i915_gem.c 132.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

	return 0;
}
114

115 116 117 118 119 120 121 122
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

J
Jesse Barnes 已提交
123 124
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
125 126 127
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
128 129 130
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
131 132 133
		return -EINVAL;
	}

J
Jesse Barnes 已提交
134 135
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
136

J
Jesse Barnes 已提交
137 138 139 140
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
141

J
Jesse Barnes 已提交
142 143 144 145 146 147 148 149 150
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
151 152
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
153
	return ret;
154 155
}

156 157 158 159 160 161 162 163 164 165
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
166 167
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
168 169 170 171

	return 0;
}

172 173 174 175 176 177 178 179 180 181

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
182 183
	int ret;
	u32 handle;
184 185 186 187

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
188
	obj = i915_gem_alloc_object(dev, args->size);
189 190 191 192
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
193 194
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
195
		return ret;
196
	}
197

198 199
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
200

201
	args->handle = handle;
202 203 204
	return 0;
}

205 206 207 208 209 210 211
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
212
	int unwritten;
213 214 215 216

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
217
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
218 219
	kunmap_atomic(vaddr, KM_USER0);

220 221 222 223
	if (unwritten)
		return -EFAULT;

	return 0;
224 225
}

226 227 228
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
229
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
230 231 232 233 234

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

235
static inline void
236 237 238 239 240 241 242 243
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

244 245
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
246 247 248

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

249 250
	kunmap(src_page);
	kunmap(dst_page);
251 252
}

253
static inline void
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

273 274
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

298 299
	kunmap(cpu_page);
	kunmap(gpu_page);
300 301
}

302 303 304 305 306 307 308 309 310 311
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
312
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
313 314 315 316 317 318 319 320 321
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

322 323 324
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
325

326
	ret = i915_gem_object_get_pages(obj, 0);
327 328 329 330 331 332 333 334
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

335
	obj_priv = to_intel_bo(obj);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

370 371 372 373 374
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

375
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
376 377 378 379 380 381 382

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

383 384
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
385 386 387
		if (ret)
			return ret;

388
		ret = i915_gem_object_get_pages(obj, 0);
389 390 391 392 393
	}

	return ret;
}

394 395 396 397 398 399 400 401 402 403 404
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
405
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
406 407 408 409 410 411 412 413 414 415
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
416
	int do_bit17_swizzling;
417 418 419 420 421 422 423 424 425 426 427

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

428
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
429 430 431 432 433
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
434
				      num_pages, 1, 0, user_pages, NULL);
435 436 437 438 439 440
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

441 442
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

443 444 445
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
446

447 448
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
449 450 451 452 453 454 455
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

456
	obj_priv = to_intel_bo(obj);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

479
		if (do_bit17_swizzling) {
480
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
481
					      shmem_page_offset,
482 483 484 485 486 487 488 489 490 491
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
492
		}
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
508
	drm_free_large(user_pages);
509 510 511 512

	return ret;
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
529
		return -ENOENT;
530
	obj_priv = to_intel_bo(obj);
531 532 533 534 535 536 537

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
538
		drm_gem_object_unreference_unlocked(obj);
539 540 541
		return -EINVAL;
	}

542
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
543
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
544 545 546 547 548 549
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
550

551
	drm_gem_object_unreference_unlocked(obj);
552

553
	return ret;
554 555
}

556 557
/* This is the fast write path which cannot handle
 * page faults in the source data
558
 */
559 560 561 562 563 564

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
565 566
{
	char *vaddr_atomic;
567
	unsigned long unwritten;
568

569
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
570 571
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
572
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
573 574 575 576 577 578 579 580 581
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

582
static inline void
583 584 585 586
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
587
{
588 589
	char __iomem *dst_vaddr;
	char *src_vaddr;
590

591 592 593 594 595 596 597 598 599
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
600 601
}

602 603 604 605 606 607 608
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
609
	unsigned long unwritten;
610 611 612 613

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
614
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
615 616
	kunmap_atomic(vaddr, KM_USER0);

617 618
	if (unwritten)
		return -EFAULT;
619 620 621
	return 0;
}

622 623 624 625
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
626
static int
627 628 629
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
630
{
631
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
632
	drm_i915_private_t *dev_priv = dev->dev_private;
633
	ssize_t remain;
634
	loff_t offset, page_base;
635
	char __user *user_data;
636 637
	int page_offset, page_length;
	int ret;
638 639 640 641 642 643

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;

644 645 646
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
647 648 649 650 651 652

	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
653
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
654 655 656
	if (ret)
		goto fail;

657
	obj_priv = to_intel_bo(obj);
658 659 660 661 662
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
663 664 665
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
666
		 */
667 668 669 670 671 672 673 674 675 676
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
677 678
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
679
		 */
680 681
		if (ret)
			goto fail;
682

683 684 685
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
686 687 688 689 690 691 692 693 694
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

695 696 697 698 699 700 701
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
702
static int
703 704 705
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
706
{
707
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
708 709 710 711 712 713 714 715
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
716
	int ret;
717 718 719 720 721 722 723 724 725 726 727 728
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

729
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
730 731 732 733 734 735 736 737 738 739 740
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
741

742 743 744 745
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out_unpin_pages;

746 747 748 749 750 751 752 753
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

754
	obj_priv = to_intel_bo(obj);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

777 778 779 780 781
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
782 783 784 785 786 787 788 789 790 791 792 793 794

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
795
	drm_free_large(user_pages);
796 797 798 799

	return ret;
}

800 801 802 803
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
804
static int
805 806 807
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
808
{
809
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
810 811 812 813
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
814
	int ret;
815 816 817

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
818

819 820 821
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
822

823
	ret = i915_gem_object_get_pages(obj, 0);
824 825
	if (ret != 0)
		goto fail_unlock;
826

827
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
828 829 830
	if (ret != 0)
		goto fail_put_pages;

831
	obj_priv = to_intel_bo(obj);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
879
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
880 881 882 883 884 885 886 887 888 889
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
890
	int do_bit17_swizzling;
891 892 893 894 895 896 897 898 899 900 901

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

902
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
903 904 905 906 907 908 909 910 911 912
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
913 914
	}

915 916
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

917 918 919
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
920

921 922
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
923 924 925 926 927 928
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

929
	obj_priv = to_intel_bo(obj);
930
	offset = args->offset;
931
	obj_priv->dirty = 1;
932

