct drm_i915_gem_object,
						    list);
			obj = obj_priv->obj;

			i915_gem_flush(dev,
				       obj->write_domain,
				       obj->write_domain);
2163 2164 2165 2166 2167 2168 2169
			seqno = i915_add_request(dev, NULL, obj->write_domain);
			if (seqno == 0)
				return -ENOMEM;

			ret = i915_wait_request(dev, seqno);
			if (ret)
				return ret;
2170

2171
			have_waited = 1;
2172 2173 2174
			continue;
		}

2175 2176 2177
		/* If we didn't do any of the above, there's no single buffer
		 * large enough to swap out for the new one, so just evict
		 * everything and start again. (This should be rare.)
2178
		 */
2179 2180 2181 2182 2183 2184
		if (!list_empty (&dev_priv->mm.inactive_list)) {
			DRM_INFO("GTT full, evicting inactive buffers\n");
			return i915_gem_evict_from_list(dev,
							&dev_priv->mm.inactive_list);
		} else
			return i915_gem_evict_everything(dev);
2185 2186 2187
	}
}

2188
int
2189
i915_gem_object_get_pages(struct drm_gem_object *obj)
2190 2191 2192 2193 2194 2195 2196 2197
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;
	int ret;

2198
	if (obj_priv->pages_refcount++ != 0)
2199 2200 2201 2202 2203 2204
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2205
	BUG_ON(obj_priv->pages != NULL);
2206
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2207
	if (obj_priv->pages == NULL) {
2208
		DRM_ERROR("Failed to allocate page list\n");
2209
		obj_priv->pages_refcount--;
2210 2211 2212 2213 2214 2215 2216 2217 2218
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_mapping_page(mapping, i, NULL);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
2219
			i915_gem_object_put_pages(obj);
2220 2221
			return ret;
		}
2222
		obj_priv->pages[i] = page;
2223
	}
2224 2225 2226 2227

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2228 2229 2230
	return 0;
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
2258
	int tile_width;
2259
	uint32_t fence_reg, val;
2260 2261 2262 2263
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2264
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2265
		     __func__, obj_priv->gtt_offset, obj->size);
2266 2267 2268
		return;
	}

2269 2270 2271
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2272
	else
2273 2274 2275 2276 2277
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2278 2279 2280 2281 2282 2283 2284 2285

	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2286 2287 2288 2289 2290
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2302
	uint32_t fence_size_bits;
2303

2304
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2305
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2306
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2307
		     __func__, obj_priv->gtt_offset);
2308 2309 2310
		return;
	}

2311 2312 2313 2314
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2315 2316 2317
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2318 2319 2320
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2340 2341
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2342 2343
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2344
	struct drm_i915_private *dev_priv = dev->dev_private;
2345 2346
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_i915_fence_reg *reg = NULL;
2347 2348
	struct drm_i915_gem_object *old_obj_priv = NULL;
	int i, ret, avail;
2349

2350 2351 2352 2353 2354 2355
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
		list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
		return 0;
	}

2356 2357 2358 2359 2360
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2361 2362 2363 2364 2365
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2366 2367
		break;
	case I915_TILING_Y:
2368 2369 2370 2371 2372
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2373 2374 2375 2376
		break;
	}

	/* First try to find a free reg */
2377
	avail = 0;
2378 2379 2380 2381
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			break;
2382 2383 2384 2385

		old_obj_priv = reg->obj->driver_private;
		if (!old_obj_priv->pin_count)
		    avail++;
2386 2387 2388 2389
	}

	/* None available, try to steal one or wait for a user to finish */
	if (i == dev_priv->num_fence_regs) {
2390
		struct drm_gem_object *old_obj = NULL;
2391

2392
		if (avail == 0)
C
Chris Wilson 已提交
2393
			return -ENOSPC;
2394

2395 2396 2397
		list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
				    fence_list) {
			old_obj = old_obj_priv->obj;
2398 2399 2400 2401

			if (old_obj_priv->pin_count)
				continue;

2402 2403 2404 2405 2406 2407
			/* Take a reference, as otherwise the wait_rendering
			 * below may cause the object to get freed out from
			 * under us.
			 */
			drm_gem_object_reference(old_obj);

2408 2409
			/* i915 uses fences for GPU access to tiled buffers */
			if (IS_I965G(dev) || !old_obj_priv->active)
2410
				break;
2411

