i915_gem.c 131.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

112
	WARN_ON(i915_verify_lists(dev));
113 114
	return 0;
}
115

116 117 118 119 120 121 122 123
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

J
Jesse Barnes 已提交
124 125
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
126 127 128
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
129 130 131
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
132 133 134
		return -EINVAL;
	}

J
Jesse Barnes 已提交
135 136
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
137

J
Jesse Barnes 已提交
138 139 140 141
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
142

J
Jesse Barnes 已提交
143 144 145 146 147 148 149 150 151
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
152 153
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
154
	return ret;
155 156
}

157 158 159 160 161 162 163 164 165 166
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
167 168
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
169 170 171 172

	return 0;
}

173 174 175 176 177 178 179 180 181 182

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
183 184
	int ret;
	u32 handle;
185 186 187 188

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
189
	obj = i915_gem_alloc_object(dev, args->size);
190 191 192 193
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
194 195
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
196
		return ret;
197
	}
198

199 200
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
201

202
	args->handle = handle;
203 204 205
	return 0;
}

206 207 208 209 210 211 212
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
213
	int unwritten;
214 215 216 217

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
218
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
219 220
	kunmap_atomic(vaddr, KM_USER0);

221 222 223 224
	if (unwritten)
		return -EFAULT;

	return 0;
225 226
}

227 228 229
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
230
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
231 232 233 234 235

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

236
static inline void
237 238 239 240 241 242 243 244
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

245 246
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
247 248 249

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

250 251
	kunmap(src_page);
	kunmap(dst_page);
252 253
}

254
static inline void
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

274 275
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

299 300
	kunmap(cpu_page);
	kunmap(gpu_page);
301 302
}

303 304 305 306 307 308 309 310 311 312
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
313
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
314 315 316 317 318 319 320 321 322
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

323 324 325
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
326

327
	ret = i915_gem_object_get_pages(obj, 0);
328 329 330 331 332 333 334 335
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

336
	obj_priv = to_intel_bo(obj);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

371 372 373 374 375
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

376
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
377 378 379 380 381 382 383

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

384 385
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
386 387 388
		if (ret)
			return ret;

389
		ret = i915_gem_object_get_pages(obj, 0);
390 391 392 393 394
	}

	return ret;
}

395 396 397 398 399 400 401 402 403 404 405
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
406
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
407 408 409 410 411 412 413 414 415 416
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
417
	int do_bit17_swizzling;
418 419 420 421 422 423 424 425 426 427 428

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

429
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
430 431 432 433 434
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
435
				      num_pages, 1, 0, user_pages, NULL);
436 437 438 439 440 441
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

442 443
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

444 445 446
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
447

448 449
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
450 451 452 453 454 455 456
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

457
	obj_priv = to_intel_bo(obj);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

480
		if (do_bit17_swizzling) {
481
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
482
					      shmem_page_offset,
483 484 485 486 487 488 489 490 491 492
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
493
		}
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
509
	drm_free_large(user_pages);
510 511 512 513

	return ret;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
530
		return -ENOENT;
531
	obj_priv = to_intel_bo(obj);
532 533 534 535 536 537 538

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
539
		drm_gem_object_unreference_unlocked(obj);
540 541 542
		return -EINVAL;
	}

543
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
544
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
545 546 547 548 549 550
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
551

552
	drm_gem_object_unreference_unlocked(obj);
553

554
	return ret;
555 556
}

557 558
/* This is the fast write path which cannot handle
 * page faults in the source data
559
 */
560 561 562 563 564 565

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
566 567
{
	char *vaddr_atomic;
568
	unsigned long unwritten;
569

570
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
571 572
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
573
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
574 575 576 577 578 579 580 581 582
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

583
static inline void
584 585 586 587
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
588
{
589 590
	char __iomem *dst_vaddr;
	char *src_vaddr;
591

592 593 594 595 596 597 598 599 600
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
601 602
}

603 604 605 606 607 608 609
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
610
	unsigned long unwritten;
611 612 613 614

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
615
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
616 617
	kunmap_atomic(vaddr, KM_USER0);

618 619
	if (unwritten)
		return -EFAULT;
620 621 622
	return 0;
}

623 624 625 626
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
627
static int
628 629 630
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
631
{
632
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
633
	drm_i915_private_t *dev_priv = dev->dev_private;
634
	ssize_t remain;
635
	loff_t offset, page_base;
636
	char __user *user_data;
637 638
	int page_offset, page_length;
	int ret;
639 640 641 642 643 644

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;

645 646 647
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
648 649 650 651 652 653

	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
654
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
655 656 657
	if (ret)
		goto fail;

658
	obj_priv = to_intel_bo(obj);
659 660 661 662 663
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
664 665 666
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
667
		 */
668 669 670 671 672 673 674 675 676 677
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
678 679
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
680
		 */
681 682
		if (ret)
			goto fail;
683

684 685 686
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
687 688 689 690 691 692 693 694 695
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

696 697 698 699 700 701 702
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
703
static int
704 705 706
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
707
{
708
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
709 710 711 712 713 714 715 716
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
717
	int ret;
718 719 720 721 722 723 724 725 726 727 728 729
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

730
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
731 732 733 734 735 736 737 738 739 740 741
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
742

743 744 745 746
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out_unpin_pages;

747 748 749 750 751 752 753 754
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

755
	obj_priv = to_intel_bo(obj);
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

778 779 780 781 782
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
783 784 785 786 787 788 789 790 791 792 793 794 795

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
796
	drm_free_large(user_pages);
797 798 799 800

	return ret;
}

801 802 803 804
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
805
static int
806 807 808
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
809
{
810
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
811 812 813 814
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
815
	int ret;
816 817 818

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
819

820 821 822
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
823

824
	ret = i915_gem_object_get_pages(obj, 0);
825 826
	if (ret != 0)
		goto fail_unlock;
827

828
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
829 830 831
	if (ret != 0)
		goto fail_put_pages;

832
	obj_priv = to_intel_bo(obj);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
880
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
881 882 883 884 885 886 887 888 889 890
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
891
	int do_bit17_swizzling;
892 893 894 895 896 897 898 899 900 901 902

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

903
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
904 905 906 907 908 909 910 911 912 913
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
914 915
	}

916 917
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

918 919 920
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
921

922 923
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
924 925 926 927 928 929
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

930
	obj_priv = to_intel_bo(obj);
931
	offset = args->offset;
932
	obj_priv->dirty = 1;
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