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

953
		if (do_bit17_swizzling) {
954
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
955 956 957
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
958 959 960 961 962 963 964 965
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
966
		}
967 968 969 970

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
971 972
	}

973 974 975
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
976
	mutex_unlock(&dev->struct_mutex);
977 978 979
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
980
	drm_free_large(user_pages);
981

982
	return ret;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1001
		return -ENOENT;
1002
	obj_priv = to_intel_bo(obj);
1003 1004 1005 1006 1007 1008 1009

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
1010
		drm_gem_object_unreference_unlocked(obj);
1011 1012 1013 1014 1015 1016 1017 1018 1019
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1020 1021 1022
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1023 1024
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1025 1026 1027 1028 1029
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
1030 1031
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1032 1033 1034 1035 1036 1037 1038
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1039 1040 1041 1042 1043 1044

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

1045
	drm_gem_object_unreference_unlocked(obj);
1046 1047 1048 1049 1050

	return ret;
}

/**
1051 1052
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1053 1054 1055 1056 1057
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1058
	struct drm_i915_private *dev_priv = dev->dev_private;
1059 1060
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1061
	struct drm_i915_gem_object *obj_priv;
1062 1063
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1064 1065 1066 1067 1068
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1069
	/* Only handle setting domains to types used by the CPU. */
1070
	if (write_domain & I915_GEM_GPU_DOMAINS)
1071 1072
		return -EINVAL;

1073
	if (read_domains & I915_GEM_GPU_DOMAINS)
1074 1075 1076 1077 1078 1079 1080 1081
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1082 1083
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1084
		return -ENOENT;
1085
	obj_priv = to_intel_bo(obj);
1086

1087 1088 1089 1090 1091
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1092 1093 1094

	intel_mark_busy(dev, obj);

1095 1096
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1097

1098 1099 1100 1101
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1102 1103 1104
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1105 1106 1107
				       &dev_priv->mm.fence_list);
		}

1108 1109 1110 1111 1112 1113
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1114
	} else {
1115
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1116 1117
	}

1118 1119 1120 1121
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1142
	if (obj == NULL)
1143
		return -ENOENT;
1144 1145 1146 1147 1148

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
1149 1150 1151
	}

	/* Pinned buffers may be scanout, so flush the cache */
1152
	if (to_intel_bo(obj)->pin_count)
1153 1154
		i915_gem_object_flush_cpu_write_domain(obj);

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1181
		return -ENOENT;
1182 1183 1184 1185 1186 1187 1188 1189

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1190
	drm_gem_object_unreference_unlocked(obj);
1191 1192 1193 1194 1195 1196 1197 1198
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1219
	drm_i915_private_t *dev_priv = dev->dev_private;
1220
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1221 1222 1223
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1224
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1225 1226 1227 1228 1229 1230 1231 1232

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1233
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1234 1235
		if (ret)
			goto unlock;
1236 1237

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1238 1239
		if (ret)
			goto unlock;
1240 1241 1242
	}

	/* Need a new fence register? */
1243
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1244
		ret = i915_gem_object_get_fence_reg(obj, true);
1245 1246
		if (ret)
			goto unlock;
1247
	}
1248

1249 1250 1251
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1252 1253 1254 1255 1256
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1257
unlock:
1258 1259 1260
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1261 1262 1263
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1264 1265 1266 1267
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1268
		return VM_FAULT_SIGBUS;
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1288
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1289
	struct drm_map_list *list;
1290
	struct drm_local_map *map;
1291 1292 1293 1294
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1295
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1309
		ret = -ENOSPC;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1321 1322
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1336
	kfree(list->map);
1337 1338 1339 1340

	return ret;
}

1341 1342 1343 1344
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1345
 * Preserve the reservation of the mmapping with the DRM core code, but
1346 1347 1348 1349 1350 1351 1352 1353 1354
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1355
void
1356 1357 1358
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1359
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1360 1361 1362 1363 1364 1365

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1366 1367 1368 1369
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1370
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1383
		kfree(list->map);
1384 1385 1386 1387 1388 1389
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1401
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1402 1403 1404 1405 1406 1407
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1408
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1409 1410 1411 1412 1413 1414
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1415
	if (INTEL_INFO(dev)->gen == 3)
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1455
		return -ENOENT;
1456

1457 1458 1459 1460 1461
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1462

1463
	obj_priv = to_intel_bo(obj);
1464

1465 1466 1467 1468 1469 1470 1471 1472
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1473 1474
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1475 1476 1477
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1478
			return ret;
1479
		}
1480 1481 1482 1483 1484 1485 1486 1487 1488
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1489
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1503
void
1504
i915_gem_object_put_pages(struct drm_gem_object *obj)
1505
{
1506
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1507 1508 1509
	int page_count = obj->size / PAGE_SIZE;
	int i;

1510
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1511
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1512

1513 1514
	if (--obj_priv->pages_refcount != 0)
		return;
1515

1516 1517 1518
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1519
	if (obj_priv->madv == I915_MADV_DONTNEED)
1520
		obj_priv->dirty = 0;
1521 1522 1523 1524 1525 1526

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1527
			mark_page_accessed(obj_priv->pages[i]);
1528 1529 1530

		page_cache_release(obj_priv->pages[i]);
	}
1531 1532
	obj_priv->dirty = 0;

1533
	drm_free_large(obj_priv->pages);
1534
	obj_priv->pages = NULL;
1535 1536
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1547
static void
1548
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1549
			       struct intel_ring_buffer *ring)
1550
{
1551
	struct drm_device *dev = obj->dev;
1552
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1553
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1554

1555 1556
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1557 1558 1559 1560 1561 1562

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1563

1564
	/* Move from whatever list we were on to the tail of execution. */
1565
	list_move_tail(&obj_priv->list, &ring->active_list);
1566
	obj_priv->last_rendering_seqno = seqno;
1567 1568
}

1569 1570 1571 1572 1573
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1574
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1575 1576 1577 1578 1579

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1580

1581 1582 1583 1584
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1585
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1586
	struct inode *inode;
1587

1588 1589 1590 1591 1592 1593
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1594
	inode = obj->filp->f_path.dentry->d_inode;
1595 1596 1597
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1598 1599

	obj_priv->madv = __I915_MADV_PURGED;
1600 1601 1602 1603 1604 1605 1606 1607
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1608 1609 1610 1611 1612
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1613
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1614 1615 1616