2412 2413 2414 2415 2416 2417 2418 2419
			/* This brings the object to the head of the LRU if it
			 * had been written to.  The only way this should
			 * result in us waiting longer than the expected
			 * optimal amount of time is if there was a
			 * fence-using buffer later that was read-only.
			 */
			i915_gem_object_flush_gpu_write_domain(old_obj);
			ret = i915_gem_object_wait_rendering(old_obj);
2420 2421
			if (ret != 0) {
				drm_gem_object_unreference(old_obj);
2422
				return ret;
2423
			}
2424

2425
			break;
2426 2427 2428 2429 2430 2431
		}

		/*
		 * Zap this virtual mapping so we can set up a fence again
		 * for this object next time we need it.
		 */
2432 2433
		i915_gem_release_mmap(old_obj);

2434
		i = old_obj_priv->fence_reg;
2435 2436
		reg = &dev_priv->fence_regs[i];

2437
		old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2438
		list_del_init(&old_obj_priv->fence_list);
2439

2440
		drm_gem_object_unreference(old_obj);
2441 2442 2443
	}

	obj_priv->fence_reg = i;
2444 2445
	list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);

2446 2447 2448 2449 2450 2451 2452 2453
	reg->obj = obj;

	if (IS_I965G(dev))
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2454 2455

	return 0;
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2469
	drm_i915_private_t *dev_priv = dev->dev_private;
2470 2471 2472 2473
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (IS_I965G(dev))
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	else {
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2485 2486 2487

	dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2488
	list_del_init(&obj_priv->fence_list);
2489 2490
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

		i915_gem_object_flush_gpu_write_domain(obj);
		i915_gem_object_flush_gtt_write_domain(obj);
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

	i915_gem_clear_fence_reg (obj);

	return 0;
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_mm_node *free_space;
2537 2538
	bool retry_alloc = false;
	int ret;
2539

2540 2541
	if (dev_priv->mm.suspended)
		return -EBUSY;
2542 2543 2544 2545 2546 2547

	if (obj_priv->madv == I915_MADV_DONTNEED) {
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2548
	if (alignment == 0)
2549
		alignment = i915_gem_get_gtt_alignment(obj);
2550
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
		if (obj_priv->gtt_space != NULL) {
			obj_priv->gtt_space->private = obj;
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
		}
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2573
		ret = i915_gem_evict_something(dev, obj->size);
2574
		if (ret != 0) {
2575 2576
			if (ret != -ERESTARTSYS)
				DRM_ERROR("Failed to evict a buffer %d\n", ret);
2577 2578 2579 2580 2581 2582
			return ret;
		}
		goto search_free;
	}

#if WATCH_BUF
2583
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2584 2585
		 obj->size, obj_priv->gtt_offset);
#endif
2586 2587 2588 2589
	if (retry_alloc) {
		i915_gem_object_set_page_gfp_mask (obj,
						   i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
	}
2590
	ret = i915_gem_object_get_pages(obj);
2591 2592 2593 2594
	if (retry_alloc) {
		i915_gem_object_set_page_gfp_mask (obj,
						   i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
	}
2595 2596 2597
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
			ret = i915_gem_evict_something(dev, obj->size);
			if (ret) {
				if (ret != -ERESTARTSYS)
					DRM_ERROR("Failed to allocate space for backing pages %d\n", ret);

				/* now try to shrink everyone else */
				if (! retry_alloc) {
				    retry_alloc = true;
				    goto search_free;
				}

				return ret;
			}

			goto search_free;
		}

2618 2619 2620 2621 2622 2623 2624
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2625
					       obj_priv->pages,
2626
					       obj->size >> PAGE_SHIFT,
2627 2628
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2629
	if (obj_priv->agp_mem == NULL) {
2630
		i915_gem_object_put_pages(obj);
2631 2632
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2633 2634 2635 2636 2637 2638 2639 2640 2641

		ret = i915_gem_evict_something(dev, obj->size);
		if (ret) {
			if (ret != -ERESTARTSYS)
				DRM_ERROR("Failed to allocate space to bind AGP: %d\n", ret);
			return ret;
		}

		goto search_free;
2642 2643 2644 2645 2646 2647 2648 2649
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2650 2651
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2665
	if (obj_priv->pages == NULL)
2666 2667
		return;

2668
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2669 2670
}

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	uint32_t seqno;

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
		return;

	/* Queue the GPU write cache flushing we need. */
	i915_gem_flush(dev, 0, obj->write_domain);
2683
	seqno = i915_add_request(dev, NULL, obj->write_domain);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	obj->write_domain = 0;
	i915_gem_object_move_to_active(obj, seqno);
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
	obj->write_domain = 0;
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
	obj->write_domain = 0;
}

2716 2717 2718 2719 2720 2721
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2722
int
2723 2724 2725
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2726
	int ret;
2727