954
		if (do_bit17_swizzling) {
955
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
956 957 958
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
959 960 961 962 963 964 965 966
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
967
		}
968 969 970 971

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
972 973
	}

974 975 976
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
977
	mutex_unlock(&dev->struct_mutex);
978 979 980
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
981
	drm_free_large(user_pages);
982

983
	return ret;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1002
		return -ENOENT;
1003
	obj_priv = to_intel_bo(obj);
1004 1005 1006 1007 1008 1009 1010

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
1011
		drm_gem_object_unreference_unlocked(obj);
1012 1013 1014 1015 1016 1017 1018 1019 1020
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1021 1022 1023
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1024 1025
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1026 1027 1028 1029 1030
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
1031 1032
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1033 1034 1035 1036 1037 1038 1039
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1040 1041 1042 1043 1044 1045

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

1046
	drm_gem_object_unreference_unlocked(obj);
1047 1048 1049 1050 1051

	return ret;
}

/**
1052 1053
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1054 1055 1056 1057 1058
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1059
	struct drm_i915_private *dev_priv = dev->dev_private;
1060 1061
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1062
	struct drm_i915_gem_object *obj_priv;
1063 1064
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1065 1066 1067 1068 1069
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1070
	/* Only handle setting domains to types used by the CPU. */
1071
	if (write_domain & I915_GEM_GPU_DOMAINS)
1072 1073
		return -EINVAL;

1074
	if (read_domains & I915_GEM_GPU_DOMAINS)
1075 1076 1077 1078 1079 1080 1081 1082
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1083 1084
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1085
		return -ENOENT;
1086
	obj_priv = to_intel_bo(obj);
1087

1088 1089 1090 1091 1092
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1093 1094 1095

	intel_mark_busy(dev, obj);

1096 1097
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1098

1099 1100 1101 1102
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1103 1104 1105
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1106 1107 1108
				       &dev_priv->mm.fence_list);
		}

1109 1110 1111 1112 1113 1114
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1115
	} else {
1116
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1117 1118
	}

1119 1120 1121 1122
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1143
	if (obj == NULL)
1144
		return -ENOENT;
1145 1146 1147 1148 1149

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
1150 1151 1152
	}

	/* Pinned buffers may be scanout, so flush the cache */
1153
	if (to_intel_bo(obj)->pin_count)
1154 1155
		i915_gem_object_flush_cpu_write_domain(obj);

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1182
		return -ENOENT;
1183 1184 1185 1186 1187 1188 1189 1190

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1191
	drm_gem_object_unreference_unlocked(obj);
1192 1193 1194 1195 1196 1197 1198 1199
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1220
	drm_i915_private_t *dev_priv = dev->dev_private;
1221
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1222 1223 1224
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1225
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1226 1227 1228 1229 1230 1231 1232 1233

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1234
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1235 1236
		if (ret)
			goto unlock;
1237 1238

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1239 1240
		if (ret)
			goto unlock;
1241 1242 1243
	}

	/* Need a new fence register? */
1244
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1245
		ret = i915_gem_object_get_fence_reg(obj, true);
1246 1247
		if (ret)
			goto unlock;
1248
	}
1249

1250 1251 1252
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1253 1254 1255 1256 1257
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1258
unlock:
1259 1260 1261
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1262 1263 1264
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1265 1266 1267 1268
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1269
		return VM_FAULT_SIGBUS;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1289
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1290
	struct drm_map_list *list;
1291
	struct drm_local_map *map;
1292 1293 1294 1295
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1296
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1310
		ret = -ENOSPC;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1322 1323
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1337
	kfree(list->map);
1338 1339 1340 1341

	return ret;
}

1342 1343 1344 1345
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1346
 * Preserve the reservation of the mmapping with the DRM core code, but
1347 1348 1349 1350 1351 1352 1353 1354 1355
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1356
void
1357 1358 1359
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1360
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1361 1362 1363 1364 1365 1366

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1367 1368 1369 1370
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1371
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1384
		kfree(list->map);
1385 1386 1387 1388 1389 1390
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1402
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1403 1404 1405 1406 1407 1408
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1409
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1410 1411 1412 1413 1414 1415
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1416
	if (INTEL_INFO(dev)->gen == 3)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1456
		return -ENOENT;
1457

1458 1459 1460 1461 1462
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1463

1464
	obj_priv = to_intel_bo(obj);
1465

1466 1467 1468 1469 1470 1471 1472 1473
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1474 1475
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1476 1477 1478
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1479
			return ret;
1480
		}
1481 1482 1483 1484 1485 1486 1487 1488 1489
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1490
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1504
void
1505
i915_gem_object_put_pages(struct drm_gem_object *obj)
1506
{
1507
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1508 1509 1510
	int page_count = obj->size / PAGE_SIZE;
	int i;

1511
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1512
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1513

1514 1515
	if (--obj_priv->pages_refcount != 0)
		return;
1516

1517 1518 1519
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1520
	if (obj_priv->madv == I915_MADV_DONTNEED)
1521
		obj_priv->dirty = 0;
1522 1523 1524 1525 1526 1527

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1528
			mark_page_accessed(obj_priv->pages[i]);
1529 1530 1531

		page_cache_release(obj_priv->pages[i]);
	}
1532 1533
	obj_priv->dirty = 0;

1534
	drm_free_large(obj_priv->pages);
1535
	obj_priv->pages = NULL;
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1548
static void
1549
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1550
			       struct intel_ring_buffer *ring)
1551
{
1552
	struct drm_device *dev = obj->dev;
1553
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1554
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1555

1556 1557
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1558 1559 1560 1561 1562 1563

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1564

1565
	/* Move from whatever list we were on to the tail of execution. */
1566
	list_move_tail(&obj_priv->list, &ring->active_list);
1567
	obj_priv->last_rendering_seqno = seqno;
1568 1569
}

1570 1571 1572 1573 1574
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1575
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1576 1577 1578 1579 1580

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1581

1582 1583 1584 1585
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1586
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1587
	struct inode *inode;
1588

1589 1590 1591 1592 1593 1594
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1595
	inode = obj->filp->f_path.dentry->d_inode;
1596 1597 1598
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1599 1600

	obj_priv->madv = __I915_MADV_PURGED;
1601 1602 1603 1604 1605 1606 1607 1608
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1609 1610 1611 1612 1613
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1614
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1615 1616

	if (obj_priv->pin_count != 0)
C
Chris Wilson 已提交
1617
		list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1618 1619 1620
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1621 1622
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1623
	obj_priv->last_rendering_seqno = 0;
1624
	obj_priv->ring = NULL;
1625 1626 1627 1628
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1629
	WARN_ON(i915_verify_lists(dev));
1630 1631
}