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
C
Chris Wilson 已提交
1617
		list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1618 1619 1620
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1621 1622
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1623
	obj_priv->last_rendering_seqno = 0;
1624
	obj_priv->ring = NULL;
1625 1626 1627 1628 1629 1630 1631
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1632
static void
1633
i915_gem_process_flushing_list(struct drm_device *dev,
1634
			       uint32_t flush_domains,
1635
			       struct intel_ring_buffer *ring)
1636 1637 1638 1639 1640 1641 1642
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1643
		struct drm_gem_object *obj = &obj_priv->base;
1644

1645 1646
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1647 1648 1649 1650
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1651
			i915_gem_object_move_to_active(obj, ring);
1652 1653

			/* update the fence lru list */
1654 1655 1656 1657
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1658
						&dev_priv->mm.fence_list);
1659
			}
1660 1661 1662 1663 1664 1665 1666

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1667

1668
uint32_t
1669
i915_add_request(struct drm_device *dev,
1670
		 struct drm_file *file,
C
Chris Wilson 已提交
1671
		 struct drm_i915_gem_request *request,
1672
		 struct intel_ring_buffer *ring)
1673 1674
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1675
	struct drm_i915_file_private *file_priv = NULL;
1676 1677 1678
	uint32_t seqno;
	int was_empty;

1679 1680
	if (file != NULL)
		file_priv = file->driver_priv;
1681

C
Chris Wilson 已提交
1682 1683 1684 1685 1686
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1687

1688
	seqno = ring->add_request(dev, ring, 0);
1689
	ring->outstanding_lazy_request = false;
1690 1691

	request->seqno = seqno;
1692
	request->ring = ring;
1693
	request->emitted_jiffies = jiffies;
1694 1695 1696
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1697
	if (file_priv) {
1698
		spin_lock(&file_priv->mm.lock);
1699
		request->file_priv = file_priv;
1700
		list_add_tail(&request->client_list,
1701
			      &file_priv->mm.request_list);
1702
		spin_unlock(&file_priv->mm.lock);
1703
	}
1704

B
Ben Gamari 已提交
1705
	if (!dev_priv->mm.suspended) {
1706 1707
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1708
		if (was_empty)
1709 1710
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1711
	}
1712 1713 1714 1715 1716 1717 1718 1719 1720
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1721
static void
1722
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1723 1724 1725 1726
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1727
	if (INTEL_INFO(dev)->gen >= 4)
1728
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1729 1730 1731

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1732 1733
}

1734 1735
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1736
{
1737 1738 1739 1740 1741 1742 1743 1744 1745
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1746 1747
}

1748 1749
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1750
{
1751 1752
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1753

1754 1755 1756 1757 1758
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1759
		i915_gem_request_remove_from_client(request);
1760 1761 1762 1763
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1764 1765
		struct drm_i915_gem_object *obj_priv;

1766
		obj_priv = list_first_entry(&ring->active_list,
1767 1768 1769 1770
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
1771
		list_del_init(&obj_priv->gpu_write_list);
1772 1773 1774 1775
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1776
void i915_gem_reset_lists(struct drm_device *dev)
1777 1778 1779 1780
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1802 1803 1804 1805 1806 1807 1808 1809
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
}

1810 1811 1812
/**
 * This function clears the request list as sequence numbers are passed.
 */
1813 1814 1815
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1816 1817 1818 1819
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1820 1821
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1822 1823
		return;

1824
	seqno = ring->get_seqno(dev, ring);
1825
	while (!list_empty(&ring->request_list)) {
1826 1827
		struct drm_i915_gem_request *request;

1828
		request = list_first_entry(&ring->request_list,
1829 1830 1831
					   struct drm_i915_gem_request,
					   list);

1832
		if (!i915_seqno_passed(seqno, request->seqno))
1833 1834 1835 1836 1837
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1838
		i915_gem_request_remove_from_client(request);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1852

1853
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1854
			break;
1855 1856 1857 1858 1859 1860

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1861
	}
1862 1863 1864

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1865
		ring->user_irq_put(dev, ring);
1866 1867
		dev_priv->trace_irq_seqno = 0;
	}
1868 1869
}

1870 1871 1872 1873 1874
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1889 1890 1891 1892 1893
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1894
static void
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1905
	i915_gem_retire_requests(dev);
1906

1907
	if (!dev_priv->mm.suspended &&
1908 1909 1910
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1911
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1912 1913 1914
	mutex_unlock(&dev->struct_mutex);
}

1915
int
1916
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1917
		     bool interruptible, struct intel_ring_buffer *ring)
1918 1919
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1920
	u32 ier;
1921 1922 1923 1924
	int ret = 0;

	BUG_ON(seqno == 0);

1925 1926 1927
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

1928
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
1929
		seqno = i915_add_request(dev, NULL, NULL, ring);
1930 1931 1932
		if (seqno == 0)
			return -ENOMEM;
	}
1933
	BUG_ON(seqno == dev_priv->next_seqno);
1934

1935
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1936
		if (HAS_PCH_SPLIT(dev))
1937 1938 1939
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1940 1941 1942 1943 1944 1945 1946
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1947 1948
		trace_i915_gem_request_wait_begin(dev, seqno);

1949
		ring->waiting_gem_seqno = seqno;
1950
		ring->user_irq_get(dev, ring);
1951
		if (interruptible)
1952 1953
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
1954
					ring->get_seqno(dev, ring), seqno)
1955
				|| atomic_read(&dev_priv->mm.wedged));
1956
		else
1957 1958
			wait_event(ring->irq_queue,
				i915_seqno_passed(
1959
					ring->get_seqno(dev, ring), seqno)
1960
				|| atomic_read(&dev_priv->mm.wedged));
1961

1962
		ring->user_irq_put(dev, ring);
1963
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1964 1965

		trace_i915_gem_request_wait_end(dev, seqno);
1966
	}
1967
	if (atomic_read(&dev_priv->mm.wedged))
1968
		ret = -EAGAIN;
1969 1970

	if (ret && ret != -ERESTARTSYS)
1971
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1972
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
1973
			  dev_priv->next_seqno);
1974 1975 1976 1977 1978 1979 1980

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1981
		i915_gem_retire_requests_ring(dev, ring);
1982 1983 1984 1985

	return ret;
}

1986 1987 1988 1989 1990
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1991
i915_wait_request(struct drm_device *dev, uint32_t seqno,
1992
		  struct intel_ring_buffer *ring)
1993
{
1994
	return i915_do_wait_request(dev, seqno, 1, ring);
1995 1996
}