2728 2729 2730 2731
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2732 2733 2734 2735 2736 2737 2738 2739
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2740
	 */
2741 2742
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2743

2744
	i915_gem_object_flush_cpu_write_domain(obj);
2745

2746 2747 2748 2749 2750 2751 2752 2753
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2754 2755
	}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	return 0;
}

/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
	int ret;

	i915_gem_object_flush_gpu_write_domain(obj);
2771
	/* Wait on any GPU rendering and flushing to occur. */
2772 2773 2774
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2775

2776
	i915_gem_object_flush_gtt_write_domain(obj);
2777

2778 2779
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2780
	 */
2781
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2782

2783 2784
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2785 2786
		i915_gem_clflush_object(obj);

2787
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2788 2789 2790 2791 2792
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2793 2794 2795 2796 2797 2798 2799 2800 2801
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2802 2803 2804 2805

	return 0;
}

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2917
static void
2918
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2919 2920 2921 2922 2923
{
	struct drm_device		*dev = obj->dev;
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
2924

2925 2926
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2927

2928 2929
	intel_mark_busy(dev, obj);

2930 2931 2932
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2933 2934
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
2935 2936 2937 2938 2939
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
2940 2941
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
2942 2943 2944 2945 2946 2947 2948 2949 2950
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
2951 2952
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
2953
		flush_domains |= obj->write_domain;
2954 2955
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
2956 2957 2958 2959 2960
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
2961
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2962 2963 2964 2965 2966 2967 2968 2969
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

2970 2971 2972 2973 2974 2975 2976 2977
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
2978
	obj->read_domains = obj->pending_read_domains;
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
}

/**
2991
 * Moves the object from a partially CPU read to a full one.
2992
 *
2993 2994
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2995
 */
2996 2997
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2998 2999 3000
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3012
			drm_clflush_pages(obj_priv->pages + i, 1);
3013 3014 3015 3016 3017 3018
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3019
	kfree(obj_priv->page_cpu_valid);
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int i, ret;
3041

3042 3043
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3044

3045 3046
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
3047
	ret = i915_gem_object_wait_rendering(obj);
3048
	if (ret != 0)
3049
		return ret;
3050 3051 3052 3053 3054 3055
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3056

3057 3058 3059
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3060
	if (obj_priv->page_cpu_valid == NULL) {
3061 3062
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3063 3064 3065 3066
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3067 3068 3069 3070

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3071 3072
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3073 3074 3075
		if (obj_priv->page_cpu_valid[i])
			continue;

3076
		drm_clflush_pages(obj_priv->pages + i, 1);
3077 3078 3079 3080

		obj_priv->page_cpu_valid[i] = 1;
	}

3081 3082 3083 3084 3085 3086 3087
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	obj->read_domains |= I915_GEM_DOMAIN_CPU;

3088 3089 3090 3091 3092 3093 3094 3095 3096
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
3097 3098
				 struct drm_i915_gem_exec_object *entry,
				 struct drm_i915_gem_relocation_entry *relocs)
3099 3100
{
	struct drm_device *dev = obj->dev;
3101
	drm_i915_private_t *dev_priv = dev->dev_private;
3102 3103
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int i, ret;
3104
	void __iomem *reloc_page;
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3117
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3118 3119
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3120 3121
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3122 3123

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3124
						   reloc->target_handle);
3125 3126 3127 3128 3129 3130
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
			return -EBADF;
		}
		target_obj_priv = target_obj->driver_private;

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3146 3147 3148 3149 3150
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3151
				  reloc->target_handle);
3152 3153 3154 3155 3156
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3157
		/* Validate that the target is in a valid r/w GPU domain */
3158 3159
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3160 3161 3162
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3163 3164 3165 3166
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3167 3168
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3169 3170
			return -EINVAL;
		}
3171 3172
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3173 3174 3175
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3176 3177 3178
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3179 3180 3181 3182 3183 3184
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3185 3186
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3187 3188 3189 3190

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3191
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3192 3193 3194 3195
			drm_gem_object_unreference(target_obj);
			continue;
		}

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3227 3228 3229 3230 3231
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3232 3233 3234 3235 3236
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3237
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3238 3239 3240
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
						       ~(PAGE_SIZE - 1)));
3241
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3242
						   (reloc_offset & (PAGE_SIZE - 1)));
3243
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3244 3245 3246

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3247
			  obj, (unsigned int) reloc->offset,
3248 3249 3250
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3251
		io_mapping_unmap_atomic(reloc_page);
3252