1632
static void
1633
i915_gem_process_flushing_list(struct drm_device *dev,
1634
			       uint32_t flush_domains,
1635
			       struct intel_ring_buffer *ring)
1636 1637 1638 1639 1640 1641 1642
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1643
		struct drm_gem_object *obj = &obj_priv->base;
1644

1645 1646
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1647 1648 1649 1650
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1651
			i915_gem_object_move_to_active(obj, ring);
1652 1653

			/* update the fence lru list */
1654 1655 1656 1657
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1658
						&dev_priv->mm.fence_list);
1659
			}
1660 1661 1662 1663 1664 1665 1666

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1667

1668
uint32_t
1669
i915_add_request(struct drm_device *dev,
1670
		 struct drm_file *file,
C
Chris Wilson 已提交
1671
		 struct drm_i915_gem_request *request,
1672
		 struct intel_ring_buffer *ring)
1673 1674
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1675
	struct drm_i915_file_private *file_priv = NULL;
1676 1677 1678
	uint32_t seqno;
	int was_empty;

1679 1680
	if (file != NULL)
		file_priv = file->driver_priv;
1681

C
Chris Wilson 已提交
1682 1683 1684 1685 1686
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1687

1688
	seqno = ring->add_request(dev, ring, 0);
1689
	ring->outstanding_lazy_request = false;
1690 1691

	request->seqno = seqno;
1692
	request->ring = ring;
1693
	request->emitted_jiffies = jiffies;
1694 1695 1696
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1697
	if (file_priv) {
1698
		spin_lock(&file_priv->mm.lock);
1699
		request->file_priv = file_priv;
1700
		list_add_tail(&request->client_list,
1701
			      &file_priv->mm.request_list);
1702
		spin_unlock(&file_priv->mm.lock);
1703
	}
1704

B
Ben Gamari 已提交
1705
	if (!dev_priv->mm.suspended) {
1706 1707
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1708
		if (was_empty)
1709 1710
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1711
	}
1712 1713 1714 1715 1716 1717 1718 1719 1720
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1721
static void
1722
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1723 1724 1725 1726
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1727
	if (INTEL_INFO(dev)->gen >= 4)
1728
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1729 1730 1731

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1732 1733
}

1734 1735
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1736
{
1737 1738 1739 1740 1741 1742 1743 1744 1745
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1746 1747
}

1748 1749
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1750
{
1751 1752
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1753

1754 1755 1756 1757 1758
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1759
		i915_gem_request_remove_from_client(request);
1760 1761 1762 1763
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1764 1765
		struct drm_i915_gem_object *obj_priv;

1766
		obj_priv = list_first_entry(&ring->active_list,
1767 1768 1769 1770
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
1771
		list_del_init(&obj_priv->gpu_write_list);
1772 1773 1774 1775
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1776
void i915_gem_reset_lists(struct drm_device *dev)
1777 1778 1779 1780
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1802 1803 1804 1805 1806 1807 1808 1809
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
}

1810 1811 1812
/**
 * This function clears the request list as sequence numbers are passed.
 */
1813 1814 1815
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1816 1817 1818 1819
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1820 1821
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1822 1823
		return;

1824 1825
	WARN_ON(i915_verify_lists(dev));

1826
	seqno = ring->get_seqno(dev, ring);
1827
	while (!list_empty(&ring->request_list)) {
1828 1829
		struct drm_i915_gem_request *request;

1830
		request = list_first_entry(&ring->request_list,
1831 1832 1833
					   struct drm_i915_gem_request,
					   list);

1834
		if (!i915_seqno_passed(seqno, request->seqno))
1835 1836 1837 1838 1839
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1840
		i915_gem_request_remove_from_client(request);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1854

1855
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1856
			break;
1857 1858 1859 1860 1861 1862

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1863
	}
1864 1865 1866

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1867
		ring->user_irq_put(dev, ring);
1868 1869
		dev_priv->trace_irq_seqno = 0;
	}
1870 1871

	WARN_ON(i915_verify_lists(dev));
1872 1873
}

1874 1875 1876 1877 1878
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1893 1894 1895 1896 1897
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1898
static void
1899 1900 1901 1902 1903 1904 1905 1906 1907
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1908 1909 1910 1911 1912 1913
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1914
	i915_gem_retire_requests(dev);
1915

1916
	if (!dev_priv->mm.suspended &&
1917 1918 1919
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1920
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1921 1922 1923
	mutex_unlock(&dev->struct_mutex);
}

1924
int
1925
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1926
		     bool interruptible, struct intel_ring_buffer *ring)
1927 1928
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1929
	u32 ier;
1930 1931 1932 1933
	int ret = 0;

	BUG_ON(seqno == 0);

1934 1935 1936
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

1937
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
1938
		seqno = i915_add_request(dev, NULL, NULL, ring);
1939 1940 1941
		if (seqno == 0)
			return -ENOMEM;
	}
1942
	BUG_ON(seqno == dev_priv->next_seqno);
1943

1944
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1945
		if (HAS_PCH_SPLIT(dev))
1946 1947 1948
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1949 1950 1951 1952 1953 1954 1955
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1956 1957
		trace_i915_gem_request_wait_begin(dev, seqno);

1958
		ring->waiting_gem_seqno = seqno;
1959
		ring->user_irq_get(dev, ring);
1960
		if (interruptible)
1961 1962
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
1963
					ring->get_seqno(dev, ring), seqno)
1964
				|| atomic_read(&dev_priv->mm.wedged));
1965
		else
1966 1967
			wait_event(ring->irq_queue,
				i915_seqno_passed(
1968
					ring->get_seqno(dev, ring), seqno)
1969
				|| atomic_read(&dev_priv->mm.wedged));
1970

1971
		ring->user_irq_put(dev, ring);
1972
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1973 1974

		trace_i915_gem_request_wait_end(dev, seqno);
1975
	}
1976
	if (atomic_read(&dev_priv->mm.wedged))
1977
		ret = -EAGAIN;
1978 1979

	if (ret && ret != -ERESTARTSYS)
1980
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1981
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
1982
			  dev_priv->next_seqno);
1983 1984 1985 1986 1987 1988 1989

