i915_gem.c 132.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 42 43 44 45 46 47 48
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
49 50
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
51 52 53
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
54 55 56
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
57
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
58

59 60 61
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

62 63 64 65 66 67 68 69
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

J
Jesse Barnes 已提交
70 71
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
72 73 74
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
75 76 77
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
78 79 80
		return -EINVAL;
	}

J
Jesse Barnes 已提交
81 82
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
83

J
Jesse Barnes 已提交
84 85 86 87
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
88

J
Jesse Barnes 已提交
89 90 91 92 93 94 95 96 97
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
98 99
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
100
	return ret;
101 102
}

103 104 105 106 107 108 109 110 111 112
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
113 114
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
115 116 117 118

	return 0;
}

119 120 121 122 123 124 125 126 127 128

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
129 130
	int ret;
	u32 handle;
131 132 133 134

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
135
	obj = i915_gem_alloc_object(dev, args->size);
136 137 138 139
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
140 141
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
142
		return ret;
143
	}
144

145 146
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
147

148
	args->handle = handle;
149 150 151
	return 0;
}

152 153 154 155 156 157 158
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
159
	int unwritten;
160 161 162 163

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
164
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
165 166
	kunmap_atomic(vaddr, KM_USER0);

167 168 169 170
	if (unwritten)
		return -EFAULT;

	return 0;
171 172
}

173 174 175
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
176
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
177 178 179 180 181

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

182
static inline void
183 184 185 186 187 188 189 190
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

191 192
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
193 194 195

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

196 197
	kunmap(src_page);
	kunmap(dst_page);
198 199
}

200
static inline void
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

220 221
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

245 246
	kunmap(cpu_page);
	kunmap(gpu_page);
247 248
}

249 250 251 252 253 254 255 256 257 258
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
259
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
260 261 262 263 264 265 266 267 268 269 270
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

271
	ret = i915_gem_object_get_pages(obj, 0);
272 273 274 275 276 277 278 279
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

280
	obj_priv = to_intel_bo(obj);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

315 316 317 318 319
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

320
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
321 322 323 324 325 326 327

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

328 329
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
330 331 332
		if (ret)
			return ret;

333
		ret = i915_gem_object_get_pages(obj, 0);
334 335 336 337 338
	}

	return ret;
}

339 340 341 342 343 344 345 346 347 348 349
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
350
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
351 352 353 354 355 356 357 358 359 360
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
361
	int do_bit17_swizzling;
362 363 364 365 366 367 368 369 370 371 372

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

373
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
374 375 376 377 378
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
379
				      num_pages, 1, 0, user_pages, NULL);
380 381 382 383 384 385
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

386 387
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

388 389
	mutex_lock(&dev->struct_mutex);

390 391
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
392 393 394 395 396 397 398
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

399
	obj_priv = to_intel_bo(obj);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

422
		if (do_bit17_swizzling) {
423
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
424
					      shmem_page_offset,
425 426 427 428 429 430 431 432 433 434
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
435
		}
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
451
	drm_free_large(user_pages);
452 453 454 455

	return ret;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
472
		return -ENOENT;
473
	obj_priv = to_intel_bo(obj);
474 475 476 477 478 479 480

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
481
		drm_gem_object_unreference_unlocked(obj);
482 483 484
		return -EINVAL;
	}

485
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
486
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
487 488 489 490 491 492
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
493

494
	drm_gem_object_unreference_unlocked(obj);
495

496
	return ret;
497 498
}

499 500
/* This is the fast write path which cannot handle
 * page faults in the source data
501
 */
502 503 504 505 506 507

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
508 509
{
	char *vaddr_atomic;
510
	unsigned long unwritten;
511

512
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
513 514
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
515
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
516 517 518 519 520 521 522 523 524
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

525
static inline void
526 527 528 529
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
530
{
531 532
	char __iomem *dst_vaddr;
	char *src_vaddr;
533

534 535 536 537 538 539 540 541 542
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
543 544
}

545 546 547 548 549 550 551
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
552
	unsigned long unwritten;
553 554 555 556

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
557
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
558 559
	kunmap_atomic(vaddr, KM_USER0);

560 561
	if (unwritten)
		return -EFAULT;
562 563 564
	return 0;
}

565 566 567 568
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
569
static int
570 571 572
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
573
{
574
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
575
	drm_i915_private_t *dev_priv = dev->dev_private;
576
	ssize_t remain;
577
	loff_t offset, page_base;
578
	char __user *user_data;
579 580
	int page_offset, page_length;
	int ret;
581 582 583 584 585 586 587 588 589 590 591 592 593

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
594
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
595 596 597
	if (ret)
		goto fail;

598
	obj_priv = to_intel_bo(obj);
599 600 601 602 603
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
604 605 606
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
607
		 */
608 609 610 611 612 613 614 615 616 617
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
618 619
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
620
		 */
621 622
		if (ret)
			goto fail;
623

624 625 626
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
627 628 629 630 631 632 633 634 635
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

636 637 638 639 640 641 642
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
643
static int
644 645 646
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
647
{
648
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
649 650 651 652 653 654 655 656
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
657
	int ret;
658 659 660 661 662 663 664 665 666 667 668 669
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

670
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
671 672 673 674 675 676 677 678 679 680 681
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
682 683

	mutex_lock(&dev->struct_mutex);
684 685 686 687 688 689 690 691
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

692
	obj_priv = to_intel_bo(obj);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

715 716 717 718 719
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
720 721 722 723 724 725 726 727 728 729 730 731 732

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
733
	drm_free_large(user_pages);
734 735 736 737

	return ret;
}

738 739 740 741
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
742
static int
743 744 745
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
746
{
747
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
748 749 750 751
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
752
	int ret;
753 754 755

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
756 757 758

	mutex_lock(&dev->struct_mutex);

759
	ret = i915_gem_object_get_pages(obj, 0);
760 761
	if (ret != 0)
		goto fail_unlock;
762

763
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
764 765 766
	if (ret != 0)
		goto fail_put_pages;

767
	obj_priv = to_intel_bo(obj);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
815
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
816 817 818 819 820 821 822 823 824 825
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
826
	int do_bit17_swizzling;
827 828 829 830 831 832 833 834 835 836 837

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

838
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
839 840 841 842 843 844 845 846 847 848
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
849 850
	}

851 852
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

853 854
	mutex_lock(&dev->struct_mutex);

855 856
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
857 858 859 860 861 862
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