3253 3254
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3255
		 */
3256
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/** Dispatch a batchbuffer to the ring
 */
static int
i915_dispatch_gem_execbuffer(struct drm_device *dev,
			      struct drm_i915_gem_execbuffer *exec,
3273
			      struct drm_clip_rect *cliprects,
3274 3275 3276 3277 3278
			      uint64_t exec_offset)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int nbox = exec->num_cliprects;
	int i = 0, count;
3279
	uint32_t exec_start, exec_len;
3280 3281 3282 3283 3284 3285 3286 3287 3288
	RING_LOCALS;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	count = nbox ? nbox : 1;

	for (i = 0; i < count; i++) {
		if (i < nbox) {
3289
			int ret = i915_emit_box(dev, cliprects, i,
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
						exec->DR1, exec->DR4);
			if (ret)
				return ret;
		}

		if (IS_I830(dev) || IS_845G(dev)) {
			BEGIN_LP_RING(4);
			OUT_RING(MI_BATCH_BUFFER);
			OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			OUT_RING(exec_start + exec_len - 4);
			OUT_RING(0);
			ADVANCE_LP_RING();
		} else {
			BEGIN_LP_RING(2);
			if (IS_I965G(dev)) {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6) |
					 MI_BATCH_NON_SECURE_I965);
				OUT_RING(exec_start);
			} else {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6));
				OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			}
			ADVANCE_LP_RING();
		}
	}

	/* XXX breadcrumb */
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3325 3326 3327 3328
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3329 3330 3331 3332 3333 3334 3335 3336
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3337
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3338 3339

	mutex_lock(&dev->struct_mutex);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

		ret = i915_wait_request(dev, request->seqno);
		if (ret != 0)
			break;
	}
3354
	mutex_unlock(&dev->struct_mutex);
3355

3356 3357 3358
	return ret;
}

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
static int
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3374
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	if (*relocs == NULL)
		return -ENOMEM;

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3388
			drm_free_large(*relocs);
3389
			*relocs = NULL;
3390
			return -EFAULT;
3391 3392 3393 3394 3395
		}

		reloc_index += exec_list[i].relocation_count;
	}

3396
	return 0;
3397 3398 3399 3400 3401 3402 3403 3404
}

static int
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3405
	int ret = 0;
3406 3407 3408

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3409
		int unwritten;
3410 3411 3412

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3413 3414 3415 3416 3417 3418 3419 3420
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3421 3422 3423 3424 3425
		}

		reloc_count += exec_list[i].relocation_count;
	}

3426
err:
3427
	drm_free_large(relocs);
3428 3429 3430 3431

	return ret;
}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
static int
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3450 3451 3452 3453 3454 3455 3456 3457 3458
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3459
	struct drm_i915_gem_object *obj_priv;
3460
	struct drm_clip_rect *cliprects = NULL;
3461 3462
	struct drm_i915_gem_relocation_entry *relocs;
	int ret, ret2, i, pinned = 0;
3463
	uint64_t exec_offset;
3464
	uint32_t seqno, flush_domains, reloc_index;
3465
	int pin_tries;
3466 3467 3468 3469 3470 3471

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

3472 3473 3474 3475
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3476
	/* Copy in the exec list from userland */
3477 3478
	exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
	object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	if (exec_list == NULL || object_list == NULL) {
		DRM_ERROR("Failed to allocate exec or object list "
			  "for %d buffers\n",
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		goto pre_mutex_err;
	}

3496
	if (args->num_cliprects != 0) {
3497 3498
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
		if (cliprects == NULL)
			goto pre_mutex_err;

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3513 3514 3515 3516 3517
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3518 3519 3520 3521
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3522
	if (atomic_read(&dev_priv->mm.wedged)) {
3523 3524
		DRM_ERROR("Execbuf while wedged\n");
		mutex_unlock(&dev->struct_mutex);
3525 3526
		ret = -EIO;
		goto pre_mutex_err;
3527 3528 3529 3530 3531
	}

	if (dev_priv->mm.suspended) {
		DRM_ERROR("Execbuf while VT-switched.\n");
		mutex_unlock(&dev->struct_mutex);
3532 3533
		ret = -EBUSY;
		goto pre_mutex_err;
3534 3535
	}

3536
	/* Look up object handles */
3537 3538 3539 3540 3541 3542 3543 3544 3545
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
			ret = -EBADF;
			goto err;
		}
3546 3547 3548 3549 3550 3551 3552 3553 3554

		obj_priv = object_list[i]->driver_private;
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
			ret = -EBADF;
			goto err;
		}
		obj_priv->in_execbuffer = true;
3555
	}
3556