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1990
		i915_gem_retire_requests_ring(dev, ring);
1991 1992 1993 1994

	return ret;
}

1995 1996 1997 1998 1999
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2000
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2001
		  struct intel_ring_buffer *ring)
2002
{
2003
	return i915_do_wait_request(dev, seqno, 1, ring);
2004 2005
}

2006
static void
2007
i915_gem_flush_ring(struct drm_device *dev,
2008
		    struct drm_file *file_priv,
2009 2010 2011 2012 2013 2014 2015 2016
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2017 2018
static void
i915_gem_flush(struct drm_device *dev,
2019
	       struct drm_file *file_priv,
2020
	       uint32_t invalidate_domains,
2021 2022
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2023 2024
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2025

2026 2027
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2028

2029 2030
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2031
			i915_gem_flush_ring(dev, file_priv,
2032 2033 2034
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2035
			i915_gem_flush_ring(dev, file_priv,
2036 2037 2038
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2039 2040
}

2041 2042 2043 2044 2045
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2046 2047
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2048 2049
{
	struct drm_device *dev = obj->dev;
2050
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2051 2052
	int ret;

2053 2054
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2055
	 */
2056
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2057 2058 2059 2060 2061

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2062 2063 2064 2065 2066
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2067 2068 2069 2070 2071 2072 2073 2074 2075
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2076
int
2077 2078 2079
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2080
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2091 2092 2093
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2094 2095 2096 2097 2098 2099
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2100
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2101
	if (ret == -ERESTARTSYS)
2102
		return ret;
2103 2104 2105 2106
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2107

2108 2109 2110 2111
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2112 2113 2114 2115 2116 2117
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2118
	i915_gem_object_put_pages(obj);
2119
	BUG_ON(obj_priv->pages_refcount);
2120 2121 2122 2123 2124 2125 2126 2127 2128

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

C
Chris Wilson 已提交
2129
	list_del_init(&obj_priv->list);
2130

2131 2132 2133
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2134 2135
	trace_i915_gem_object_unbind(obj);

2136
	return ret;
2137 2138
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2149
int
2150 2151 2152 2153
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2154
	int ret;
2155

2156 2157 2158 2159
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2160 2161 2162 2163
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2164
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2165 2166
	if (ret)
		return ret;
2167 2168

	if (HAS_BSD(dev)) {
2169
		ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2170 2171 2172 2173
		if (ret)
			return ret;
	}

2174
	return 0;
2175 2176
}

2177
int
2178 2179
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2180
{
2181
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2182 2183 2184 2185 2186
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2187 2188 2189
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2190
	if (obj_priv->pages_refcount++ != 0)
2191 2192 2193 2194 2195 2196
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2197
	BUG_ON(obj_priv->pages != NULL);
2198
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2199 2200
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2201 2202 2203 2204 2205 2206
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2207
		page = read_cache_page_gfp(mapping, i,
2208
					   GFP_HIGHUSER |
2209
					   __GFP_COLD |
2210
					   __GFP_RECLAIMABLE |
2211
					   gfpmask);
2212 2213 2214
		if (IS_ERR(page))
			goto err_pages;

2215
		obj_priv->pages[i] = page;
2216
	}
2217 2218 2219 2220

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2221
	return 0;
2222 2223 2224 2225 2226 2227 2228 2229 2230

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2231 2232
}

2233 2234 2235 2236 2237
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2238
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2255 2256 2257 2258 2259
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2260
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2280
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2281
	int regnum = obj_priv->fence_reg;
2282
	int tile_width;
2283
	uint32_t fence_reg, val;
2284 2285 2286 2287
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2288
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2289
		     __func__, obj_priv->gtt_offset, obj->size);
2290 2291 2292
		return;
	}

2293 2294 2295
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2296
	else
2297 2298 2299 2300 2301
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2302

2303 2304 2305 2306 2307 2308
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2309 2310 2311 2312 2313 2314 2315
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2316 2317 2318 2319 2320
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2321 2322 2323 2324 2325 2326 2327
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2328
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2329 2330 2331
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2332
	uint32_t fence_size_bits;
2333

2334
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2335
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2336
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2337
		     __func__, obj_priv->gtt_offset);
2338 2339 2340
		return;
	}

2341 2342 2343 2344
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2345 2346 2347
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2348 2349 2350
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2351 2352 2353 2354 2355 2356
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2357 2358
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2373
		obj_priv = to_intel_bo(reg->obj);
2374 2375 2376 2377 2378 2379 2380 2381 2382
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2383 2384 2385 2386
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2403
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2404 2405 2406 2407 2408 2409 2410
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2424
int
2425 2426
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2427 2428
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2429
	struct drm_i915_private *dev_priv = dev->dev_private;
2430
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2431
	struct drm_i915_fence_reg *reg = NULL;
2432
	int ret;
2433

2434 2435
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2436 2437
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2438 2439 2440
		return 0;
	}

2441 2442 2443 2444 2445
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2446 2447 2448 2449 2450
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2451 2452
		break;
	case I915_TILING_Y:
2453 2454 2455 2456 2457
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2458 2459 2460
		break;
	}

2461
	ret = i915_find_fence_reg(dev, interruptible);
2462 2463
	if (ret < 0)
		return ret;
2464

2465 2466
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2467
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2468

2469 2470
	reg->obj = obj;

2471 2472
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2473
		sandybridge_write_fence_reg(reg);
2474 2475 2476
		break;
	case 5:
	case 4:
2477
		i965_write_fence_reg(reg);
2478 2479
		break;
	case 3:
2480
		i915_write_fence_reg(reg);
2481 2482
		break;
	case 2:
2483
		i830_write_fence_reg(reg);
2484 2485
		break;
	}
2486

2487 2488
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2489

2490
	return 0;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2504
	drm_i915_private_t *dev_priv = dev->dev_private;
2505
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2506 2507
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2508
	uint32_t fence_reg;
2509

2510 2511
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2512 2513
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2514 2515 2516
		break;
	case 5:
	case 4:
2517
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2518 2519
		break;
	case 3:
2520
		if (obj_priv->fence_reg >= 8)
2521
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2522
		else
2523 2524
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2525 2526

		I915_WRITE(fence_reg, 0);
2527
		break;
2528
	}
2529

2530
	reg->obj = NULL;
2531
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2532
	list_del_init(&reg->lru_list);
2533 2534
}

2535 2536 2537 2538
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2539
 * @bool: whether the wait upon the fence is interruptible
2540 2541 2542 2543 2544
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2545 2546
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2547 2548
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2549
	struct drm_i915_private *dev_priv = dev->dev_private;
2550
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2551
	struct drm_i915_fence_reg *reg;
2552 2553 2554 2555