863
	obj_priv = to_intel_bo(obj);
864
	offset = args->offset;
865
	obj_priv->dirty = 1;
866

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

887
		if (do_bit17_swizzling) {
888
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
889 890 891
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
892 893 894 895 896 897 898 899
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
900
		}
901 902 903 904

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
905 906
	}

907 908 909
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
910
	mutex_unlock(&dev->struct_mutex);
911 912 913
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
914
	drm_free_large(user_pages);
915

916
	return ret;
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
935
		return -ENOENT;
936
	obj_priv = to_intel_bo(obj);
937 938 939 940 941 942 943

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
944
		drm_gem_object_unreference_unlocked(obj);
945 946 947 948 949 950 951 952 953
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
954 955 956
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
957 958
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
959 960 961 962 963
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
964 965
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
966 967 968 969 970 971 972
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
973 974 975 976 977 978

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

979
	drm_gem_object_unreference_unlocked(obj);
980 981 982 983 984

	return ret;
}

/**
985 986
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
987 988 989 990 991
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
992
	struct drm_i915_private *dev_priv = dev->dev_private;
993 994
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
995
	struct drm_i915_gem_object *obj_priv;
996 997
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
998 999 1000 1001 1002
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1003
	/* Only handle setting domains to types used by the CPU. */
1004
	if (write_domain & I915_GEM_GPU_DOMAINS)
1005 1006
		return -EINVAL;

1007
	if (read_domains & I915_GEM_GPU_DOMAINS)
1008 1009 1010 1011 1012 1013 1014 1015
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1016 1017
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1018
		return -ENOENT;
1019
	obj_priv = to_intel_bo(obj);
1020 1021

	mutex_lock(&dev->struct_mutex);
1022 1023 1024

	intel_mark_busy(dev, obj);

1025
#if WATCH_BUF
1026
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1027
		 obj, obj->size, read_domains, write_domain);
1028
#endif
1029 1030
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1031

1032 1033 1034 1035
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1036 1037 1038
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1039 1040 1041
				       &dev_priv->mm.fence_list);
		}

1042 1043 1044 1045 1046 1047
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1048
	} else {
1049
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1050 1051
	}

1052 1053 1054 1055 1056
	
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
1081
		return -ENOENT;
1082 1083 1084
	}

#if WATCH_BUF
1085
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1086 1087
		 __func__, args->handle, obj, obj->size);
#endif
1088
	obj_priv = to_intel_bo(obj);
1089 1090

	/* Pinned buffers may be scanout, so flush the cache */
1091 1092 1093
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1120
		return -ENOENT;
1121 1122 1123 1124 1125 1126 1127 1128

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1129
	drm_gem_object_unreference_unlocked(obj);
1130 1131 1132 1133 1134 1135 1136 1137
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1158
	drm_i915_private_t *dev_priv = dev->dev_private;
1159
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1160 1161 1162
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1163
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1164 1165 1166 1167 1168 1169 1170 1171

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1172
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1173 1174
		if (ret)
			goto unlock;
1175 1176

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1177 1178
		if (ret)
			goto unlock;
1179 1180 1181
	}

	/* Need a new fence register? */
1182
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1183
		ret = i915_gem_object_get_fence_reg(obj);
1184 1185
		if (ret)
			goto unlock;
1186
	}
1187

1188 1189 1190
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1191 1192 1193 1194 1195
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1196
unlock:
1197 1198 1199
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1200 1201 1202
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1203 1204 1205 1206
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1207
		return VM_FAULT_SIGBUS;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1227
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1228
	struct drm_map_list *list;
1229
	struct drm_local_map *map;
1230 1231 1232 1233
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1234
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1262
		ret = -ENOMEM;
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1275
	kfree(list->map);
1276 1277 1278 1279

	return ret;
}

1280 1281 1282 1283
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1284
 * Preserve the reservation of the mmapping with the DRM core code, but
1285 1286 1287 1288 1289 1290 1291 1292 1293
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1294
void
1295 1296 1297
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1298
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1299 1300 1301 1302 1303 1304

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1305 1306 1307 1308
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1309
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1322
		kfree(list->map);
1323 1324 1325 1326 1327 1328
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1340
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1394
		return -ENOENT;
1395 1396 1397

	mutex_lock(&dev->struct_mutex);

1398
	obj_priv = to_intel_bo(obj);
1399

1400 1401 1402 1403 1404 1405 1406 1407
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1408 1409
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1410 1411 1412
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1413
			return ret;
1414
		}
1415 1416 1417 1418 1419 1420 1421 1422 1423
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1424
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1438
void
1439
i915_gem_object_put_pages(struct drm_gem_object *obj)
1440
{
1441
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1442 1443 1444
	int page_count = obj->size / PAGE_SIZE;
	int i;

1445
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1446
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1447

1448 1449
	if (--obj_priv->pages_refcount != 0)
		return;
1450

1451 1452 1453
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1454
	if (obj_priv->madv == I915_MADV_DONTNEED)
1455
		obj_priv->dirty = 0;
1456 1457 1458 1459 1460 1461

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1462
			mark_page_accessed(obj_priv->pages[i]);
1463 1464 1465

		page_cache_release(obj_priv->pages[i]);
	}
1466 1467
	obj_priv->dirty = 0;

1468
	drm_free_large(obj_priv->pages);
1469
	obj_priv->pages = NULL;
1470 1471
}

1472
static uint32_t
1473 1474
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
1475 1476 1477
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1478 1479
	ring->outstanding_lazy_request = true;

1480 1481 1482
	return dev_priv->next_seqno;
}

1483
static void
1484 1485
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1486 1487 1488
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1489
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1490 1491
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1492 1493 1494 1495 1496 1497

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1498 1499 1500

	/* Take the seqno of the next request if none is given */
	if (seqno == 0)
1501
		seqno = i915_gem_next_request_seqno(dev, ring);
1502

1503
	/* Move from whatever list we were on to the tail of execution. */
1504
	spin_lock(&dev_priv->mm.active_list_lock);
1505
	list_move_tail(&obj_priv->list, &ring->active_list);
1506
	spin_unlock(&dev_priv->mm.active_list_lock);
1507
	obj_priv->last_rendering_seqno = seqno;
1508 1509
}

1510 1511 1512 1513 1514
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1515
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1516 1517 1518 1519 1520

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1521

1522 1523 1524 1525
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1526
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1527
	struct inode *inode;
1528