3557 3558 3559
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3560 3561
		reloc_index = 0;

3562 3563 3564 3565 3566
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3567 3568
							       &exec_list[i],
							       &relocs[reloc_index]);
3569 3570 3571
			if (ret)
				break;
			pinned = i + 1;
3572
			reloc_index += exec_list[i].relocation_count;
3573 3574 3575 3576 3577 3578
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3579
		if (ret != -ENOSPC || pin_tries >= 1) {
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
				for (i = 0; i < args->buffer_count; i++)
					total_size += object_list[i]->size;
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
					  pinned+1, args->buffer_count,
					  total_size, ret);
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3597 3598
			goto err;
		}
3599 3600 3601 3602

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3603
		pinned = 0;
3604 3605 3606

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3607
		if (ret && ret != -ENOSPC)
3608
			goto err;
3609 3610 3611 3612
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3613 3614 3615 3616 3617 3618
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3619

3620 3621 3622 3623 3624 3625 3626 3627
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3628 3629
	i915_verify_inactive(dev, __FILE__, __LINE__);

3630 3631 3632 3633 3634 3635 3636
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3637 3638 3639
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3640
		/* Compute new gpu domains and update invalidate/flush */
3641
		i915_gem_object_set_to_gpu_domain(obj);
3642 3643 3644 3645
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
		if (dev->flush_domains)
3657 3658
			(void)i915_add_request(dev, file_priv,
					       dev->flush_domains);
3659
	}
3660

3661 3662 3663 3664 3665 3666
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

		obj->write_domain = obj->pending_write_domain;
	}

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3677
	i915_gem_dump_object(batch_obj,
3678 3679 3680 3681 3682 3683
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3684
	ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	flush_domains = i915_retire_commands(dev);

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3705
	seqno = i915_add_request(dev, file_priv, flush_domains);
3706 3707 3708 3709
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3710
		i915_gem_object_move_to_active(obj, seqno);
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3722 3723 3724
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3725 3726 3727 3728 3729
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
			obj_priv = object_list[i]->driver_private;
			obj_priv->in_execbuffer = false;
		}
3730
		drm_gem_object_unreference(object_list[i]);
3731
	}
3732 3733 3734

	mutex_unlock(&dev->struct_mutex);

3735 3736 3737 3738 3739 3740
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
3741 3742
		if (ret) {
			ret = -EFAULT;
3743 3744 3745
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
3746
		}
3747 3748
	}

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3763
pre_mutex_err:
3764 3765
	drm_free_large(object_list);
	drm_free_large(exec_list);
3766
	kfree(cliprects);
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

	return ret;
}

int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
		if (ret != 0) {
3782
			if (ret != -EBUSY && ret != -ERESTARTSYS)
3783
				DRM_ERROR("Failure to bind: %d\n", ret);
3784 3785
			return ret;
		}
3786 3787 3788 3789 3790
	}
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle tiled surfaces.
	 */
3791
	if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3792
		ret = i915_gem_object_get_fence_reg(obj);
3793 3794 3795 3796 3797 3798
		if (ret != 0) {
			if (ret != -EBUSY && ret != -ERESTARTSYS)
				DRM_ERROR("Failure to install fence: %d\n",
					  ret);
			return ret;
		}
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	}
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
3809
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
		    !list_empty(&obj_priv->list))
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
3836
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}
	obj_priv = obj->driver_private;

3865 3866 3867 3868 3869 3870 3871
	if (obj_priv->madv == I915_MADV_DONTNEED) {
		DRM_ERROR("Attempting to pin a I915_MADV_DONTNEED buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
3872 3873 3874
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3875
		drm_gem_object_unreference(obj);
3876
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
3889 3890 3891 3892 3893
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3894
	i915_gem_object_flush_cpu_write_domain(obj);
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
3908
	struct drm_i915_gem_object *obj_priv;
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

J
Jesse Barnes 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	obj_priv = obj->driver_private;
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

3954
	mutex_lock(&dev->struct_mutex);
3955 3956 3957 3958 3959 3960 3961
	/* Update the active list for the hardware's current position.
	 * Otherwise this only updates on a delayed timer or when irqs are
	 * actually unmasked, and our working set ends up being larger than
	 * required.
	 */
	i915_gem_retire_requests(dev);

3962
	obj_priv = obj->driver_private;
3963 3964 3965 3966 3967 3968 3969 3970
	/* Don't count being on the flushing list against the object being
	 * done.  Otherwise, a buffer left on the flushing list but not getting
	 * flushed (because nobody's flushing that domain) won't ever return
	 * unbusy and get reused by libdrm's bo cache.  The other expected
	 * consumer of this interface, OpenGL's occlusion queries, also specs
	 * that the objects get unbusy "eventually" without any interference.
	 */
	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

	mutex_lock(&dev->struct_mutex);
	obj_priv = obj->driver_private;