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2556 2557 2558 2559 2560 2561
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2562 2563 2564 2565
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2566 2567
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2568 2569
		int ret;

2570
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2571 2572 2573
		if (ret)
			return ret;

2574
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2575
		if (ret)
2576
			return ret;
C
Chris Wilson 已提交
2577 2578

		reg->gpu = false;
2579 2580
	}

2581
	i915_gem_object_flush_gtt_write_domain(obj);
2582
	i915_gem_clear_fence_reg(obj);
2583 2584 2585 2586

	return 0;
}

2587 2588 2589 2590 2591 2592 2593 2594
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2595
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2596
	struct drm_mm_node *free_space;
2597
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2598
	int ret;
2599

C
Chris Wilson 已提交
2600
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2601 2602 2603 2604
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2605
	if (alignment == 0)
2606
		alignment = i915_gem_get_gtt_alignment(obj);
2607
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2608 2609 2610 2611
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2612 2613 2614 2615 2616 2617 2618 2619
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2620 2621 2622 2623 2624 2625
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2626
		if (obj_priv->gtt_space != NULL)
2627 2628 2629 2630 2631 2632
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2633
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2634
		if (ret)
2635
			return ret;
2636

2637 2638 2639
		goto search_free;
	}

2640
	ret = i915_gem_object_get_pages(obj, gfpmask);
2641 2642 2643
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2644 2645 2646

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2647 2648
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2649 2650
			if (ret) {
				/* now try to shrink everyone else */
2651 2652 2653
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2654 2655 2656 2657 2658 2659 2660 2661
				}

				return ret;
			}

			goto search_free;
		}

2662 2663 2664 2665 2666 2667 2668
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2669
					       obj_priv->pages,
2670
					       obj->size >> PAGE_SHIFT,
2671 2672
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2673
	if (obj_priv->agp_mem == NULL) {
2674
		i915_gem_object_put_pages(obj);
2675 2676
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2677

2678
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2679
		if (ret)
2680 2681 2682
			return ret;

		goto search_free;
2683 2684 2685 2686
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

2687 2688 2689
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

2690 2691 2692 2693
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2694 2695
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2696

C
Chris Wilson 已提交
2697 2698
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2699 2700 2701 2702 2703 2704
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2705
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2706 2707 2708 2709 2710

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2711
	if (obj_priv->pages == NULL)
2712 2713
		return;

C
Chris Wilson 已提交
2714
	trace_i915_gem_object_clflush(obj);
2715

2716
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2717 2718
}

2719
/** Flushes any GPU write domain for the object if it's dirty. */
2720
static int
2721 2722
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2723 2724
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2725
	uint32_t old_write_domain;
2726 2727

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2728
		return 0;
2729 2730

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2731
	old_write_domain = obj->write_domain;
2732
	i915_gem_flush_ring(dev, NULL,
2733 2734
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2735
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2736 2737 2738 2739

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2740 2741 2742 2743

	if (pipelined)
		return 0;

2744
	return i915_gem_object_wait_rendering(obj, true);
2745 2746 2747 2748 2749 2750
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2751 2752
	uint32_t old_write_domain;

2753 2754 2755 2756 2757 2758 2759
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2760
	old_write_domain = obj->write_domain;
2761
	obj->write_domain = 0;
C
Chris Wilson 已提交
2762 2763 2764 2765

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2766 2767 2768 2769 2770 2771 2772
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2773
	uint32_t old_write_domain;
2774 2775 2776 2777 2778 2779

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2780
	old_write_domain = obj->write_domain;
2781
	obj->write_domain = 0;
C
Chris Wilson 已提交
2782 2783 2784 2785

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2786 2787
}

2788 2789 2790 2791 2792 2793
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2794
int
2795 2796
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2797
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2798
	uint32_t old_write_domain, old_read_domains;
2799
	int ret;
2800

2801 2802 2803 2804
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2805
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2806 2807 2808
	if (ret != 0)
		return ret;

2809
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2810

2811
	if (write) {
2812
		ret = i915_gem_object_wait_rendering(obj, true);
2813 2814 2815
		if (ret)
			return ret;
	}
2816

2817 2818
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2819

2820 2821 2822 2823 2824 2825
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2826
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2827 2828
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2829 2830
	}

C
Chris Wilson 已提交
2831 2832 2833 2834
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2835 2836 2837
	return 0;
}

2838 2839 2840 2841 2842
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2843 2844
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2845
{
2846
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2847
	uint32_t old_read_domains;
2848 2849 2850 2851 2852 2853
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2854
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2855
	if (ret)
2856
		return ret;
2857

2858 2859 2860 2861 2862 2863 2864
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2865 2866
	i915_gem_object_flush_cpu_write_domain(obj);

2867
	old_read_domains = obj->read_domains;
2868
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2869 2870 2871

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2872
					    obj->write_domain);
2873 2874 2875 2876

	return 0;
}

2877 2878 2879 2880 2881 2882 2883 2884 2885
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2886
	uint32_t old_write_domain, old_read_domains;
2887 2888
	int ret;

2889
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2890 2891
	if (ret != 0)
		return ret;
2892

2893
	i915_gem_object_flush_gtt_write_domain(obj);
2894

2895 2896
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2897
	 */
2898
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2899

2900
	if (write) {
2901
		ret = i915_gem_object_wait_rendering(obj, true);
2902 2903 2904 2905
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2906 2907 2908
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2909 2910
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2911 2912
		i915_gem_clflush_object(obj);

2913
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2914 2915 2916 2917 2918
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2919 2920 2921 2922 2923 2924
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2925
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2926 2927
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2928

C
Chris Wilson 已提交
2929 2930 2931 2932
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2933 2934 2935
	return 0;
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3047
static void
3048
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3049 3050
{
	struct drm_device		*dev = obj->dev;
3051
	struct drm_i915_private		*dev_priv = dev->dev_private;
3052
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3053 3054
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3055
	uint32_t			old_read_domains;
3056

3057 3058
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3059

3060 3061
	intel_mark_busy(dev, obj);

3062 3063 3064 3065
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3066 3067
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3068 3069 3070 3071 3072 3073 3074 3075 3076
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3077 3078
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3079
		flush_domains |= obj->write_domain;
3080 3081
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3082 3083 3084 3085 3086
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3087
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3088
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3089 3090
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3091 3092
	old_read_domains = obj->read_domains;