1997
static void
1998
i915_gem_flush_ring(struct drm_device *dev,
1999
		    struct drm_file *file_priv,
2000 2001 2002 2003 2004 2005 2006 2007
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2008 2009
static void
i915_gem_flush(struct drm_device *dev,
2010
	       struct drm_file *file_priv,
2011
	       uint32_t invalidate_domains,
2012 2013
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2014 2015
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2016

2017 2018
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2019

2020 2021
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2022
			i915_gem_flush_ring(dev, file_priv,
2023 2024 2025
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2026
			i915_gem_flush_ring(dev, file_priv,
2027 2028 2029
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2030 2031
}

2032 2033 2034 2035 2036
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2037 2038
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2039 2040
{
	struct drm_device *dev = obj->dev;
2041
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2042 2043
	int ret;

2044 2045
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2046
	 */
2047
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2048 2049 2050 2051 2052

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2053 2054 2055 2056 2057
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2058 2059 2060 2061 2062 2063 2064 2065 2066
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2067
int
2068 2069 2070
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2071
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2082 2083 2084
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2085 2086 2087 2088 2089 2090
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2091
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2092
	if (ret == -ERESTARTSYS)
2093
		return ret;
2094 2095 2096 2097
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2098

2099 2100 2101 2102
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2103 2104 2105 2106 2107 2108
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2109
	i915_gem_object_put_pages(obj);
2110
	BUG_ON(obj_priv->pages_refcount);
2111 2112 2113 2114 2115 2116 2117 2118 2119

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

C
Chris Wilson 已提交
2120
	list_del_init(&obj_priv->list);
2121

2122 2123 2124
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2125 2126
	trace_i915_gem_object_unbind(obj);

2127
	return ret;
2128 2129
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2140
int
2141 2142 2143 2144
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2145
	int ret;
2146

2147 2148 2149 2150
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2151 2152 2153 2154
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2155
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2156 2157
	if (ret)
		return ret;
2158 2159

	if (HAS_BSD(dev)) {
2160
		ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2161 2162 2163 2164
		if (ret)
			return ret;
	}

2165
	return 0;
2166 2167
}

2168
int
2169 2170
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2171
{
2172
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2173 2174 2175 2176 2177
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2178 2179 2180
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2181
	if (obj_priv->pages_refcount++ != 0)
2182 2183 2184 2185 2186 2187
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2188
	BUG_ON(obj_priv->pages != NULL);
2189
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2190 2191
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2192 2193 2194 2195 2196 2197
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2198
		page = read_cache_page_gfp(mapping, i,
2199
					   GFP_HIGHUSER |
2200
					   __GFP_COLD |
2201
					   __GFP_RECLAIMABLE |
2202
					   gfpmask);
2203 2204 2205
		if (IS_ERR(page))
			goto err_pages;

2206
		obj_priv->pages[i] = page;
2207
	}
2208 2209 2210 2211

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2212
	return 0;
2213 2214 2215 2216 2217 2218 2219 2220 2221

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2222 2223
}

2224 2225 2226 2227 2228
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2229
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2246 2247 2248 2249 2250
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2251
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2271
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2272
	int regnum = obj_priv->fence_reg;
2273
	int tile_width;
2274
	uint32_t fence_reg, val;
2275 2276 2277 2278
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2279
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2280
		     __func__, obj_priv->gtt_offset, obj->size);
2281 2282 2283
		return;
	}

2284 2285 2286
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2287
	else
2288 2289 2290 2291 2292
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2293

2294 2295 2296 2297 2298 2299
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2300 2301 2302 2303 2304 2305 2306
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2307 2308 2309 2310 2311
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2312 2313 2314 2315 2316 2317 2318
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2319
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2320 2321 2322
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2323
	uint32_t fence_size_bits;
2324

2325
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2326
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2327
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2328
		     __func__, obj_priv->gtt_offset);
2329 2330 2331
		return;
	}

2332 2333 2334 2335
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2336 2337 2338
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2339 2340 2341
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2342 2343 2344 2345 2346 2347
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2348 2349
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2364
		obj_priv = to_intel_bo(reg->obj);
2365 2366 2367 2368 2369 2370 2371 2372 2373
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2374 2375 2376 2377
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2394
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2395 2396 2397 2398 2399 2400 2401
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2415
int
2416 2417
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2418 2419
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2420
	struct drm_i915_private *dev_priv = dev->dev_private;
2421
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2422
	struct drm_i915_fence_reg *reg = NULL;
2423
	int ret;
2424

2425 2426
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2427 2428
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2429 2430 2431
		return 0;
	}

2432 2433 2434 2435 2436
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2437 2438 2439 2440 2441
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2442 2443
		break;
	case I915_TILING_Y:
2444 2445 2446 2447 2448
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2449 2450 2451
		break;
	}

2452
	ret = i915_find_fence_reg(dev, interruptible);
2453 2454
	if (ret < 0)
		return ret;
2455

2456 2457
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2458
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2459

2460 2461
	reg->obj = obj;

2462 2463
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2464
		sandybridge_write_fence_reg(reg);
2465 2466 2467
		break;
	case 5:
	case 4:
2468
		i965_write_fence_reg(reg);
2469 2470
		break;
	case 3:
2471
		i915_write_fence_reg(reg);
2472 2473
		break;
	case 2:
2474
		i830_write_fence_reg(reg);
2475 2476
		break;
	}
2477

2478 2479
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2480

2481
	return 0;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2495
	drm_i915_private_t *dev_priv = dev->dev_private;
2496
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2497 2498
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2499
	uint32_t fence_reg;
2500

2501 2502
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2503 2504
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2505 2506 2507
		break;
	case 5:
	case 4:
2508
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2509 2510
		break;
	case 3:
2511
		if (obj_priv->fence_reg >= 8)
2512
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2513
		else
2514 2515
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2516 2517

		I915_WRITE(fence_reg, 0);
2518
		break;
2519
	}
2520

2521
	reg->obj = NULL;
2522
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2523
	list_del_init(&reg->lru_list);
2524 2525
}

2526 2527 2528 2529
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2530
 * @bool: whether the wait upon the fence is interruptible
2531 2532 2533 2534 2535
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2536 2537
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2538 2539
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2540
	struct drm_i915_private *dev_priv = dev->dev_private;
2541
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2542
	struct drm_i915_fence_reg *reg;
2543 2544 2545 2546