1529 1530 1531 1532 1533 1534
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1535
	inode = obj->filp->f_path.dentry->d_inode;
1536 1537 1538
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1539 1540

	obj_priv->madv = __I915_MADV_PURGED;
1541 1542 1543 1544 1545 1546 1547 1548
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1549 1550 1551 1552 1553
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1554
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1555 1556 1557 1558 1559 1560 1561

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1562 1563
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1564
	obj_priv->last_rendering_seqno = 0;
1565
	obj_priv->ring = NULL;
1566 1567 1568 1569 1570 1571 1572
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1573 1574
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1575 1576
			       uint32_t flush_domains, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1577 1578 1579 1580 1581 1582 1583
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1584
		struct drm_gem_object *obj = &obj_priv->base;
1585 1586

		if ((obj->write_domain & flush_domains) ==
1587 1588
		    obj->write_domain &&
		    obj_priv->ring->ring_flag == ring->ring_flag) {
1589 1590 1591 1592
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1593
			i915_gem_object_move_to_active(obj, seqno, ring);
1594 1595

			/* update the fence lru list */
1596 1597 1598 1599
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1600
						&dev_priv->mm.fence_list);
1601
			}
1602 1603 1604 1605 1606 1607 1608

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1609

1610
uint32_t
1611
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1612
		 uint32_t flush_domains, struct intel_ring_buffer *ring)
1613 1614
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1615
	struct drm_i915_file_private *i915_file_priv = NULL;
1616 1617 1618 1619
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;

1620 1621 1622
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1623
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1624 1625 1626
	if (request == NULL)
		return 0;

1627
	seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1628 1629

	request->seqno = seqno;
1630
	request->ring = ring;
1631
	request->emitted_jiffies = jiffies;
1632 1633 1634
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1635 1636 1637 1638 1639 1640
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1641

1642
	/* Associate any objects on the flushing list matching the write
1643
	 * domain we're flushing with our request.
1644
	 */
1645
	if (flush_domains != 0) 
1646
		i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1647

B
Ben Gamari 已提交
1648 1649 1650 1651 1652
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1653 1654 1655 1656 1657 1658 1659 1660 1661
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1662
static uint32_t
1663
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1664 1665 1666 1667 1668 1669
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1670 1671 1672

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1686 1687
	trace_i915_gem_request_retire(dev, request->seqno);

1688 1689 1690
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1691
	spin_lock(&dev_priv->mm.active_list_lock);
1692
	while (!list_empty(&request->ring->active_list)) {
1693 1694 1695
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

1696
		obj_priv = list_first_entry(&request->ring->active_list,
1697 1698
					    struct drm_i915_gem_object,
					    list);
1699
		obj = &obj_priv->base;
1700 1701 1702 1703 1704 1705

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1706
			goto out;
1707

1708 1709 1710 1711 1712
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1713 1714
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1715 1716 1717 1718 1719 1720 1721 1722
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1723
			i915_gem_object_move_to_inactive(obj);
1724 1725 1726 1727
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1728
	}
1729 1730
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1731 1732 1733 1734 1735
}

/**
 * Returns true if seq1 is later than seq2.
 */
1736
bool
1737 1738 1739 1740 1741 1742
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
1743
i915_get_gem_seqno(struct drm_device *dev,
1744
		   struct intel_ring_buffer *ring)
1745
{
1746
	return ring->get_gem_seqno(dev, ring);
1747 1748 1749 1750 1751
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1752 1753 1754
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1755 1756 1757 1758
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1759
	if (!ring->status_page.page_addr
1760
			|| list_empty(&ring->request_list))
1761 1762
		return;

1763
	seqno = i915_get_gem_seqno(dev, ring);
1764

1765
	while (!list_empty(&ring->request_list)) {
1766 1767 1768
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

1769
		request = list_first_entry(&ring->request_list,
1770 1771 1772 1773 1774
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1775
		    atomic_read(&dev_priv->mm.wedged)) {
1776 1777 1778
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1779
			list_del(&request->client_list);
1780
			kfree(request);
1781 1782 1783
		} else
			break;
	}
1784 1785 1786

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1787 1788

		ring->user_irq_put(dev, ring);
1789 1790
		dev_priv->trace_irq_seqno = 0;
	}
1791 1792
}

1793 1794 1795 1796 1797
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1812 1813 1814 1815 1816
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1817
static void
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1828
	i915_gem_retire_requests(dev);
1829

1830
	if (!dev_priv->mm.suspended &&
1831 1832 1833
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1834
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1835 1836 1837
	mutex_unlock(&dev->struct_mutex);
}

1838
int
1839 1840
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
		int interruptible, struct intel_ring_buffer *ring)
1841 1842
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1843
	u32 ier;
1844 1845 1846 1847
	int ret = 0;

	BUG_ON(seqno == 0);

1848 1849 1850 1851 1852 1853
	if (seqno == dev_priv->next_seqno) {
		seqno = i915_add_request(dev, NULL, 0, ring);
		if (seqno == 0)
			return -ENOMEM;
	}

1854
	if (atomic_read(&dev_priv->mm.wedged))
1855 1856
		return -EIO;

1857
	if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1858
		if (HAS_PCH_SPLIT(dev))
1859 1860 1861
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1862 1863 1864 1865 1866 1867 1868
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1869 1870
		trace_i915_gem_request_wait_begin(dev, seqno);

1871
		ring->waiting_gem_seqno = seqno;
1872
		ring->user_irq_get(dev, ring);
1873
		if (interruptible)
1874 1875 1876 1877
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1878
		else
1879 1880 1881 1882
			wait_event(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1883

1884
		ring->user_irq_put(dev, ring);
1885
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1886 1887

		trace_i915_gem_request_wait_end(dev, seqno);
1888
	}
1889
	if (atomic_read(&dev_priv->mm.wedged))
1890 1891 1892
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
1893 1894 1895
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
			  __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
			  dev_priv->next_seqno);
1896 1897 1898 1899 1900 1901 1902

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1903
		i915_gem_retire_requests_ring(dev, ring);
1904 1905 1906 1907

	return ret;
}

1908 1909 1910 1911 1912
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1913 1914
i915_wait_request(struct drm_device *dev, uint32_t seqno,
		struct intel_ring_buffer *ring)
1915
{
1916
	return i915_do_wait_request(dev, seqno, 1, ring);
1917 1918
}

1919 1920 1921 1922 1923 1924
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1925

