i915_gem.c 135.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38
static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 40 41 42 43 44 45 46
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 49 50
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51
static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52
static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 54 55
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
56
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
57

58 59 60
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

J
Jesse Barnes 已提交
61 62
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
63 64 65
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
66 67 68
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
69 70 71
		return -EINVAL;
	}

J
Jesse Barnes 已提交
72 73
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
74

J
Jesse Barnes 已提交
75 76 77 78
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
79

J
Jesse Barnes 已提交
80 81 82 83 84 85 86 87 88
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 90
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
91
	return ret;
92 93
}

94 95 96 97 98 99 100 101 102 103
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
104 105
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
106 107 108 109

	return 0;
}

110 111 112 113 114 115 116 117 118 119

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
120 121
	int ret;
	u32 handle;
122 123 124 125

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
126
	obj = i915_gem_alloc_object(dev, args->size);
127 128 129 130
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
131
	drm_gem_object_unreference_unlocked(obj);
132 133 134 135 136 137 138 139
	if (ret)
		return ret;

	args->handle = handle;

	return 0;
}

140 141 142 143 144 145 146
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
147
	int unwritten;
148 149 150 151

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
152
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
153 154
	kunmap_atomic(vaddr, KM_USER0);

155 156 157 158
	if (unwritten)
		return -EFAULT;

	return 0;
159 160
}

161 162 163
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
164
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
165 166 167 168 169

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

170
static inline void
171 172 173 174 175 176 177 178
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

179 180
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
181 182 183

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

184 185
	kunmap(src_page);
	kunmap(dst_page);
186 187
}

188
static inline void
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

208 209
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

233 234
	kunmap(cpu_page);
	kunmap(gpu_page);
235 236
}

237 238 239 240 241 242 243 244 245 246
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
247
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
248 249 250 251 252 253 254 255 256 257 258
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

259
	ret = i915_gem_object_get_pages(obj, 0);
260 261 262 263 264 265 266 267
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

268
	obj_priv = to_intel_bo(obj);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

303 304 305 306 307
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

308
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
309 310 311 312 313 314 315 316 317 318 319

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

		ret = i915_gem_evict_something(dev, obj->size);
		if (ret)
			return ret;

320
		ret = i915_gem_object_get_pages(obj, 0);
321 322 323 324 325
	}

	return ret;
}

326 327 328 329 330 331 332 333 334 335 336
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
337
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
338 339 340 341 342 343 344 345 346 347
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
348
	int do_bit17_swizzling;
349 350 351 352 353 354 355 356 357 358 359

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

360
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
361 362 363 364 365
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
366
				      num_pages, 1, 0, user_pages, NULL);
367 368 369 370 371 372
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

373 374
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

375 376
	mutex_lock(&dev->struct_mutex);

377 378
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
379 380 381 382 383 384 385
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

386
	obj_priv = to_intel_bo(obj);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

409
		if (do_bit17_swizzling) {
410
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
411
					      shmem_page_offset,
412 413 414 415 416 417 418 419 420 421
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
422
		}
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
438
	drm_free_large(user_pages);
439 440 441 442

	return ret;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
460
	obj_priv = to_intel_bo(obj);
461 462 463 464 465 466 467

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
468
		drm_gem_object_unreference_unlocked(obj);
469 470 471
		return -EINVAL;
	}

472
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
473
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
474 475 476 477 478 479
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
480

481
	drm_gem_object_unreference_unlocked(obj);
482

483
	return ret;
484 485
}

486 487
/* This is the fast write path which cannot handle
 * page faults in the source data
488
 */
489 490 491 492 493 494

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
495 496
{
	char *vaddr_atomic;
497
	unsigned long unwritten;
498

499 500 501 502 503 504 505 506 507 508 509 510 511
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
	io_mapping_unmap_atomic(vaddr_atomic);
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

512
static inline void
513 514 515 516
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
517
{
518 519
	char __iomem *dst_vaddr;
	char *src_vaddr;
520

521 522 523 524 525 526 527 528 529
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
530 531
}

532 533 534 535 536 537 538
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
539
	unsigned long unwritten;
540 541 542 543

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
544
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
545 546
	kunmap_atomic(vaddr, KM_USER0);