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

	obj_priv->madv = args->madv;
	args->retained = obj_priv->gtt_space != NULL;

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4027 4028 4029 4030
int i915_gem_init_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;

4031
	obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	if (obj_priv == NULL)
		return -ENOMEM;

	/*
	 * We've just allocated pages from the kernel,
	 * so they've just been written by the CPU with
	 * zeros. They'll need to be clflushed before we
	 * use them with the GPU.
	 */
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;

4044 4045
	obj_priv->agp_type = AGP_USER_MEMORY;

4046 4047
	obj->driver_private = obj_priv;
	obj_priv->obj = obj;
4048
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
4049
	INIT_LIST_HEAD(&obj_priv->list);
4050
	INIT_LIST_HEAD(&obj_priv->fence_list);
4051
	obj_priv->madv = I915_MADV_WILLNEED;
4052

4053 4054 4055 4056 4057
	return 0;
}

void i915_gem_free_object(struct drm_gem_object *obj)
{
4058
	struct drm_device *dev = obj->dev;
4059 4060 4061 4062 4063
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

4064 4065 4066
	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

4067 4068
	i915_gem_object_unbind(obj);

4069 4070
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4071

4072
	kfree(obj_priv->page_cpu_valid);
4073
	kfree(obj_priv->bit_17);
4074
	kfree(obj->driver_private);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
}

/** Unbinds all objects that are on the given buffer list. */
static int
i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
{
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	while (!list_empty(head)) {
		obj_priv = list_first_entry(head,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		if (obj_priv->pin_count != 0) {
			DRM_ERROR("Pinned object in unbind list\n");
			mutex_unlock(&dev->struct_mutex);
			return -EINVAL;
		}

		ret = i915_gem_object_unbind(obj);
		if (ret != 0) {
			DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
				  ret);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}


	return 0;
}

4110
int
4111 4112 4113 4114 4115 4116
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno, cur_seqno, last_seqno;
	int stuck, ret;

4117 4118 4119 4120
	mutex_lock(&dev->struct_mutex);

	if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
4121
		return 0;
4122
	}
4123 4124 4125 4126 4127

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 */
	dev_priv->mm.suspended = 1;
B
Ben Gamari 已提交
4128
	del_timer(&dev_priv->hangcheck_timer);
4129

4130 4131 4132 4133 4134 4135
	/* Cancel the retire work handler, wait for it to finish if running
	 */
	mutex_unlock(&dev->struct_mutex);
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
	mutex_lock(&dev->struct_mutex);

4136 4137 4138 4139
	i915_kernel_lost_context(dev);

	/* Flush the GPU along with all non-CPU write domains
	 */
4140 4141
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

	if (seqno == 0) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOMEM;
	}

	dev_priv->mm.waiting_gem_seqno = seqno;
	last_seqno = 0;
	stuck = 0;
	for (;;) {
		cur_seqno = i915_get_gem_seqno(dev);
		if (i915_seqno_passed(cur_seqno, seqno))
			break;
		if (last_seqno == cur_seqno) {
			if (stuck++ > 100) {
				DRM_ERROR("hardware wedged\n");
4158
				atomic_set(&dev_priv->mm.wedged, 1);
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
				DRM_WAKEUP(&dev_priv->irq_queue);
				break;
			}
		}
		msleep(10);
		last_seqno = cur_seqno;
	}
	dev_priv->mm.waiting_gem_seqno = 0;

	i915_gem_retire_requests(dev);

4170
	spin_lock(&dev_priv->mm.active_list_lock);
4171
	if (!atomic_read(&dev_priv->mm.wedged)) {
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
		/* Active and flushing should now be empty as we've
		 * waited for a sequence higher than any pending execbuffer
		 */
		WARN_ON(!list_empty(&dev_priv->mm.active_list));
		WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
		/* Request should now be empty as we've also waited
		 * for the last request in the list
		 */
		WARN_ON(!list_empty(&dev_priv->mm.request_list));
	}
4182

4183 4184 4185 4186
	/* Empty the active and flushing lists to inactive.  If there's
	 * anything left at this point, it means that we're wedged and
	 * nothing good's going to happen by leaving them there.  So strip
	 * the GPU domains and just stuff them onto inactive.
4187
	 */
4188 4189
	while (!list_empty(&dev_priv->mm.active_list)) {
		struct drm_i915_gem_object *obj_priv;
4190