3093 3094 3095 3096 3097 3098 3099 3100
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3101
	obj->read_domains = obj->pending_read_domains;
3102 3103 3104

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3105 3106
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3107 3108 3109 3110

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3111 3112 3113
}

/**
3114
 * Moves the object from a partially CPU read to a full one.
3115
 *
3116 3117
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3118
 */
3119 3120
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3121
{
3122
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3123

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3135
			drm_clflush_pages(obj_priv->pages + i, 1);
3136 3137 3138 3139 3140 3141
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3142
	kfree(obj_priv->page_cpu_valid);
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3162
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3163
	uint32_t old_read_domains;
3164
	int i, ret;
3165

3166 3167
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3168

3169
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3170
	if (ret != 0)
3171
		return ret;
3172 3173 3174 3175 3176 3177
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3178

3179 3180 3181
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3182
	if (obj_priv->page_cpu_valid == NULL) {
3183 3184
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3185 3186 3187 3188
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3189 3190 3191 3192

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3193 3194
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3195 3196 3197
		if (obj_priv->page_cpu_valid[i])
			continue;

3198
		drm_clflush_pages(obj_priv->pages + i, 1);
3199 3200 3201 3202

		obj_priv->page_cpu_valid[i] = 1;
	}

3203 3204 3205 3206 3207
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3208
	old_read_domains = obj->read_domains;
3209 3210
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3211 3212 3213 3214
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3215 3216 3217 3218 3219 3220 3221 3222 3223
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3224
				 struct drm_i915_gem_exec_object2 *entry,
3225
				 struct drm_i915_gem_relocation_entry *relocs)
3226 3227
{
	struct drm_device *dev = obj->dev;
3228
	drm_i915_private_t *dev_priv = dev->dev_private;
3229
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3230
	int i, ret;
3231
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3232 3233 3234 3235 3236 3237
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3238 3239 3240 3241 3242 3243 3244
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3245 3246 3247 3248 3249 3250

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3251 3252 3253 3254 3255
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
C
Chris Wilson 已提交
3256
		ret = i915_gem_object_get_fence_reg(obj, true);
J
Jesse Barnes 已提交
3257 3258 3259 3260
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
C
Chris Wilson 已提交
3261 3262

		dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
J
Jesse Barnes 已提交
3263 3264
	}

3265 3266 3267 3268 3269 3270
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3271
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3272 3273
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3274 3275
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3276 3277

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3278
						   reloc->target_handle);
3279 3280
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3281
			return -ENOENT;
3282
		}
3283
		target_obj_priv = to_intel_bo(target_obj);
3284

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3300 3301 3302 3303 3304
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3305
				  reloc->target_handle);
3306 3307 3308 3309 3310
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3311
		/* Validate that the target is in a valid r/w GPU domain */
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3322 3323
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3324 3325 3326
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3327 3328 3329 3330
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3331 3332
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3333 3334
			return -EINVAL;
		}
3335 3336
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3337 3338 3339
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3340 3341 3342
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3343 3344 3345 3346 3347 3348
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3349 3350
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3351 3352 3353 3354

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3355
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3356 3357 3358 3359
			drm_gem_object_unreference(target_obj);
			continue;
		}

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3391 3392 3393 3394 3395
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3396 3397 3398 3399 3400
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3401
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3402 3403
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3404 3405
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3406
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3407
						   (reloc_offset & (PAGE_SIZE - 1)));
3408
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3409 3410

		writel(reloc_val, reloc_entry);
3411
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3412

3413 3414
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3415
		 */
3416
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

		drm_gem_object_unreference(target_obj);
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3427 3428 3429 3430
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3431 3432 3433 3434
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3435
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3436
{
3437 3438
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3439
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3440 3441 3442 3443
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3444

3445
	spin_lock(&file_priv->mm.lock);
3446
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3447 3448 3449
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3450 3451
		ring = request->ring;
		seqno = request->seqno;
3452
	}
3453
	spin_unlock(&file_priv->mm.lock);
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3477

3478 3479 3480
	return ret;
}

3481
static int
J
Jesse Barnes 已提交
3482
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3496
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3497 3498
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3499
		return -ENOMEM;
J
Jesse Barnes 已提交
3500
	}
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3512
			drm_free_large(*relocs);
3513
			*relocs = NULL;
3514
			return -EFAULT;
3515 3516 3517 3518 3519
		}

		reloc_index += exec_list[i].relocation_count;
	}

3520
	return 0;
3521 3522 3523
}

static int
J
Jesse Barnes 已提交
3524
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3525 3526 3527 3528
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3529
	int ret = 0;
3530

3531 3532 3533
	if (relocs == NULL)
	    return 0;

3534 3535
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3536
		int unwritten;
3537 3538 3539

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3540 3541 3542 3543 3544 3545 3546 3547
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3548 3549 3550 3551 3552
		}

		reloc_count += exec_list[i].relocation_count;
	}

3553
err:
3554
	drm_free_large(relocs);
3555 3556 3557 3558

	return ret;
}

3559
static int
J
Jesse Barnes 已提交
3560
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3577
static int
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3591
			obj_priv = to_intel_bo(object_list[i]);
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

C
Chris Wilson 已提交
3612
static int
J
Jesse Barnes 已提交
3613 3614 3615 3616
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3617 3618 3619 3620
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3621
	struct drm_i915_gem_object *obj_priv;
3622
	struct drm_clip_rect *cliprects = NULL;
3623
	struct drm_i915_gem_relocation_entry *relocs = NULL;
C
Chris Wilson 已提交
3624
	struct drm_i915_gem_request *request = NULL;
3625
	int ret, ret2, i, pinned = 0;
3626
	uint64_t exec_offset;
C
Chris Wilson 已提交
3627
	uint32_t reloc_index;
3628
	int pin_tries, flips;
3629

3630 3631
	struct intel_ring_buffer *ring = NULL;

3632 3633 3634 3635
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3636 3637 3638 3639
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3650 3651 3652 3653
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3654
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3655 3656
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3657 3658 3659 3660 3661
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3662
	if (args->num_cliprects != 0) {
3663 3664
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3665 3666
		if (cliprects == NULL) {
			ret = -ENOMEM;
3667
			goto pre_mutex_err;
3668
		}
3669 3670 3671 3672 3673 3674 3675 3676

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3677
			ret = -EFAULT;
3678 3679 3680 3681
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3682 3683 3684 3685 3686 3687
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3688 3689 3690 3691 3692
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3693 3694 3695
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3696 3697 3698