1926 1927
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
1928

1929 1930 1931
	dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
			invalidate_domains,
			flush_domains);
1932 1933 1934 1935 1936

	if (HAS_BSD(dev))
		dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
				invalidate_domains,
				flush_domains);
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with the next request.
	 */
	if (flush_domains != 0)  {
		i915_gem_process_flushing_list(dev, flush_domains, 0,
					       &dev_priv->render_ring);
		if (HAS_BSD(dev))
			i915_gem_process_flushing_list(dev, flush_domains, 0,
						       &dev_priv->bsd_ring);
	}
1948 1949
}

1950 1951 1952 1953 1954
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
1955 1956
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
1957 1958
{
	struct drm_device *dev = obj->dev;
1959
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1960 1961
	int ret;

1962 1963
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1964
	 */
1965
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1966 1967 1968 1969 1970 1971 1972 1973 1974

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
1975 1976 1977 1978
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1989
int
1990 1991 1992
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1993
	drm_i915_private_t *dev_priv = dev->dev_private;
1994
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2009 2010 2011
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2012 2013 2014 2015 2016 2017
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2018
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2019
	if (ret == -ERESTARTSYS)
2020
		return ret;
2021 2022 2023 2024
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2025

2026 2027 2028 2029
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2030 2031 2032 2033 2034 2035
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2036
	i915_gem_object_put_pages(obj);
2037
	BUG_ON(obj_priv->pages_refcount);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
2048
	spin_lock(&dev_priv->mm.active_list_lock);
2049 2050
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);
2051
	spin_unlock(&dev_priv->mm.active_list_lock);
2052

2053 2054 2055
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2056 2057
	trace_i915_gem_object_unbind(obj);

2058
	return ret;
2059 2060
}

2061
int
2062 2063 2064 2065
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2066
	uint32_t seqno1, seqno2;
2067
	int ret;
2068 2069

	spin_lock(&dev_priv->mm.active_list_lock);
2070 2071 2072 2073
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2074 2075 2076 2077 2078 2079 2080
	spin_unlock(&dev_priv->mm.active_list_lock);

	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2081
	seqno1 = i915_add_request(dev, NULL, 0,
2082
			&dev_priv->render_ring);
2083
	if (seqno1 == 0)
2084
		return -ENOMEM;
2085 2086 2087
	ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);

	if (HAS_BSD(dev)) {
2088
		seqno2 = i915_add_request(dev, NULL, 0,
2089 2090 2091 2092 2093 2094 2095 2096 2097
				&dev_priv->bsd_ring);
		if (seqno2 == 0)
			return -ENOMEM;

		ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
		if (ret)
			return ret;
	}

2098
	return ret;
2099 2100
}

2101
int
2102 2103
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2104
{
2105
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2106 2107 2108 2109 2110
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2111 2112 2113
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2114
	if (obj_priv->pages_refcount++ != 0)
2115 2116 2117 2118 2119 2120
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2121
	BUG_ON(obj_priv->pages != NULL);
2122
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2123 2124
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2125 2126 2127 2128 2129 2130
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2131
		page = read_cache_page_gfp(mapping, i,
2132
					   GFP_HIGHUSER |
2133
					   __GFP_COLD |
2134
					   __GFP_RECLAIMABLE |
2135
					   gfpmask);
2136 2137 2138
		if (IS_ERR(page))
			goto err_pages;

2139
		obj_priv->pages[i] = page;
2140
	}
2141 2142 2143 2144

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2145
	return 0;
2146 2147 2148 2149 2150 2151 2152 2153 2154

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2155 2156
}

2157 2158 2159 2160 2161
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2162
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2179 2180 2181 2182 2183
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2184
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2204
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2205
	int regnum = obj_priv->fence_reg;
2206
	int tile_width;
2207
	uint32_t fence_reg, val;
2208 2209 2210 2211
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2212
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2213
		     __func__, obj_priv->gtt_offset, obj->size);
2214 2215 2216
		return;
	}

2217 2218 2219
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2220
	else
2221 2222 2223 2224 2225
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2226

2227 2228 2229 2230 2231 2232
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2233 2234 2235 2236 2237 2238 2239
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2240 2241 2242 2243 2244
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2245 2246 2247 2248 2249 2250 2251
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2252
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2253 2254 2255
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2256
	uint32_t fence_size_bits;
2257

2258
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2259
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2260
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2261
		     __func__, obj_priv->gtt_offset);
2262 2263 2264
		return;
	}

2265 2266 2267 2268
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2269 2270 2271
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2272 2273 2274
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2275 2276 2277 2278 2279 2280
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
static int i915_find_fence_reg(struct drm_device *dev)
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2296
		obj_priv = to_intel_bo(reg->obj);
2297 2298 2299 2300 2301 2302 2303 2304 2305
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2306 2307 2308 2309
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
	ret = i915_gem_object_put_fence_reg(obj);
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2347 2348
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2349 2350
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2351
	struct drm_i915_private *dev_priv = dev->dev_private;
2352
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2353
	struct drm_i915_fence_reg *reg = NULL;
2354
	int ret;
2355

2356 2357
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2358 2359
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2360 2361 2362
		return 0;
	}

2363 2364 2365 2366 2367
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2368 2369 2370 2371 2372
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2373 2374
		break;
	case I915_TILING_Y:
2375 2376 2377 2378 2379
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2380 2381 2382
		break;
	}

2383 2384 2385
	ret = i915_find_fence_reg(dev);
	if (ret < 0)
		return ret;
2386

2387 2388
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2389
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2390

2391 2392
	reg->obj = obj;

2393 2394 2395
	if (IS_GEN6(dev))
		sandybridge_write_fence_reg(reg);
	else if (IS_I965G(dev))
2396 2397 2398 2399 2400
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2401

2402 2403
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2404

2405
	return 0;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2419
	drm_i915_private_t *dev_priv = dev->dev_private;
2420
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2421 2422
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2423

2424 2425 2426 2427
	if (IS_GEN6(dev)) {
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
	} else if (IS_I965G(dev)) {
2428
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2429
	} else {
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2440

2441
	reg->obj = NULL;
2442
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2443
	list_del_init(&reg->lru_list);
2444 2445
}

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2458
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2459 2460 2461 2462

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2463 2464 2465 2466 2467 2468
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2469 2470 2471 2472 2473 2474 2475
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

2476 2477 2478 2479
		ret = i915_gem_object_flush_gpu_write_domain(obj);
		if (ret != 0)
			return ret;

2480
		ret = i915_gem_object_wait_rendering(obj, true);
2481 2482 2483 2484
		if (ret != 0)
			return ret;
	}