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2547 2548 2549 2550 2551 2552
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2553 2554 2555 2556
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2557 2558
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2559 2560
		int ret;

2561
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2562 2563 2564
		if (ret)
			return ret;

2565
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2566
		if (ret)
2567
			return ret;
C
Chris Wilson 已提交
2568 2569

		reg->gpu = false;
2570 2571
	}

2572
	i915_gem_object_flush_gtt_write_domain(obj);
2573
	i915_gem_clear_fence_reg(obj);
2574 2575 2576 2577

	return 0;
}

2578 2579 2580 2581 2582 2583 2584 2585
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2586
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2587
	struct drm_mm_node *free_space;
2588
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2589
	int ret;
2590

C
Chris Wilson 已提交
2591
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2592 2593 2594 2595
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2596
	if (alignment == 0)
2597
		alignment = i915_gem_get_gtt_alignment(obj);
2598
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2599 2600 2601 2602
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2603 2604 2605 2606 2607 2608 2609 2610
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2611 2612 2613 2614 2615 2616
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2617
		if (obj_priv->gtt_space != NULL)
2618 2619 2620 2621 2622 2623
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2624
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2625
		if (ret)
2626
			return ret;
2627

2628 2629 2630
		goto search_free;
	}

2631
	ret = i915_gem_object_get_pages(obj, gfpmask);
2632 2633 2634
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2635 2636 2637

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2638 2639
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2640 2641
			if (ret) {
				/* now try to shrink everyone else */
2642 2643 2644
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2645 2646 2647 2648 2649 2650 2651 2652
				}

				return ret;
			}

			goto search_free;
		}

2653 2654 2655 2656 2657 2658 2659
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2660
					       obj_priv->pages,
2661
					       obj->size >> PAGE_SHIFT,
2662 2663
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2664
	if (obj_priv->agp_mem == NULL) {
2665
		i915_gem_object_put_pages(obj);
2666 2667
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2668

2669
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2670
		if (ret)
2671 2672 2673
			return ret;

		goto search_free;
2674 2675 2676 2677
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

2678 2679 2680
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

2681 2682 2683 2684
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2685 2686
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2687

C
Chris Wilson 已提交
2688 2689
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2690 2691 2692 2693 2694 2695
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2696
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2697 2698 2699 2700 2701

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2702
	if (obj_priv->pages == NULL)
2703 2704
		return;

C
Chris Wilson 已提交
2705
	trace_i915_gem_object_clflush(obj);
2706

2707
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2708 2709
}

2710
/** Flushes any GPU write domain for the object if it's dirty. */
2711
static int
2712 2713
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2714 2715
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2716
	uint32_t old_write_domain;
2717 2718

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2719
		return 0;
2720 2721

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2722
	old_write_domain = obj->write_domain;
2723
	i915_gem_flush_ring(dev, NULL,
2724 2725
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2726
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2727 2728 2729 2730

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2731 2732 2733 2734

	if (pipelined)
		return 0;

2735
	return i915_gem_object_wait_rendering(obj, true);
2736 2737 2738 2739 2740 2741
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2742 2743
	uint32_t old_write_domain;

2744 2745 2746 2747 2748 2749 2750
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2751
	old_write_domain = obj->write_domain;
2752
	obj->write_domain = 0;
C
Chris Wilson 已提交
2753 2754 2755 2756

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2757 2758 2759 2760 2761 2762 2763
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2764
	uint32_t old_write_domain;
2765 2766 2767 2768 2769 2770

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2771
	old_write_domain = obj->write_domain;
2772
	obj->write_domain = 0;
C
Chris Wilson 已提交
2773 2774 2775 2776

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2777 2778
}

2779 2780 2781 2782 2783 2784
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2785
int
2786 2787
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2788
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2789
	uint32_t old_write_domain, old_read_domains;
2790
	int ret;
2791

2792 2793 2794 2795
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2796
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2797 2798 2799
	if (ret != 0)
		return ret;

2800
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2801

2802
	if (write) {
2803
		ret = i915_gem_object_wait_rendering(obj, true);
2804 2805 2806
		if (ret)
			return ret;
	}
2807

2808 2809
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2810

2811 2812 2813 2814 2815 2816
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2817
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2818 2819
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2820 2821
	}

C
Chris Wilson 已提交
2822 2823 2824 2825
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2826 2827 2828
	return 0;
}

2829 2830 2831 2832 2833
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2834 2835
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2836
{
2837
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2838
	uint32_t old_read_domains;
2839 2840 2841 2842 2843 2844
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2845
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2846
	if (ret)
2847
		return ret;
2848

2849 2850 2851 2852 2853 2854 2855
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2856 2857
	i915_gem_object_flush_cpu_write_domain(obj);

2858
	old_read_domains = obj->read_domains;
2859
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2860 2861 2862

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2863
					    obj->write_domain);
2864 2865 2866 2867

	return 0;
}

2868 2869 2870 2871 2872 2873 2874 2875 2876
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2877
	uint32_t old_write_domain, old_read_domains;
2878 2879
	int ret;

2880
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2881 2882
	if (ret != 0)
		return ret;
2883

2884
	i915_gem_object_flush_gtt_write_domain(obj);
2885

2886 2887
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2888
	 */
2889
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2890

2891
	if (write) {
2892
		ret = i915_gem_object_wait_rendering(obj, true);
2893 2894 2895 2896
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2897 2898 2899
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2900 2901
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2902 2903
		i915_gem_clflush_object(obj);

2904
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2905 2906 2907 2908 2909
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2910 2911 2912 2913 2914 2915
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2916
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2917 2918
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2919

C
Chris Wilson 已提交
2920 2921 2922 2923
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2924 2925 2926
	return 0;
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3038
static void
3039
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3040 3041
{
	struct drm_device		*dev = obj->dev;
3042
	struct drm_i915_private		*dev_priv = dev->dev_private;
3043
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3044 3045
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3046
	uint32_t			old_read_domains;
3047

3048 3049
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3050

3051 3052
	intel_mark_busy(dev, obj);

3053 3054 3055 3056
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3057 3058
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3059 3060 3061 3062 3063 3064 3065 3066 3067
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3068 3069
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3070
		flush_domains |= obj->write_domain;
3071 3072
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3073 3074 3075 3076 3077
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3078
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3079
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3080 3081
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3082 3083
	old_read_domains = obj->read_domains;

3084 3085 3086 3087 3088 3089 3090 3091
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3092
	obj->read_domains = obj->pending_read_domains;
3093 3094 3095