547 548
	if (unwritten)
		return -EFAULT;
549 550 551
	return 0;
}

552 553 554 555
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
556
static int
557 558 559
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
560
{
561
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
562
	drm_i915_private_t *dev_priv = dev->dev_private;
563
	ssize_t remain;
564
	loff_t offset, page_base;
565
	char __user *user_data;
566 567
	int page_offset, page_length;
	int ret;
568 569 570 571 572 573 574 575 576 577 578 579 580

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
581
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
582 583 584
	if (ret)
		goto fail;

585
	obj_priv = to_intel_bo(obj);
586 587 588 589 590
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
591 592 593
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
594
		 */
595 596 597 598 599 600 601 602 603 604
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
605 606
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
607
		 */
608 609
		if (ret)
			goto fail;
610

611 612 613
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
614 615 616 617 618 619 620 621 622
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

623 624 625 626 627 628 629
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
630
static int
631 632 633
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
634
{
635
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
636 637 638 639 640 641 642 643
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
644
	int ret;
645 646 647 648 649 650 651 652 653 654 655 656
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

657
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
658 659 660 661 662 663 664 665 666 667 668
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
669 670

	mutex_lock(&dev->struct_mutex);
671 672 673 674 675 676 677 678
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

679
	obj_priv = to_intel_bo(obj);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

702 703 704 705 706
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
707 708 709 710 711 712 713 714 715 716 717 718 719

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
720
	drm_free_large(user_pages);
721 722 723 724

	return ret;
}

725 726 727 728
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
729
static int
730 731 732
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
733
{
734
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
735 736 737 738
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
739
	int ret;
740 741 742

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
743 744 745

	mutex_lock(&dev->struct_mutex);

746
	ret = i915_gem_object_get_pages(obj, 0);
747 748
	if (ret != 0)
		goto fail_unlock;
749

750
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
751 752 753
	if (ret != 0)
		goto fail_put_pages;

754
	obj_priv = to_intel_bo(obj);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
802
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
803 804 805 806 807 808 809 810 811 812
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
813
	int do_bit17_swizzling;
814 815 816 817 818 819 820 821 822 823 824

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

825
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
826 827 828 829 830 831 832 833 834 835
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
836 837
	}

838 839
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

840 841
	mutex_lock(&dev->struct_mutex);

842 843
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
844 845 846 847 848 849
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

850
	obj_priv = to_intel_bo(obj);
851
	offset = args->offset;
852
	obj_priv->dirty = 1;
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

874
		if (do_bit17_swizzling) {
875
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
876 877 878
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
879 880 881 882 883 884 885 886
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
887
		}
888 889 890 891

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
892 893
	}

894 895 896
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
897
	mutex_unlock(&dev->struct_mutex);
898 899 900
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
901
	drm_free_large(user_pages);
902

903
	return ret;
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
923
	obj_priv = to_intel_bo(obj);
924 925 926 927 928 929 930

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
931
		drm_gem_object_unreference_unlocked(obj);
932 933 934 935 936 937 938 939 940
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
941 942 943
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
944 945
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
946 947 948 949 950
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
951 952
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
953 954 955 956 957 958 959
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
960 961 962 963 964 965

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

966
	drm_gem_object_unreference_unlocked(obj);
967 968 969 970 971

	return ret;
}

/**
972 973
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
974 975 976 977 978
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
979
	struct drm_i915_private *dev_priv = dev->dev_private;
980 981
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
982
	struct drm_i915_gem_object *obj_priv;
983 984
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
985 986 987 988 989
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

990
	/* Only handle setting domains to types used by the CPU. */
991
	if (write_domain & I915_GEM_GPU_DOMAINS)
992 993
		return -EINVAL;

994
	if (read_domains & I915_GEM_GPU_DOMAINS)
995 996 997 998 999 1000 1001 1002
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1003 1004 1005
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
1006
	obj_priv = to_intel_bo(obj);
1007 1008

	mutex_lock(&dev->struct_mutex);
1009 1010 1011

	intel_mark_busy(dev, obj);

1012
#if WATCH_BUF
1013
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1014
		 obj, obj->size, read_domains, write_domain);
1015
#endif
1016 1017
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1018

1019 1020 1021 1022
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1023 1024 1025
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1026 1027 1028
				       &dev_priv->mm.fence_list);
		}

1029 1030 1031 1032 1033 1034
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1035
	} else {
1036
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1037 1038
	}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