2485
	i915_gem_object_flush_gtt_write_domain(obj);
2486 2487 2488 2489 2490
	i915_gem_clear_fence_reg (obj);

	return 0;
}

2491 2492 2493 2494 2495 2496 2497 2498
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2499
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2500
	struct drm_mm_node *free_space;
2501
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2502
	int ret;
2503

C
Chris Wilson 已提交
2504
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2505 2506 2507 2508
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2509
	if (alignment == 0)
2510
		alignment = i915_gem_get_gtt_alignment(obj);
2511
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2512 2513 2514 2515
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2516 2517 2518 2519 2520 2521 2522 2523
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2524 2525 2526 2527 2528 2529
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2530
		if (obj_priv->gtt_space != NULL)
2531 2532 2533 2534 2535 2536 2537 2538 2539
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2540
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2541
		if (ret)
2542
			return ret;
2543

2544 2545 2546 2547
		goto search_free;
	}

#if WATCH_BUF
2548
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2549 2550
		 obj->size, obj_priv->gtt_offset);
#endif
2551
	ret = i915_gem_object_get_pages(obj, gfpmask);
2552 2553 2554
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2555 2556 2557

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2558 2559
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2560 2561
			if (ret) {
				/* now try to shrink everyone else */
2562 2563 2564
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2565 2566 2567 2568 2569 2570 2571 2572
				}

				return ret;
			}

			goto search_free;
		}

2573 2574 2575 2576 2577 2578 2579
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2580
					       obj_priv->pages,
2581
					       obj->size >> PAGE_SHIFT,
2582 2583
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2584
	if (obj_priv->agp_mem == NULL) {
2585
		i915_gem_object_put_pages(obj);
2586 2587
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2588

2589
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2590
		if (ret)
2591 2592 2593
			return ret;

		goto search_free;
2594 2595 2596 2597
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

2598 2599 2600
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

2601 2602 2603 2604
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2605 2606
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2607

C
Chris Wilson 已提交
2608 2609
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2610 2611 2612 2613 2614 2615
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2616
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2617 2618 2619 2620 2621

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2622
	if (obj_priv->pages == NULL)
2623 2624
		return;

C
Chris Wilson 已提交
2625
	trace_i915_gem_object_clflush(obj);
2626

2627
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2628 2629
}

2630
/** Flushes any GPU write domain for the object if it's dirty. */
2631
static int
2632 2633 2634
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2635
	uint32_t old_write_domain;
2636
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2637 2638

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2639
		return 0;
2640 2641

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2642
	old_write_domain = obj->write_domain;
2643
	i915_gem_flush(dev, 0, obj->write_domain);
2644 2645
	if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
		return -ENOMEM;
C
Chris Wilson 已提交
2646 2647 2648 2649

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2650
	return 0;
2651 2652 2653 2654 2655 2656
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2657 2658
	uint32_t old_write_domain;

2659 2660 2661 2662 2663 2664 2665
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2666
	old_write_domain = obj->write_domain;
2667
	obj->write_domain = 0;
C
Chris Wilson 已提交
2668 2669 2670 2671

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2672 2673 2674 2675 2676 2677 2678
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2679
	uint32_t old_write_domain;
2680 2681 2682 2683 2684 2685

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2686
	old_write_domain = obj->write_domain;
2687
	obj->write_domain = 0;
C
Chris Wilson 已提交
2688 2689 2690 2691

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2692 2693
}

2694
int
2695 2696
i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
{
2697 2698
	int ret = 0;

2699 2700 2701 2702 2703 2704 2705 2706
	switch (obj->write_domain) {
	case I915_GEM_DOMAIN_GTT:
		i915_gem_object_flush_gtt_write_domain(obj);
		break;
	case I915_GEM_DOMAIN_CPU:
		i915_gem_object_flush_cpu_write_domain(obj);
		break;
	default:
2707
		ret = i915_gem_object_flush_gpu_write_domain(obj);
2708 2709
		break;
	}
2710 2711

	return ret;
2712 2713
}

2714 2715 2716 2717 2718 2719
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2720
int
2721 2722
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2723
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2724
	uint32_t old_write_domain, old_read_domains;
2725
	int ret;
2726

2727 2728 2729 2730
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2731 2732 2733 2734
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret != 0)
		return ret;

2735
	/* Wait on any GPU rendering and flushing to occur. */
2736
	ret = i915_gem_object_wait_rendering(obj, true);
2737 2738 2739
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2740 2741 2742
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2743 2744
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2745
	 */
2746 2747
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2748

2749
	i915_gem_object_flush_cpu_write_domain(obj);
2750

2751 2752 2753 2754 2755 2756 2757 2758
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2759 2760
	}

C
Chris Wilson 已提交
2761 2762 2763 2764
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2765 2766 2767
	return 0;
}

2768 2769 2770 2771 2772 2773 2774
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
{
2775
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2776 2777 2778 2779 2780 2781 2782
	uint32_t old_write_domain, old_read_domains;
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2783 2784 2785
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;
2786 2787

	/* Wait on any GPU rendering and flushing to occur. */
2788 2789 2790
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret != 0)
		return ret;
2791

2792 2793
	i915_gem_object_flush_cpu_write_domain(obj);

2794 2795 2796 2797 2798 2799 2800
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2801
	obj->read_domains = I915_GEM_DOMAIN_GTT;
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	obj->write_domain = I915_GEM_DOMAIN_GTT;
	obj_priv->dirty = 1;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

	return 0;
}

2812 2813 2814 2815 2816 2817 2818 2819 2820
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2821
	uint32_t old_write_domain, old_read_domains;
2822 2823
	int ret;

2824 2825 2826 2827
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2828
	/* Wait on any GPU rendering and flushing to occur. */
2829
	ret = i915_gem_object_wait_rendering(obj, true);
2830 2831
	if (ret != 0)
		return ret;
2832

2833
	i915_gem_object_flush_gtt_write_domain(obj);
2834

2835 2836
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2837
	 */
2838
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2839

C
Chris Wilson 已提交
2840 2841 2842
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2843 2844
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2845 2846
		i915_gem_clflush_object(obj);

2847
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2848 2849 2850 2851 2852
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2853 2854 2855 2856 2857 2858 2859 2860 2861
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2862

C
Chris Wilson 已提交
2863 2864 2865 2866
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2867 2868 2869
	return 0;
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2981
static void
2982
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2983 2984
{
	struct drm_device		*dev = obj->dev;
2985
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2986 2987
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
2988
	uint32_t			old_read_domains;
2989