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3096 3097
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3098 3099 3100 3101

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3102 3103 3104
}

/**
3105
 * Moves the object from a partially CPU read to a full one.
3106
 *
3107 3108
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3109
 */
3110 3111
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3112
{
3113
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3114

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3126
			drm_clflush_pages(obj_priv->pages + i, 1);
3127 3128 3129 3130 3131 3132
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3133
	kfree(obj_priv->page_cpu_valid);
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3153
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3154
	uint32_t old_read_domains;
3155
	int i, ret;
3156

3157 3158
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3159

3160
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3161
	if (ret != 0)
3162
		return ret;
3163 3164 3165 3166 3167 3168
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3169

3170 3171 3172
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3173
	if (obj_priv->page_cpu_valid == NULL) {
3174 3175
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3176 3177 3178 3179
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3180 3181 3182 3183

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3184 3185
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3186 3187 3188
		if (obj_priv->page_cpu_valid[i])
			continue;

3189
		drm_clflush_pages(obj_priv->pages + i, 1);
3190 3191 3192 3193

		obj_priv->page_cpu_valid[i] = 1;
	}

3194 3195 3196 3197 3198
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3199
	old_read_domains = obj->read_domains;
3200 3201
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3202 3203 3204 3205
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3206 3207 3208 3209 3210 3211 3212 3213 3214
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3215
				 struct drm_i915_gem_exec_object2 *entry,
3216
				 struct drm_i915_gem_relocation_entry *relocs)
3217 3218
{
	struct drm_device *dev = obj->dev;
3219
	drm_i915_private_t *dev_priv = dev->dev_private;
3220
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3221
	int i, ret;
3222
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3223 3224 3225 3226 3227 3228
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3229 3230 3231 3232 3233 3234 3235
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3236 3237 3238 3239 3240 3241

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3242 3243 3244 3245 3246
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
C
Chris Wilson 已提交
3247
		ret = i915_gem_object_get_fence_reg(obj, true);
J
Jesse Barnes 已提交
3248 3249 3250 3251
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
C
Chris Wilson 已提交
3252 3253

		dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
J
Jesse Barnes 已提交
3254 3255
	}

3256 3257 3258 3259 3260 3261
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3262
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3263 3264
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3265 3266
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3267 3268

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3269
						   reloc->target_handle);
3270 3271
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3272
			return -ENOENT;
3273
		}
3274
		target_obj_priv = to_intel_bo(target_obj);
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3291 3292 3293 3294 3295
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3296
				  reloc->target_handle);
3297 3298 3299 3300 3301
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3302
		/* Validate that the target is in a valid r/w GPU domain */
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3313 3314
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3315 3316 3317
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3318 3319 3320 3321
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3322 3323
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3324 3325
			return -EINVAL;
		}
3326 3327
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3328 3329 3330
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3331 3332 3333
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3334 3335 3336 3337 3338 3339
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3340 3341
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3342 3343 3344 3345

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3346
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3347 3348 3349 3350
			drm_gem_object_unreference(target_obj);
			continue;
		}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3382 3383 3384 3385 3386
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3387 3388 3389 3390 3391
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3392
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3393 3394
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3395 3396
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3397
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3398
						   (reloc_offset & (PAGE_SIZE - 1)));
3399
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3400 3401

		writel(reloc_val, reloc_entry);
3402
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3403

3404 3405
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3406
		 */
3407
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417

		drm_gem_object_unreference(target_obj);
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3418 3419 3420 3421
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3422 3423 3424 3425
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3426
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3427
{
3428 3429
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3430
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3431 3432 3433 3434
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3435

3436
	spin_lock(&file_priv->mm.lock);
3437
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3438 3439 3440
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3441 3442
		ring = request->ring;
		seqno = request->seqno;
3443
	}
3444
	spin_unlock(&file_priv->mm.lock);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3468

3469 3470 3471
	return ret;
}

3472
static int
J
Jesse Barnes 已提交
3473
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3487
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3488 3489
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3490
		return -ENOMEM;
J
Jesse Barnes 已提交
3491
	}
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3503
			drm_free_large(*relocs);
3504
			*relocs = NULL;
3505
			return -EFAULT;
3506 3507 3508 3509 3510
		}

		reloc_index += exec_list[i].relocation_count;
	}

3511
	return 0;
3512 3513 3514
}

static int
J
Jesse Barnes 已提交
3515
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3516 3517 3518 3519
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3520
	int ret = 0;
3521

3522 3523 3524
	if (relocs == NULL)
	    return 0;

3525 3526
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3527
		int unwritten;
3528 3529 3530

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3531 3532 3533 3534 3535 3536 3537 3538
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3539 3540 3541 3542 3543
		}

		reloc_count += exec_list[i].relocation_count;
	}

3544
err:
3545
	drm_free_large(relocs);
3546 3547 3548 3549

	return ret;
}

3550
static int
J
Jesse Barnes 已提交
3551
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3568
static int
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3582
			obj_priv = to_intel_bo(object_list[i]);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

C
Chris Wilson 已提交
3603
static int
J
Jesse Barnes 已提交
3604 3605 3606 3607
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3608 3609 3610 3611
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3612
	struct drm_i915_gem_object *obj_priv;
3613
	struct drm_clip_rect *cliprects = NULL;
3614
	struct drm_i915_gem_relocation_entry *relocs = NULL;
C
Chris Wilson 已提交
3615
	struct drm_i915_gem_request *request = NULL;
3616
	int ret, ret2, i, pinned = 0;
3617
	uint64_t exec_offset;
C
Chris Wilson 已提交
3618
	uint32_t reloc_index;
3619
	int pin_tries, flips;
3620

3621 3622
	struct intel_ring_buffer *ring = NULL;

3623 3624 3625 3626
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3627 3628 3629 3630
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3641 3642 3643 3644
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3645
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3646 3647
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3648 3649 3650 3651 3652
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3653
	if (args->num_cliprects != 0) {
3654 3655
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3656 3657
		if (cliprects == NULL) {
			ret = -ENOMEM;
3658
			goto pre_mutex_err;
3659
		}
3660 3661 3662 3663 3664 3665 3666 3667

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3668
			ret = -EFAULT;
3669 3670 3671 3672
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3673 3674 3675 3676 3677 3678
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3679 3680 3681 3682 3683
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3684 3685 3686
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3687 3688 3689 3690 3691

	i915_verify_inactive(dev, __FILE__, __LINE__);