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3699 3700
		ret = -EBUSY;
		goto pre_mutex_err;
3701 3702
	}

3703
	/* Look up object handles */
3704
	flips = 0;
3705 3706 3707 3708 3709 3710
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3711 3712
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3713
			ret = -ENOENT;
3714 3715
			goto err;
		}
3716

3717
		obj_priv = to_intel_bo(object_list[i]);
3718 3719 3720
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3721 3722
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3723
			ret = -EINVAL;
3724 3725 3726
			goto err;
		}
		obj_priv->in_execbuffer = true;
3727 3728 3729 3730 3731 3732 3733 3734
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3735
	}
3736

3737 3738 3739
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3740 3741
		reloc_index = 0;

3742 3743 3744 3745 3746
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3747 3748
							       &exec_list[i],
							       &relocs[reloc_index]);
3749 3750 3751
			if (ret)
				break;
			pinned = i + 1;
3752
			reloc_index += exec_list[i].relocation_count;
3753 3754 3755 3756 3757 3758
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3759
		if (ret != -ENOSPC || pin_tries >= 1) {
3760 3761
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3762 3763
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3764
					obj_priv = to_intel_bo(object_list[i]);
3765

3766
					total_size += object_list[i]->size;
3767 3768 3769 3770 3771
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3772
					  pinned+1, args->buffer_count,
3773 3774
					  total_size, num_fences,
					  ret);
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3785 3786
			goto err;
		}
3787 3788 3789 3790

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3791
		pinned = 0;
3792 3793 3794

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3795
		if (ret && ret != -ENOSPC)
3796
			goto err;
3797 3798 3799 3800
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3801 3802 3803 3804 3805 3806
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3807

3808 3809 3810 3811 3812 3813 3814 3815
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3816 3817 3818 3819 3820 3821
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3822
	dev_priv->mm.flush_rings = 0;
3823

3824 3825 3826
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3827
		/* Compute new gpu domains and update invalidate/flush */
3828
		i915_gem_object_set_to_gpu_domain(obj);
3829 3830
	}

3831 3832 3833 3834 3835 3836 3837
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3838
		i915_gem_flush(dev, file_priv,
3839
			       dev->invalidate_domains,
3840 3841
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3842 3843
	}

3844 3845
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3846
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3847
		uint32_t old_write_domain = obj->write_domain;
3848 3849

		obj->write_domain = obj->pending_write_domain;
3850 3851 3852 3853 3854 3855
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3856 3857 3858
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3859 3860
	}

3861 3862 3863 3864 3865 3866 3867 3868
#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3869
	i915_gem_dump_object(batch_obj,
3870 3871 3872 3873 3874 3875
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3876 3877
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3878 3879 3880 3881 3882 3883 3884 3885 3886
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3887
	i915_retire_commands(dev, ring);
3888

3889 3890 3891 3892 3893 3894
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3895

C
Chris Wilson 已提交
3896
	i915_add_request(dev, file_priv, request, ring);
C
Chris Wilson 已提交
3897
	request = NULL;
3898 3899

err:
3900 3901 3902
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3903 3904
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3905
			obj_priv = to_intel_bo(object_list[i]);
3906 3907
			obj_priv->in_execbuffer = false;
		}
3908
		drm_gem_object_unreference(object_list[i]);
3909
	}
3910 3911 3912

	mutex_unlock(&dev->struct_mutex);

3913
pre_mutex_err:
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3928
	drm_free_large(object_list);
3929
	kfree(cliprects);
C
Chris Wilson 已提交
3930
	kfree(request);
3931 3932 3933 3934

	return ret;
}

J
Jesse Barnes 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3987
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4001
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4080 4081 4082 4083
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4084
	struct drm_i915_private *dev_priv = dev->dev_private;
4085
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4086 4087
	int ret;

4088
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4089
	WARN_ON(i915_verify_lists(dev));
4090 4091 4092 4093 4094

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4095 4096 4097 4098
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4099 4100 4101 4102 4103 4104
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4105 4106
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4107
		if (ret)
4108
			return ret;
4109
	}
J
Jesse Barnes 已提交
4110

4111 4112 4113 4114 4115 4116 4117 4118
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
C
Chris Wilson 已提交
4119 4120 4121
		if (!obj_priv->active)
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.pinned_list);
4122 4123
	}

4124
	WARN_ON(i915_verify_lists(dev));
4125 4126 4127 4128 4129 4130 4131 4132
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4133
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4134

4135
	WARN_ON(i915_verify_lists(dev));
4136 4137 4138 4139 4140 4141 4142 4143 4144
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4145
		if (!obj_priv->active)
4146 4147 4148 4149 4150
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
4151
	WARN_ON(i915_verify_lists(dev));
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4167
		return -ENOENT;
4168
	}
4169
	obj_priv = to_intel_bo(obj);
4170

4171 4172 4173 4174 4175 4176
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

C
Chris Wilson 已提交
4177 4178
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4179 4180 4181 4182 4183
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4184 4185 4186
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4187
		drm_gem_object_unreference(obj);
4188
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4201 4202 4203 4204 4205
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4206
	i915_gem_object_flush_cpu_write_domain(obj);
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4220
	struct drm_i915_gem_object *obj_priv;
4221
	int ret;
4222 4223 4224 4225 4226

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
4227
		return -ENOENT;
4228 4229
	}

4230
	obj_priv = to_intel_bo(obj);
4231 4232 4233 4234 4235 4236 4237

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

J
Jesse Barnes 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4263 4264
	int ret;

4265 4266 4267 4268
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4269
		return -ENOENT;
4270 4271
	}

4272 4273 4274 4275
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
4276 4277
	}

4278 4279 4280 4281
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4282
	 */
4283 4284 4285 4286 4287 4288 4289 4290
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4291 4292
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4293 4294
					    obj_priv->ring,
					    0, obj->write_domain);
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4305 4306 4307

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
4308
	return 0;
4309 4310 4311 4312 4313 4314 4315 4316 4317
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4318 4319 4320 4321 4322 4323 4324
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4325
	int ret;
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4339
		return -ENOENT;
4340
	}
4341
	obj_priv = to_intel_bo(obj);
4342

4343 4344 4345 4346 4347 4348
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

4349 4350 4351 4352 4353 4354 4355 4356
	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4357 4358
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4359

4360 4361 4362 4363 4364
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4365 4366
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4367 4368 4369 4370 4371 4372
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4373 4374 4375
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4376
	struct drm_i915_gem_object *obj;
4377