2990 2991
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2992

2993 2994
	intel_mark_busy(dev, obj);

2995 2996 2997
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2998 2999
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
3000 3001 3002 3003 3004
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3005 3006
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3007 3008 3009 3010 3011 3012 3013 3014 3015
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3016 3017
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3018
		flush_domains |= obj->write_domain;
3019 3020
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3021 3022 3023 3024 3025
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3026
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3027 3028 3029 3030 3031 3032 3033 3034
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3035 3036
	old_read_domains = obj->read_domains;

3037 3038 3039 3040 3041 3042 3043 3044
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3045
	obj->read_domains = obj->pending_read_domains;
3046 3047 3048 3049 3050 3051 3052 3053 3054

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3055 3056 3057 3058

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3059 3060 3061
}

/**
3062
 * Moves the object from a partially CPU read to a full one.
3063
 *
3064 3065
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3066
 */
3067 3068
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3069
{
3070
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3083
			drm_clflush_pages(obj_priv->pages + i, 1);
3084 3085 3086 3087 3088 3089
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3090
	kfree(obj_priv->page_cpu_valid);
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3110
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3111
	uint32_t old_read_domains;
3112
	int i, ret;
3113

3114 3115
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3116

3117 3118 3119 3120
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3121
	/* Wait on any GPU rendering and flushing to occur. */
3122
	ret = i915_gem_object_wait_rendering(obj, true);
3123
	if (ret != 0)
3124
		return ret;
3125 3126 3127 3128 3129 3130
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3131

3132 3133 3134
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3135
	if (obj_priv->page_cpu_valid == NULL) {
3136 3137
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3138 3139 3140 3141
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3142 3143 3144 3145

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3146 3147
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3148 3149 3150
		if (obj_priv->page_cpu_valid[i])
			continue;

3151
		drm_clflush_pages(obj_priv->pages + i, 1);
3152 3153 3154 3155

		obj_priv->page_cpu_valid[i] = 1;
	}

3156 3157 3158 3159 3160
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3161
	old_read_domains = obj->read_domains;
3162 3163
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3164 3165 3166 3167
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3168 3169 3170 3171 3172 3173 3174 3175 3176
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3177
				 struct drm_i915_gem_exec_object2 *entry,
3178
				 struct drm_i915_gem_relocation_entry *relocs)
3179 3180
{
	struct drm_device *dev = obj->dev;
3181
	drm_i915_private_t *dev_priv = dev->dev_private;
3182
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3183
	int i, ret;
3184
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3185 3186 3187 3188 3189 3190
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3191 3192 3193 3194 3195 3196 3197
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3198 3199 3200 3201 3202 3203

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
		ret = i915_gem_object_get_fence_reg(obj);
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
	}

3216 3217 3218 3219 3220 3221
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3222
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3223 3224
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3225 3226
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3227 3228

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3229
						   reloc->target_handle);
3230 3231
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3232
			return -ENOENT;
3233
		}
3234
		target_obj_priv = to_intel_bo(target_obj);
3235

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3251 3252 3253 3254 3255
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3256
				  reloc->target_handle);
3257 3258 3259 3260 3261
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3262
		/* Validate that the target is in a valid r/w GPU domain */
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3273 3274
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3275 3276 3277
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3278 3279 3280 3281
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3282 3283
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3284 3285
			return -EINVAL;
		}
3286 3287
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3288 3289 3290
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3291 3292 3293
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3294 3295 3296 3297 3298 3299
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3300 3301
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3302 3303 3304 3305

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3306
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3307 3308 3309 3310
			drm_gem_object_unreference(target_obj);
			continue;
		}

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3342 3343 3344 3345 3346
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3347 3348 3349 3350 3351
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3352
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3353 3354
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3355 3356
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3357
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3358
						   (reloc_offset & (PAGE_SIZE - 1)));
3359
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3360 3361 3362

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3363
			  obj, (unsigned int) reloc->offset,
3364 3365 3366
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3367
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3368

3369 3370
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3371
		 */
3372
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3387 3388 3389 3390
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3391 3392 3393 3394 3395 3396 3397 3398
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3399
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3400 3401

	mutex_lock(&dev->struct_mutex);
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3412
		ret = i915_wait_request(dev, request->seqno, request->ring);
3413 3414 3415
		if (ret != 0)
			break;
	}
3416
	mutex_unlock(&dev->struct_mutex);
3417

3418 3419 3420
	return ret;
}

3421
static int
J
Jesse Barnes 已提交
3422
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3436
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3437 3438
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3439
		return -ENOMEM;
J
Jesse Barnes 已提交
3440
	}
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3452
			drm_free_large(*relocs);
3453
			*relocs = NULL;
3454
			return -EFAULT;
3455 3456 3457 3458 3459
		}

		reloc_index += exec_list[i].relocation_count;
	}

3460
	return 0;
3461 3462 3463
}

static int
J
Jesse Barnes 已提交
3464
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3465 3466 3467 3468
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3469
	int ret = 0;
3470

3471 3472 3473
	if (relocs == NULL)
	    return 0;

3474 3475
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3476
		int unwritten;
3477 3478 3479

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3480 3481 3482 3483 3484 3485 3486 3487
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3488 3489 3490 3491 3492
		}

		reloc_count += exec_list[i].relocation_count;
	}

3493
err:
3494
	drm_free_large(relocs);
3495 3496 3497 3498

	return ret;
}

3499
static int
J
Jesse Barnes 已提交
3500
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3531
			obj_priv = to_intel_bo(object_list[i]);
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

3552

3553
int
J
Jesse Barnes 已提交
3554 3555 3556 3557
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3558 3559 3560 3561
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3562
	struct drm_i915_gem_object *obj_priv;
3563
	struct drm_clip_rect *cliprects = NULL;
3564
	struct drm_i915_gem_relocation_entry *relocs = NULL;
J
Jesse Barnes 已提交
3565
	int ret = 0, ret2, i, pinned = 0;
3566
	uint64_t exec_offset;
3567
	uint32_t seqno, flush_domains, reloc_index;
3568
	int pin_tries, flips;
3569

3570 3571
	struct intel_ring_buffer *ring = NULL;

3572 3573 3574 3575
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3586 3587 3588 3589
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3590
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3591 3592
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3593 3594 3595 3596 3597
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3598
	if (args->num_cliprects != 0) {
3599 3600
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3601 3602
		if (cliprects == NULL) {
			ret = -ENOMEM;
3603
			goto pre_mutex_err;
3604
		}
3605 3606 3607 3608 3609 3610 3611 3612