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3692 3693
		ret = -EBUSY;
		goto pre_mutex_err;
3694 3695
	}

3696
	/* Look up object handles */
3697
	flips = 0;
3698 3699 3700 3701 3702 3703
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3704 3705
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3706
			ret = -ENOENT;
3707 3708
			goto err;
		}
3709

3710
		obj_priv = to_intel_bo(object_list[i]);
3711 3712 3713
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3714 3715
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3716
			ret = -EINVAL;
3717 3718 3719
			goto err;
		}
		obj_priv->in_execbuffer = true;
3720 3721 3722 3723 3724 3725 3726 3727
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3728
	}
3729

3730 3731 3732
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3733 3734
		reloc_index = 0;

3735 3736 3737 3738 3739
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3740 3741
							       &exec_list[i],
							       &relocs[reloc_index]);
3742 3743 3744
			if (ret)
				break;
			pinned = i + 1;
3745
			reloc_index += exec_list[i].relocation_count;
3746 3747 3748 3749 3750 3751
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3752
		if (ret != -ENOSPC || pin_tries >= 1) {
3753 3754
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3755 3756
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3757
					obj_priv = to_intel_bo(object_list[i]);
3758

3759
					total_size += object_list[i]->size;
3760 3761 3762 3763 3764
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3765
					  pinned+1, args->buffer_count,
3766 3767
					  total_size, num_fences,
					  ret);
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3778 3779
			goto err;
		}
3780 3781 3782 3783

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3784
		pinned = 0;
3785 3786 3787

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3788
		if (ret && ret != -ENOSPC)
3789
			goto err;
3790 3791 3792 3793
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3794 3795 3796 3797 3798 3799
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3800

3801 3802 3803 3804 3805 3806 3807 3808
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3809 3810
	i915_verify_inactive(dev, __FILE__, __LINE__);

3811 3812 3813 3814 3815 3816
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3817
	dev_priv->mm.flush_rings = 0;
3818

3819 3820 3821
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3822
		/* Compute new gpu domains and update invalidate/flush */
3823
		i915_gem_object_set_to_gpu_domain(obj);
3824 3825 3826 3827
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3828 3829 3830 3831 3832 3833 3834
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3835
		i915_gem_flush(dev, file_priv,
3836
			       dev->invalidate_domains,
3837 3838
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3839 3840
	}

3841 3842
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3843
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3844
		uint32_t old_write_domain = obj->write_domain;
3845 3846

		obj->write_domain = obj->pending_write_domain;
3847 3848 3849 3850 3851 3852
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3853 3854 3855
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3856 3857
	}

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3868
	i915_gem_dump_object(batch_obj,
3869 3870 3871 3872 3873 3874
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3875 3876
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3877 3878 3879 3880 3881 3882 3883 3884 3885
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3886
	i915_retire_commands(dev, ring);
3887 3888 3889

	i915_verify_inactive(dev, __FILE__, __LINE__);

3890 3891 3892 3893 3894 3895
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3896

C
Chris Wilson 已提交
3897
	i915_add_request(dev, file_priv, request, ring);
C
Chris Wilson 已提交
3898
	request = NULL;
3899 3900 3901 3902

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3903 3904 3905
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3906 3907
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3908
			obj_priv = to_intel_bo(object_list[i]);
3909 3910
			obj_priv->in_execbuffer = false;
		}
3911
		drm_gem_object_unreference(object_list[i]);
3912
	}
3913 3914 3915

	mutex_unlock(&dev->struct_mutex);

3916
pre_mutex_err:
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3931
	drm_free_large(object_list);
3932
	kfree(cliprects);
C
Chris Wilson 已提交
3933
	kfree(request);
3934 3935 3936 3937

	return ret;
}

J
Jesse Barnes 已提交
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3990
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4004
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4083 4084 4085 4086
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4087
	struct drm_i915_private *dev_priv = dev->dev_private;
4088
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4089 4090
	int ret;

4091 4092
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);

4093
	i915_verify_inactive(dev, __FILE__, __LINE__);
4094 4095 4096 4097 4098

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4099 4100 4101 4102
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4103 4104 4105 4106 4107 4108
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4109 4110
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4111
		if (ret)
4112
			return ret;
4113
	}
J
Jesse Barnes 已提交
4114

4115 4116 4117 4118 4119 4120 4121 4122
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
C
Chris Wilson 已提交
4123 4124 4125
		if (!obj_priv->active)
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.pinned_list);
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4137
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4149
		if (!obj_priv->active)
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4171
		return -ENOENT;
4172
	}
4173
	obj_priv = to_intel_bo(obj);
4174

4175 4176 4177 4178 4179 4180
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

C
Chris Wilson 已提交
4181 4182
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4183 4184 4185 4186 4187
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4188 4189 4190
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4191
		drm_gem_object_unreference(obj);
4192
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4205 4206 4207 4208 4209
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4210
	i915_gem_object_flush_cpu_write_domain(obj);
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4224
	struct drm_i915_gem_object *obj_priv;
4225
	int ret;
4226 4227 4228 4229 4230

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
4231
		return -ENOENT;
4232 4233
	}

4234
	obj_priv = to_intel_bo(obj);
4235 4236 4237 4238 4239 4240 4241

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

J
Jesse Barnes 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4267 4268
	int ret;

4269 4270 4271 4272
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4273
		return -ENOENT;
4274 4275
	}

4276 4277 4278 4279
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
4280 4281
	}

4282 4283 4284 4285
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4286
	 */
4287 4288 4289 4290 4291 4292 4293 4294
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4295 4296
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4297 4298
					    obj_priv->ring,
					    0, obj->write_domain);
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4309 4310 4311

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
4312
	return 0;
4313 4314 4315 4316 4317 4318 4319 4320 4321
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4322 4323 4324 4325 4326 4327 4328
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4329
	int ret;
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4343
		return -ENOENT;
4344
	}
4345
	obj_priv = to_intel_bo(obj);
4346

4347 4348 4349 4350 4351 4352
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

4353 4354 4355 4356 4357 4358 4359 4360
	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4361 4362
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4363

4364 4365 4366 4367 4368
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4369 4370
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4371 4372 4373 4374 4375 4376
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4377 4378 4379
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4380
	struct drm_i915_gem_object *obj;
4381