4378 4379 4380
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4381

4382 4383 4384 4385
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4386

4387 4388
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4389

4390
	obj->agp_type = AGP_USER_MEMORY;
4391
	obj->base.driver_private = NULL;
4392 4393 4394 4395
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4396

4397 4398 4399 4400 4401 4402 4403 4404
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4405

4406 4407 4408
	return 0;
}

4409
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4410
{
4411
	struct drm_device *dev = obj->dev;
4412
	drm_i915_private_t *dev_priv = dev->dev_private;
4413
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4414
	int ret;
4415

4416 4417 4418 4419 4420 4421
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4422

4423 4424
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4425

4426 4427
	drm_gem_object_release(obj);

4428
	kfree(obj_priv->page_cpu_valid);
4429
	kfree(obj_priv->bit_17);
4430
	kfree(obj_priv);
4431 4432
}

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4449 4450 4451 4452 4453
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4454

4455
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4456

4457
	if (dev_priv->mm.suspended ||
4458 4459 4460
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4461 4462
		mutex_unlock(&dev->struct_mutex);
		return 0;
4463 4464
	}

4465
	ret = i915_gpu_idle(dev);
4466 4467
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4468
		return ret;
4469
	}
4470

4471 4472
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4473
		ret = i915_gem_evict_inactive(dev);
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4485
	del_timer_sync(&dev_priv->hangcheck_timer);
4486 4487

	i915_kernel_lost_context(dev);
4488
	i915_gem_cleanup_ringbuffer(dev);
4489

4490 4491
	mutex_unlock(&dev->struct_mutex);

4492 4493 4494
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4495 4496 4497
	return 0;
}

4498 4499 4500 4501
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4502
static int
4503 4504 4505 4506 4507 4508 4509
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4510
	obj = i915_gem_alloc_object(dev, 4096);
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4541 4542

static void
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4557 4558
}

4559 4560 4561 4562 4563
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4564

4565 4566 4567 4568 4569
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4570

4571
	ret = intel_init_render_ring_buffer(dev);
4572 4573 4574 4575
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4576
		ret = intel_init_bsd_ring_buffer(dev);
4577 4578
		if (ret)
			goto cleanup_render_ring;
4579
	}
4580

4581 4582
	dev_priv->next_seqno = 1;

4583 4584 4585 4586 4587 4588 4589
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4590 4591 4592 4593 4594 4595 4596 4597 4598
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4599 4600
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4601 4602 4603 4604
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4605 4606 4607 4608 4609 4610 4611
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4612 4613 4614
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4615
	if (atomic_read(&dev_priv->mm.wedged)) {
4616
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4617
		atomic_set(&dev_priv->mm.wedged, 0);
4618 4619 4620
	}

	mutex_lock(&dev->struct_mutex);
4621 4622 4623
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4624 4625
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4626
		return ret;
4627
	}
4628

4629
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4630
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4631 4632
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4633
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4634
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4635
	mutex_unlock(&dev->struct_mutex);
4636

4637 4638 4639
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4640

4641
	return 0;
4642 4643 4644 4645 4646 4647 4648 4649

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4650 4651 4652 4653 4654 4655
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4656 4657 4658
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4659
	drm_irq_uninstall(dev);
4660
	return i915_gem_idle(dev);
4661 4662 4663 4664 4665 4666 4667
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4668 4669 4670
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4671 4672 4673
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4674 4675 4676 4677 4678
}

void
i915_gem_load(struct drm_device *dev)
{
4679
	int i;
4680 4681 4682
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4683
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4684
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4685
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4686
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4687
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4688 4689
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4690 4691 4692 4693
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4694 4695
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4696 4697
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4698
	init_completion(&dev_priv->error_completion);
4699 4700 4701 4702
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4713
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4714 4715
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4716

4717
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4718 4719 4720 4721
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4722
	/* Initialize fence registers to zero */
4723 4724 4725 4726 4727 4728 4729
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4730 4731
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4732 4733
		break;
	case 3:
4734 4735 4736
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4737 4738 4739 4740
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4741
	}
4742
	i915_gem_detect_bit_6_swizzle(dev);
4743
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4744
}
4745 4746 4747 4748 4749

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4750 4751
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4752 4753 4754 4755 4756 4757 4758 4759
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4760
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4761 4762 4763 4764 4765
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4766
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4779
	kfree(phys_obj);
4780 4781 4782
	return ret;
}

4783
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4808
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4820
	obj_priv = to_intel_bo(obj);
4821 4822 4823
	if (!obj_priv->phys_obj)
		return;

4824
	ret = i915_gem_object_get_pages(obj, 0);
4825 4826 4827 4828 4829 4830
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4831
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4832 4833 4834 4835 4836
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4837
	drm_clflush_pages(obj_priv->pages, page_count);
4838
	drm_agp_chipset_flush(dev);
4839 4840

	i915_gem_object_put_pages(obj);
4841 4842 4843 4844 4845 4846 4847
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4848 4849 4850
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4861
	obj_priv = to_intel_bo(obj);
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4872
						obj->size, align);
4873
		if (ret) {
4874
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4875 4876 4877 4878 4879 4880 4881 4882
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4883
	ret = i915_gem_object_get_pages(obj, 0);
4884 4885 4886 4887 4888 4889 4890 4891
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4892
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4893 4894 4895 4896 4897 4898
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4899 4900
	i915_gem_object_put_pages(obj);

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4911
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4912 4913 4914 4915 4916 4917 4918
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4919
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4920 4921 4922 4923 4924 4925 4926
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4927

4928
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4929
{
4930
	struct drm_i915_file_private *file_priv = file->driver_priv;
4931 4932 4933 4934 4935

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4936
	spin_lock(&file_priv->mm.lock);
4937 4938 4939 4940 4941 4942 4943 4944 4945
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4946
	spin_unlock(&file_priv->mm.lock);
4947
}
4948

4949 4950 4951 4952 4953 4954 4955
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4956
		      list_empty(&dev_priv->render_ring.active_list);
4957 4958
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4959 4960 4961 4962

	return !lists_empty;
}

4963
static int
4964
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4992
rescan:
4993 4994 4995 4996 4997 4998 4999 5000 5001
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
5002
		i915_gem_retire_requests(dev);
5003 5004 5005 5006 5007

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
5008
				i915_gem_object_unbind(&obj_priv->base);
5009 5010 5011 5012 5013 5014 5015 5016
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5017 5018
		would_deadlock = 0;

5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5037
				i915_gem_object_unbind(&obj_priv->base);
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}