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3613
			ret = -EFAULT;
3614 3615 3616 3617
			goto pre_mutex_err;
		}
	}

3618 3619 3620 3621 3622
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3623 3624 3625 3626
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3627
	if (atomic_read(&dev_priv->mm.wedged)) {
3628
		mutex_unlock(&dev->struct_mutex);
3629 3630
		ret = -EIO;
		goto pre_mutex_err;
3631 3632 3633 3634
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3635 3636
		ret = -EBUSY;
		goto pre_mutex_err;
3637 3638
	}

3639
	/* Look up object handles */
3640
	flips = 0;
3641 3642 3643 3644 3645 3646
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3647 3648
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3649
			ret = -ENOENT;
3650 3651
			goto err;
		}
3652

3653
		obj_priv = to_intel_bo(object_list[i]);
3654 3655 3656
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3657 3658
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3659
			ret = -EINVAL;
3660 3661 3662
			goto err;
		}
		obj_priv->in_execbuffer = true;
3663 3664 3665 3666 3667 3668 3669 3670
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3671
	}
3672

3673 3674 3675
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3676 3677
		reloc_index = 0;

3678 3679 3680 3681 3682
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3683 3684
							       &exec_list[i],
							       &relocs[reloc_index]);
3685 3686 3687
			if (ret)
				break;
			pinned = i + 1;
3688
			reloc_index += exec_list[i].relocation_count;
3689 3690 3691 3692 3693 3694
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3695
		if (ret != -ENOSPC || pin_tries >= 1) {
3696 3697
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3698 3699
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3700
					obj_priv = to_intel_bo(object_list[i]);
3701

3702
					total_size += object_list[i]->size;
3703 3704 3705 3706 3707
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3708
					  pinned+1, args->buffer_count,
3709 3710
					  total_size, num_fences,
					  ret);
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3721 3722
			goto err;
		}
3723 3724 3725 3726

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3727
		pinned = 0;
3728 3729 3730

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3731
		if (ret && ret != -ENOSPC)
3732
			goto err;
3733 3734 3735 3736
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3737 3738 3739 3740 3741 3742
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3743

3744 3745 3746 3747 3748 3749 3750 3751
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3752 3753
	i915_verify_inactive(dev, __FILE__, __LINE__);

3754 3755 3756 3757 3758 3759 3760
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3761 3762 3763
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3764
		/* Compute new gpu domains and update invalidate/flush */
3765
		i915_gem_object_set_to_gpu_domain(obj);
3766 3767 3768 3769
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	}

	if (dev_priv->render_ring.outstanding_lazy_request) {
		(void)i915_add_request(dev, file_priv, 0,
				       &dev_priv->render_ring);
		dev_priv->render_ring.outstanding_lazy_request = false;
	}
	if (dev_priv->bsd_ring.outstanding_lazy_request) {
		(void)i915_add_request(dev, file_priv, 0,
				       &dev_priv->bsd_ring);
		dev_priv->bsd_ring.outstanding_lazy_request = false;
3791
	}
3792

3793 3794
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3795
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3796
		uint32_t old_write_domain = obj->write_domain;
3797 3798

		obj->write_domain = obj->pending_write_domain;
3799 3800 3801 3802 3803 3804
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3805 3806 3807
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3808 3809
	}

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3820
	i915_gem_dump_object(batch_obj,
3821 3822 3823 3824 3825 3826
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3827 3828
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3829 3830 3831 3832 3833 3834 3835 3836 3837
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3838
	flush_domains = i915_retire_commands(dev, ring);
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3849
	seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3850 3851 3852
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3853
		obj_priv = to_intel_bo(obj);
3854

3855
		i915_gem_object_move_to_active(obj, seqno, ring);
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3867 3868 3869
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3870 3871
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3872
			obj_priv = to_intel_bo(object_list[i]);
3873 3874
			obj_priv->in_execbuffer = false;
		}
3875
		drm_gem_object_unreference(object_list[i]);
3876
	}
3877 3878 3879

	mutex_unlock(&dev->struct_mutex);

3880
pre_mutex_err:
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3895
	drm_free_large(object_list);
3896
	kfree(cliprects);
3897 3898 3899 3900

	return ret;
}

J
Jesse Barnes 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (!IS_I965G(dev))
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3967
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4046 4047 4048 4049
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
4050
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4051 4052
	int ret;

4053 4054
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);

4055
	i915_verify_inactive(dev, __FILE__, __LINE__);
4056 4057 4058 4059 4060

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4061 4062 4063 4064
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4065 4066 4067 4068 4069 4070
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4071 4072
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4073
		if (ret)
4074
			return ret;
4075
	}
J
Jesse Barnes 已提交
4076

4077 4078 4079 4080 4081 4082 4083 4084 4085
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4086
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4099
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4112
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4137
		return -ENOENT;
4138
	}
4139
	obj_priv = to_intel_bo(obj);
4140

C
Chris Wilson 已提交
4141 4142
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4143 4144 4145 4146 4147
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4148 4149 4150
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4151
		drm_gem_object_unreference(obj);
4152
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4165 4166 4167 4168 4169
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4170
	i915_gem_object_flush_cpu_write_domain(obj);
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4184
	struct drm_i915_gem_object *obj_priv;
4185 4186 4187 4188 4189 4190 4191 4192

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4193
		return -ENOENT;
4194 4195
	}

4196
	obj_priv = to_intel_bo(obj);
J
Jesse Barnes 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4227
		return -ENOENT;
4228 4229
	}

4230
	mutex_lock(&dev->struct_mutex);
4231

4232 4233 4234 4235
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4236
	 */
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
		if (obj->write_domain) {
			i915_gem_flush(dev, 0, obj->write_domain);
			(void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
		}

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4292
		return -ENOENT;
4293 4294 4295
	}

	mutex_lock(&dev->struct_mutex);
4296
	obj_priv = to_intel_bo(obj);
4297 4298 4299 4300 4301 4302 4303 4304 4305

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4306 4307
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4308

4309 4310 4311 4312 4313
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4314 4315
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4316 4317 4318 4319 4320 4321
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4322 4323 4324
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4325
	struct drm_i915_gem_object *obj;
4326