#if WATCH_BUF
1067
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1068 1069
		 __func__, args->handle, obj, obj->size);
#endif
1070
	obj_priv = to_intel_bo(obj);
1071 1072

	/* Pinned buffers may be scanout, so flush the cache */
1073 1074 1075
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1111
	drm_gem_object_unreference_unlocked(obj);
1112 1113 1114 1115 1116 1117 1118 1119
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1141
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1142 1143 1144
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1145
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1146 1147 1148 1149 1150 1151 1152 1153

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1154
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1155 1156
		if (ret)
			goto unlock;
1157

J
Jesse Barnes 已提交
1158
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1159 1160

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1161 1162
		if (ret)
			goto unlock;
1163 1164 1165
	}

	/* Need a new fence register? */
1166
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1167
		ret = i915_gem_object_get_fence_reg(obj);
1168 1169
		if (ret)
			goto unlock;
1170
	}
1171 1172 1173 1174 1175 1176

	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1177
unlock:
1178 1179 1180
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1181 1182 1183
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1184 1185 1186 1187
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1188
		return VM_FAULT_SIGBUS;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1208
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1209
	struct drm_map_list *list;
1210
	struct drm_local_map *map;
1211 1212 1213 1214
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1215
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1243
		ret = -ENOMEM;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1256
	kfree(list->map);
1257 1258 1259 1260

	return ret;
}

1261 1262 1263 1264
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1265
 * Preserve the reservation of the mmapping with the DRM core code, but
1266 1267 1268 1269 1270 1271 1272 1273 1274
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1275
void
1276 1277 1278
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1279
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1280 1281 1282 1283 1284 1285

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1286 1287 1288 1289
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1290
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1303
		kfree(list->map);
1304 1305 1306 1307 1308 1309
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1321
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);

1380
	obj_priv = to_intel_bo(obj);
1381

1382 1383 1384 1385 1386 1387 1388 1389
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1390 1391
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1392 1393 1394
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1395
			return ret;
1396
		}
1397 1398 1399 1400 1401 1402 1403 1404 1405
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1406
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1407 1408 1409 1410 1411
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
J
Jesse Barnes 已提交
1412
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1413 1414 1415 1416 1417 1418 1419 1420
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1421
void
1422
i915_gem_object_put_pages(struct drm_gem_object *obj)
1423
{
1424
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1425 1426 1427
	int page_count = obj->size / PAGE_SIZE;
	int i;

1428
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1429
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1430

1431 1432
	if (--obj_priv->pages_refcount != 0)
		return;
1433

1434 1435 1436
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1437
	if (obj_priv->madv == I915_MADV_DONTNEED)
1438
		obj_priv->dirty = 0;
1439 1440 1441 1442 1443 1444

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1445
			mark_page_accessed(obj_priv->pages[i]);
1446 1447 1448

		page_cache_release(obj_priv->pages[i]);
	}
1449 1450
	obj_priv->dirty = 0;

1451
	drm_free_large(obj_priv->pages);
1452
	obj_priv->pages = NULL;
1453 1454 1455
}

static void
1456 1457
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1458 1459 1460
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1461
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1462 1463
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1464 1465 1466 1467 1468 1469 1470

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1471
	spin_lock(&dev_priv->mm.active_list_lock);
1472
	list_move_tail(&obj_priv->list, &ring->active_list);
1473
	spin_unlock(&dev_priv->mm.active_list_lock);
1474
	obj_priv->last_rendering_seqno = seqno;
1475 1476
}

1477 1478 1479 1480 1481
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1482
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1483 1484 1485 1486 1487

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1488

1489 1490 1491 1492
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1493
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1494
	struct inode *inode;
1495

C
Chris Wilson 已提交
1496 1497 1498 1499 1500
	inode = obj->filp->f_path.dentry->d_inode;
	if (inode->i_op->truncate)
		inode->i_op->truncate (inode);

	obj_priv->madv = __I915_MADV_PURGED;
1501 1502 1503 1504 1505 1506 1507 1508
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1509 1510 1511 1512 1513
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1514
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1515 1516 1517 1518 1519 1520 1521