4382 4383 4384
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4385

4386 4387 4388 4389
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4390

4391 4392
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4393

4394
	obj->agp_type = AGP_USER_MEMORY;
4395
	obj->base.driver_private = NULL;
4396 4397 4398 4399
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4400

4401 4402 4403 4404 4405 4406 4407 4408
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4409

4410 4411 4412
	return 0;
}

4413
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4414
{
4415
	struct drm_device *dev = obj->dev;
4416
	drm_i915_private_t *dev_priv = dev->dev_private;
4417
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4418
	int ret;
4419

4420 4421 4422 4423 4424 4425
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4426

4427 4428
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4429

4430 4431
	drm_gem_object_release(obj);

4432
	kfree(obj_priv->page_cpu_valid);
4433
	kfree(obj_priv->bit_17);
4434
	kfree(obj_priv);
4435 4436
}

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4453 4454 4455 4456 4457
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4458

4459
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4460

4461
	if (dev_priv->mm.suspended ||
4462 4463 4464
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4465 4466
		mutex_unlock(&dev->struct_mutex);
		return 0;
4467 4468
	}

4469
	ret = i915_gpu_idle(dev);
4470 4471
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4472
		return ret;
4473
	}
4474

4475 4476
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4477
		ret = i915_gem_evict_inactive(dev);
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4489
	del_timer_sync(&dev_priv->hangcheck_timer);
4490 4491

	i915_kernel_lost_context(dev);
4492
	i915_gem_cleanup_ringbuffer(dev);
4493

4494 4495
	mutex_unlock(&dev->struct_mutex);

4496 4497 4498
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4499 4500 4501
	return 0;
}

4502 4503 4504 4505
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4506
static int
4507 4508 4509 4510 4511 4512 4513
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4514
	obj = i915_gem_alloc_object(dev, 4096);
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4545 4546

static void
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4561 4562
}

4563 4564 4565 4566 4567
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4568

4569 4570 4571 4572 4573
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4574

4575
	ret = intel_init_render_ring_buffer(dev);
4576 4577 4578 4579
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4580
		ret = intel_init_bsd_ring_buffer(dev);
4581 4582
		if (ret)
			goto cleanup_render_ring;
4583
	}
4584

4585 4586
	dev_priv->next_seqno = 1;

4587 4588 4589 4590 4591 4592 4593
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4594 4595 4596 4597 4598 4599 4600 4601 4602
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4603 4604
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4605 4606 4607 4608
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4609 4610 4611 4612 4613 4614 4615
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4616 4617 4618
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4619
	if (atomic_read(&dev_priv->mm.wedged)) {
4620
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4621
		atomic_set(&dev_priv->mm.wedged, 0);
4622 4623 4624
	}

	mutex_lock(&dev->struct_mutex);
4625 4626 4627
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4628 4629
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4630
		return ret;
4631
	}
4632

4633
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4634
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4635 4636
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4637
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4638
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4639
	mutex_unlock(&dev->struct_mutex);
4640

4641 4642 4643
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4644

4645
	return 0;
4646 4647 4648 4649 4650 4651 4652 4653

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4654 4655 4656 4657 4658 4659
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4660 4661 4662
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4663
	drm_irq_uninstall(dev);
4664
	return i915_gem_idle(dev);
4665 4666 4667 4668 4669 4670 4671
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4672 4673 4674
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4675 4676 4677
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4678 4679 4680 4681 4682
}

void
i915_gem_load(struct drm_device *dev)
{
4683
	int i;
4684 4685 4686
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4687
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4688
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4689
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4690
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4691
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4692 4693
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4694 4695 4696 4697
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4698 4699
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4700 4701
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4702
	init_completion(&dev_priv->error_completion);
4703 4704 4705 4706
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4717
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4718 4719
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4720

4721
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4722 4723 4724 4725
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4726
	/* Initialize fence registers to zero */
4727 4728 4729 4730 4731 4732 4733
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4734 4735
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4736 4737
		break;
	case 3:
4738 4739 4740
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4741 4742 4743 4744
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4745
	}
4746
	i915_gem_detect_bit_6_swizzle(dev);
4747
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4748
}
4749 4750 4751 4752 4753

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4754 4755
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4756 4757 4758 4759 4760 4761 4762 4763
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4764
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4765 4766 4767 4768 4769
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4770
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4783
	kfree(phys_obj);
4784 4785 4786
	return ret;
}

4787
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4812
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4824
	obj_priv = to_intel_bo(obj);
4825 4826 4827
	if (!obj_priv->phys_obj)
		return;

4828
	ret = i915_gem_object_get_pages(obj, 0);
4829 4830 4831 4832 4833 4834
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4835
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4836 4837 4838 4839 4840
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4841
	drm_clflush_pages(obj_priv->pages, page_count);
4842
	drm_agp_chipset_flush(dev);
4843 4844

	i915_gem_object_put_pages(obj);
4845 4846 4847 4848 4849 4850 4851
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4852 4853 4854
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4865
	obj_priv = to_intel_bo(obj);
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4876
						obj->size, align);
4877
		if (ret) {
4878
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4879 4880 4881 4882 4883 4884 4885 4886
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4887
	ret = i915_gem_object_get_pages(obj, 0);
4888 4889 4890 4891 4892 4893 4894 4895
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4896
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4897 4898 4899 4900 4901 4902
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4903 4904
	i915_gem_object_put_pages(obj);

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4915
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4916 4917 4918 4919 4920 4921 4922
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4923
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4924 4925 4926 4927 4928 4929 4930
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4931

4932
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4933
{
4934
	struct drm_i915_file_private *file_priv = file->driver_priv;
4935 4936 4937 4938 4939

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4940
	spin_lock(&file_priv->mm.lock);
4941 4942 4943 4944 4945 4946 4947 4948 4949
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4950
	spin_unlock(&file_priv->mm.lock);
4951
}
4952

4953 4954 4955 4956 4957 4958 4959
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4960
		      list_empty(&dev_priv->render_ring.active_list);
4961 4962
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4963 4964 4965 4966

	return !lists_empty;
}

4967
static int
4968
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4996
rescan:
4997 4998 4999 5000 5001 5002 5003 5004 5005
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
5006
		i915_gem_retire_requests(dev);
5007 5008 5009 5010 5011

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
5012
				i915_gem_object_unbind(&obj_priv->base);
5013 5014 5015 5016 5017 5018 5019 5020
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5021 5022
		would_deadlock = 0;

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5041
				i915_gem_object_unbind(&obj_priv->base);
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}