4191 4192 4193 4194 4195 4196
		obj_priv = list_first_entry(&dev_priv->mm.active_list,
					    struct drm_i915_gem_object,
					    list);
		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj_priv->obj);
	}
4197
	spin_unlock(&dev_priv->mm.active_list_lock);
4198 4199 4200 4201

	while (!list_empty(&dev_priv->mm.flushing_list)) {
		struct drm_i915_gem_object *obj_priv;

4202
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
4203 4204 4205 4206 4207 4208 4209 4210
					    struct drm_i915_gem_object,
					    list);
		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj_priv->obj);
	}


	/* Move all inactive buffers out of the GTT. */
4211
	ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
4212
	WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4213 4214
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4215
		return ret;
4216
	}
4217

4218 4219 4220
	i915_gem_cleanup_ringbuffer(dev);
	mutex_unlock(&dev->struct_mutex);

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	return 0;
}

static int
i915_gem_init_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	/* If we need a physical address for the status page, it's already
	 * initialized at driver load time.
	 */
	if (!I915_NEED_GFX_HWS(dev))
		return 0;

	obj = drm_gem_object_alloc(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;
4244
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4245 4246 4247 4248 4249 4250 4251 4252 4253

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
		return ret;
	}

	dev_priv->status_gfx_addr = obj_priv->gtt_offset;

4254
	dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4255
	if (dev_priv->hw_status_page == NULL) {
4256 4257
		DRM_ERROR("Failed to map status page.\n");
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4258
		i915_gem_object_unpin(obj);
4259 4260 4261 4262 4263 4264
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}
	dev_priv->hws_obj = obj;
	memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
	I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4265
	I915_READ(HWS_PGA); /* posting read */
4266 4267 4268 4269 4270
	DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);

	return 0;
}

4271 4272 4273 4274
static void
i915_gem_cleanup_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4275 4276
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4277 4278 4279 4280

	if (dev_priv->hws_obj == NULL)
		return;

4281 4282 4283
	obj = dev_priv->hws_obj;
	obj_priv = obj->driver_private;

4284
	kunmap(obj_priv->pages[0]);
4285 4286 4287
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->hws_obj = NULL;
4288

4289 4290 4291 4292 4293 4294 4295
	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
	dev_priv->hw_status_page = NULL;

	/* Write high address into HWS_PGA when disabling. */
	I915_WRITE(HWS_PGA, 0x1ffff000);
}

J
Jesse Barnes 已提交
4296
int
4297 4298 4299 4300 4301
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
J
Jesse Barnes 已提交
4302
	drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4303
	int ret;
4304
	u32 head;
4305 4306 4307 4308 4309 4310 4311 4312

	ret = i915_gem_init_hws(dev);
	if (ret != 0)
		return ret;

	obj = drm_gem_object_alloc(dev, 128 * 1024);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
4313
		i915_gem_cleanup_hws(dev);
4314 4315 4316 4317 4318 4319 4320
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
4321
		i915_gem_cleanup_hws(dev);
4322 4323 4324 4325
		return ret;
	}

	/* Set up the kernel mapping for the ring. */
J
Jesse Barnes 已提交
4326
	ring->Size = obj->size;
4327

J
Jesse Barnes 已提交
4328 4329 4330 4331 4332
	ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
	ring->map.size = obj->size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;
4333

J
Jesse Barnes 已提交
4334 4335
	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
4336 4337
		DRM_ERROR("Failed to map ringbuffer.\n");
		memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4338
		i915_gem_object_unpin(obj);
4339
		drm_gem_object_unreference(obj);
4340
		i915_gem_cleanup_hws(dev);
4341 4342
		return -EINVAL;
	}
J
Jesse Barnes 已提交
4343 4344
	ring->ring_obj = obj;
	ring->virtual_start = ring->map.handle;
4345 4346 4347 4348

	/* Stop the ring if it's running. */
	I915_WRITE(PRB0_CTL, 0);
	I915_WRITE(PRB0_TAIL, 0);
4349
	I915_WRITE(PRB0_HEAD, 0);
4350 4351 4352

	/* Initialize the ring. */
	I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
		DRM_ERROR("Ring head not reset to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		I915_WRITE(PRB0_HEAD, 0);

		DRM_ERROR("Ring head forced to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
	}

4373 4374 4375 4376 4377
	I915_WRITE(PRB0_CTL,
		   ((obj->size - 4096) & RING_NR_PAGES) |
		   RING_NO_REPORT |
		   RING_VALID);