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1522 1523
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1524
	obj_priv->last_rendering_seqno = 0;
1525
	obj_priv->ring = NULL;
1526 1527 1528 1529 1530 1531 1532
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1533 1534
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1535 1536
			       uint32_t flush_domains, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1537 1538 1539 1540 1541 1542 1543
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1544
		struct drm_gem_object *obj = &obj_priv->base;
1545 1546

		if ((obj->write_domain & flush_domains) ==
1547 1548
		    obj->write_domain &&
		    obj_priv->ring->ring_flag == ring->ring_flag) {
1549 1550 1551 1552
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1553
			i915_gem_object_move_to_active(obj, seqno, ring);
1554 1555

			/* update the fence lru list */
1556 1557 1558 1559
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1560
						&dev_priv->mm.fence_list);
1561
			}
1562 1563 1564 1565 1566 1567 1568

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1569

1570
uint32_t
1571
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1572
		 uint32_t flush_domains, struct intel_ring_buffer *ring)
1573 1574
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1575
	struct drm_i915_file_private *i915_file_priv = NULL;
1576 1577 1578 1579
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;

1580 1581 1582
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1583
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1584 1585 1586
	if (request == NULL)
		return 0;

1587
	seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1588 1589

	request->seqno = seqno;
1590
	request->ring = ring;
1591
	request->emitted_jiffies = jiffies;
1592 1593 1594
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1595 1596 1597 1598 1599 1600
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1601

1602 1603 1604
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
1605
	if (flush_domains != 0) 
1606
		i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1607

B
Ben Gamari 已提交
1608 1609 1610 1611 1612
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1613 1614 1615 1616 1617 1618 1619 1620 1621
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1622
static uint32_t
1623
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1624 1625 1626 1627 1628 1629
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1630 1631 1632

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1646 1647
	trace_i915_gem_request_retire(dev, request->seqno);

1648 1649 1650
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1651
	spin_lock(&dev_priv->mm.active_list_lock);
1652
	while (!list_empty(&request->ring->active_list)) {
1653 1654 1655
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

1656
		obj_priv = list_first_entry(&request->ring->active_list,
1657 1658
					    struct drm_i915_gem_object,
					    list);
1659
		obj = &obj_priv->base;
1660 1661 1662 1663 1664 1665

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1666
			goto out;
1667

1668 1669 1670 1671 1672
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1673 1674
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1675 1676 1677 1678 1679 1680 1681 1682
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1683
			i915_gem_object_move_to_inactive(obj);
1684 1685 1686 1687
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1688
	}
1689 1690
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1691 1692 1693 1694 1695
}

/**
 * Returns true if seq1 is later than seq2.
 */
1696
bool
1697 1698 1699 1700 1701 1702
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
1703
i915_get_gem_seqno(struct drm_device *dev,
1704
		   struct intel_ring_buffer *ring)
1705
{
1706
	return ring->get_gem_seqno(dev, ring);
1707 1708 1709 1710 1711
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1712 1713 1714
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1715 1716 1717 1718
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1719
	if (!ring->status_page.page_addr
1720
			|| list_empty(&ring->request_list))
1721 1722
		return;

1723
	seqno = i915_get_gem_seqno(dev, ring);
1724

1725
	while (!list_empty(&ring->request_list)) {
1726 1727 1728
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

1729
		request = list_first_entry(&ring->request_list,
1730 1731 1732 1733 1734
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1735
		    atomic_read(&dev_priv->mm.wedged)) {
1736 1737 1738
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1739
			list_del(&request->client_list);
1740
			kfree(request);
1741 1742 1743
		} else
			break;
	}
1744 1745 1746

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1747 1748

		ring->user_irq_put(dev, ring);
1749 1750
		dev_priv->trace_irq_seqno = 0;
	}
1751 1752
}

1753 1754 1755 1756 1757
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1772 1773 1774 1775 1776
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1788
	i915_gem_retire_requests(dev);
1789

1790
	if (!dev_priv->mm.suspended &&
1791 1792 1793
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1794
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1795 1796 1797
	mutex_unlock(&dev->struct_mutex);
}

1798
int
1799 1800
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
		int interruptible, struct intel_ring_buffer *ring)
1801 1802
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1803
	u32 ier;
1804 1805 1806 1807
	int ret = 0;

	BUG_ON(seqno == 0);

1808
	if (atomic_read(&dev_priv->mm.wedged))
1809 1810
		return -EIO;