4327 4328 4329
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4330

4331 4332 4333 4334
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4335

4336 4337
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4338

4339
	obj->agp_type = AGP_USER_MEMORY;
4340
	obj->base.driver_private = NULL;
4341 4342 4343 4344
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4345

4346 4347 4348 4349 4350 4351 4352 4353
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4354

4355 4356 4357
	return 0;
}

4358
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4359
{
4360
	struct drm_device *dev = obj->dev;
4361
	drm_i915_private_t *dev_priv = dev->dev_private;
4362
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4363
	int ret;
4364

4365 4366 4367 4368 4369 4370
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4371

4372 4373
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4374

4375 4376
	drm_gem_object_release(obj);

4377
	kfree(obj_priv->page_cpu_valid);
4378
	kfree(obj_priv->bit_17);
4379
	kfree(obj_priv);
4380 4381
}

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4398 4399 4400 4401 4402
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4403

4404
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4405

4406
	if (dev_priv->mm.suspended ||
4407 4408 4409
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4410 4411
		mutex_unlock(&dev->struct_mutex);
		return 0;
4412 4413
	}

4414
	ret = i915_gpu_idle(dev);
4415 4416
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4417
		return ret;
4418
	}
4419

4420 4421
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4422
		ret = i915_gem_evict_inactive(dev);
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4434
	del_timer_sync(&dev_priv->hangcheck_timer);
4435 4436

	i915_kernel_lost_context(dev);
4437
	i915_gem_cleanup_ringbuffer(dev);
4438

4439 4440
	mutex_unlock(&dev->struct_mutex);

4441 4442 4443
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4444 4445 4446
	return 0;
}

4447 4448 4449 4450
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4451
static int
4452 4453 4454 4455 4456 4457 4458
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4459
	obj = i915_gem_alloc_object(dev, 4096);
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4490 4491

static void
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4506 4507
}

4508 4509 4510 4511 4512
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4513

4514
	dev_priv->render_ring = render_ring;
4515

4516 4517 4518 4519 4520 4521
	if (!I915_NEED_GFX_HWS(dev)) {
		dev_priv->render_ring.status_page.page_addr
			= dev_priv->status_page_dmah->vaddr;
		memset(dev_priv->render_ring.status_page.page_addr,
				0, PAGE_SIZE);
	}
4522

4523 4524 4525 4526 4527
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4528

4529
	ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4530 4531 4532 4533
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4534 4535
		dev_priv->bsd_ring = bsd_ring;
		ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4536 4537
		if (ret)
			goto cleanup_render_ring;
4538
	}
4539

4540 4541
	dev_priv->next_seqno = 1;

4542 4543 4544 4545 4546 4547 4548
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4549 4550 4551 4552 4553 4554 4555 4556 4557
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4558 4559
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4560 4561 4562 4563
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4564 4565 4566 4567 4568 4569 4570
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4571 4572 4573
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4574
	if (atomic_read(&dev_priv->mm.wedged)) {
4575
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4576
		atomic_set(&dev_priv->mm.wedged, 0);
4577 4578 4579
	}

	mutex_lock(&dev->struct_mutex);
4580 4581 4582
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4583 4584
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4585
		return ret;
4586
	}
4587

4588
	spin_lock(&dev_priv->mm.active_list_lock);
4589
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4590
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4591 4592
	spin_unlock(&dev_priv->mm.active_list_lock);

4593 4594
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4595
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4596
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4597
	mutex_unlock(&dev->struct_mutex);
4598

4599 4600 4601
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4602

4603
	return 0;
4604 4605 4606 4607 4608 4609 4610 4611

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4612 4613 4614 4615 4616 4617
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4618 4619 4620
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4621
	drm_irq_uninstall(dev);
4622
	return i915_gem_idle(dev);
4623 4624 4625 4626 4627 4628 4629
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4630 4631 4632
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4633 4634 4635
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4636 4637 4638 4639 4640
}

void
i915_gem_load(struct drm_device *dev)
{
4641
	int i;
4642 4643
	drm_i915_private_t *dev_priv = dev->dev_private;

4644
	spin_lock_init(&dev_priv->mm.active_list_lock);
4645
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4646
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4647
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4648
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4649
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4650 4651
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4652 4653 4654 4655
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4656 4657
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4658 4659
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4660 4661 4662 4663
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4674
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4675 4676
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4677

4678
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4679 4680 4681 4682
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}
4694
	i915_gem_detect_bit_6_swizzle(dev);
4695
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4696
}
4697 4698 4699 4700 4701 4702

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
4703
			      int id, int size, int align)
4704 4705 4706 4707 4708 4709 4710 4711
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4712
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4713 4714 4715 4716 4717
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4718
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4731
	kfree(phys_obj);
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4760
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4772
	obj_priv = to_intel_bo(obj);
4773 4774 4775
	if (!obj_priv->phys_obj)
		return;

4776
	ret = i915_gem_object_get_pages(obj, 0);
4777 4778 4779 4780 4781 4782
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4783
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4784 4785 4786 4787 4788
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4789
	drm_clflush_pages(obj_priv->pages, page_count);
4790
	drm_agp_chipset_flush(dev);
4791 4792

	i915_gem_object_put_pages(obj);
4793 4794 4795 4796 4797 4798 4799
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4800 4801 4802
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4813
	obj_priv = to_intel_bo(obj);
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4824
						obj->size, align);
4825
		if (ret) {
4826
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4827 4828 4829 4830 4831 4832 4833 4834
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4835
	ret = i915_gem_object_get_pages(obj, 0);
4836 4837 4838 4839 4840 4841 4842 4843
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4844
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4845 4846 4847 4848 4849 4850
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4851 4852
	i915_gem_object_put_pages(obj);

4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4863
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4864 4865 4866 4867 4868 4869 4870
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4871
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4872 4873 4874 4875 4876 4877 4878
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4893

4894 4895 4896 4897 4898 4899 4900 4901
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4902
		      list_empty(&dev_priv->render_ring.active_list);
4903 4904
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4905 4906 4907 4908 4909
	spin_unlock(&dev_priv->mm.active_list_lock);

	return !lists_empty;
}

4910
static int
4911
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4939
rescan:
4940 4941 4942 4943 4944 4945 4946 4947 4948
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4949
		i915_gem_retire_requests(dev);
4950 4951 4952 4953 4954

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4955
				i915_gem_object_unbind(&obj_priv->base);
4956 4957 4958 4959 4960 4961 4962 4963
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4964 4965
		would_deadlock = 0;

4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4984
				i915_gem_object_unbind(&obj_priv->base);
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}