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* If the head is still not zero, the ring is dead */
	if (head != 0) {
		DRM_ERROR("Ring initialization failed "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		return -EIO;
	}

4391
	/* Update our cache of the ring state */
J
Jesse Barnes 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_kernel_lost_context(dev);
	else {
		ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
		ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
		ring->space = ring->head - (ring->tail + 8);
		if (ring->space < 0)
			ring->space += ring->Size;
	}
4401 4402 4403 4404

	return 0;
}

J
Jesse Barnes 已提交
4405
void
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (dev_priv->ring.ring_obj == NULL)
		return;

	drm_core_ioremapfree(&dev_priv->ring.map, dev);

	i915_gem_object_unpin(dev_priv->ring.ring_obj);
	drm_gem_object_unreference(dev_priv->ring.ring_obj);
	dev_priv->ring.ring_obj = NULL;
	memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));

4420
	i915_gem_cleanup_hws(dev);
4421 4422 4423 4424 4425 4426 4427 4428 4429
}

int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4430 4431 4432
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4433
	if (atomic_read(&dev_priv->mm.wedged)) {
4434
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4435
		atomic_set(&dev_priv->mm.wedged, 0);
4436 4437 4438
	}

	mutex_lock(&dev->struct_mutex);
4439 4440 4441
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4442 4443
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4444
		return ret;
4445
	}
4446

4447
	spin_lock(&dev_priv->mm.active_list_lock);
4448
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4449 4450
	spin_unlock(&dev_priv->mm.active_list_lock);

4451 4452 4453 4454
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	BUG_ON(!list_empty(&dev_priv->mm.request_list));
	mutex_unlock(&dev->struct_mutex);
4455 4456 4457

	drm_irq_install(dev);

4458 4459 4460 4461 4462 4463 4464 4465 4466
	return 0;
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	int ret;

J
Jesse Barnes 已提交
4467 4468 4469
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4470
	ret = i915_gem_idle(dev);
4471 4472
	drm_irq_uninstall(dev);

4473
	return ret;
4474 4475 4476 4477 4478 4479 4480
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4481 4482 4483
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4484 4485 4486
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4487 4488 4489 4490 4491
}

void
i915_gem_load(struct drm_device *dev)
{
4492
	int i;
4493 4494
	drm_i915_private_t *dev_priv = dev->dev_private;

4495
	spin_lock_init(&dev_priv->mm.active_list_lock);
4496 4497 4498 4499
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
	INIT_LIST_HEAD(&dev_priv->mm.request_list);
4500
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4501 4502 4503 4504
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
	dev_priv->mm.next_gem_seqno = 1;

4505 4506 4507 4508
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4509 4510 4511
	/* Old X drivers will take 0-2 for front, back, depth buffers */
	dev_priv->fence_reg_start = 3;

4512
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4513 4514 4515 4516
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}

4529 4530
	i915_gem_detect_bit_6_swizzle(dev);
}
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
			      int id, int size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4546
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

	phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4565
	kfree(phys_obj);
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4594
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

	obj_priv = obj->driver_private;
	if (!obj_priv->phys_obj)
		return;

4610
	ret = i915_gem_object_get_pages(obj);
4611 4612 4613 4614 4615 4616
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4617
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4618 4619 4620 4621 4622
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4623
	drm_clflush_pages(obj_priv->pages, page_count);
4624
	drm_agp_chipset_flush(dev);
4625 4626

	i915_gem_object_put_pages(obj);
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
			    struct drm_gem_object *obj, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

	obj_priv = obj->driver_private;

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}


	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
						obj->size);
		if (ret) {
4659
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4660 4661 4662 4663 4664 4665 4666 4667
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4668
	ret = i915_gem_object_get_pages(obj);
4669 4670 4671 4672 4673 4674 4675 4676
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4677
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4678 4679 4680 4681 4682 4683
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4684 4685
	i915_gem_object_put_pages(obj);

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4704
	DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4705 4706 4707 4708 4709 4710 4711
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856

/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
    struct inode *inode;

    inode = obj->filp->f_path.dentry->d_inode;

    mutex_lock(&inode->i_mutex);
    truncate_inode_pages(inode->i_mapping, 0);
    mutex_unlock(&inode->i_mutex);
}

static int
i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		i915_gem_retire_requests(dev);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
				struct drm_gem_object *obj = obj_priv->obj;
				i915_gem_object_unbind(obj);
				i915_gem_object_truncate(obj);

				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
				struct drm_gem_object *obj = obj_priv->obj;
				i915_gem_object_unbind(obj);
				if (i915_gem_object_is_purgeable(obj_priv))
					i915_gem_object_truncate(obj);

				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}