1811
	if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1812
		if (HAS_PCH_SPLIT(dev))
1813 1814 1815
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1816 1817 1818 1819 1820 1821 1822
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1823 1824
		trace_i915_gem_request_wait_begin(dev, seqno);

1825
		ring->waiting_gem_seqno = seqno;
1826
		ring->user_irq_get(dev, ring);
1827
		if (interruptible)
1828 1829 1830 1831
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1832
		else
1833 1834 1835 1836
			wait_event(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1837

1838
		ring->user_irq_put(dev, ring);
1839
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1840 1841

		trace_i915_gem_request_wait_end(dev, seqno);
1842
	}
1843
	if (atomic_read(&dev_priv->mm.wedged))
1844 1845 1846 1847
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1848
			  __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1849 1850 1851 1852 1853 1854 1855

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1856
		i915_gem_retire_requests_ring(dev, ring);
1857 1858 1859 1860

	return ret;
}

1861 1862 1863 1864 1865
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1866 1867
i915_wait_request(struct drm_device *dev, uint32_t seqno,
		struct intel_ring_buffer *ring)
1868
{
1869
	return i915_do_wait_request(dev, seqno, 1, ring);
1870 1871
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
	dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
			invalidate_domains,
			flush_domains);
1883 1884 1885 1886 1887

	if (HAS_BSD(dev))
		dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
				invalidate_domains,
				flush_domains);
1888 1889
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
static void
i915_gem_flush_ring(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains,
	       struct intel_ring_buffer *ring)
{
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
	ring->flush(dev, ring,
			invalidate_domains,
			flush_domains);
}

1903 1904 1905 1906 1907 1908 1909 1910
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1911
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1912 1913
	int ret;

1914 1915
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1916
	 */
1917
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1918 1919 1920 1921 1922 1923 1924 1925 1926

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
1927 1928
		ret = i915_wait_request(dev,
				obj_priv->last_rendering_seqno, obj_priv->ring);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1939
int
1940 1941 1942
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1943
	drm_i915_private_t *dev_priv = dev->dev_private;
1944
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1959 1960 1961
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

1962 1963 1964 1965 1966 1967
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1968
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1969
	if (ret == -ERESTARTSYS)
1970
		return ret;
1971 1972 1973 1974
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
1975

1976 1977
	BUG_ON(obj_priv->active);

1978 1979 1980 1981
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

1982 1983 1984 1985 1986 1987
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

1988
	i915_gem_object_put_pages(obj);
1989
	BUG_ON(obj_priv->pages_refcount);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
2000
	spin_lock(&dev_priv->mm.active_list_lock);
2001 2002
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);
2003
	spin_unlock(&dev_priv->mm.active_list_lock);
2004

2005 2006 2007
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2008 2009
	trace_i915_gem_object_unbind(obj);

2010
	return ret;
2011 2012
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
static struct drm_gem_object *
i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	struct drm_gem_object *best = NULL;
	struct drm_gem_object *first = NULL;

	/* Try to find the smallest clean object */
	list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2023
		struct drm_gem_object *obj = &obj_priv->base;
2024
		if (obj->size >= min_size) {
2025 2026
			if ((!obj_priv->dirty ||
			     i915_gem_object_is_purgeable(obj_priv)) &&
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
			    (!best || obj->size < best->size)) {
				best = obj;
				if (best->size == min_size)
					return best;
			}
			if (!first)
			    first = obj;
		}
	}

	return best ? best : first;
}

2040 2041 2042 2043 2044
static int
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2045
	uint32_t seqno1, seqno2;
2046
	int ret;
2047 2048

	spin_lock(&dev_priv->mm.active_list_lock);
2049 2050 2051 2052
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2053 2054 2055 2056 2057 2058 2059
	spin_unlock(&dev_priv->mm.active_list_lock);

	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2060
	seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2061
			&dev_priv->render_ring);
2062
	if (seqno1 == 0)
2063
		return -ENOMEM;
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);

	if (HAS_BSD(dev)) {
		seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
				&dev_priv->bsd_ring);
		if (seqno2 == 0)
			return -ENOMEM;

		ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
		if (ret)
			return ret;
	}

2077

2078
	return ret;
2079 2080
}

2081
static int
2082 2083 2084 2085 2086 2087 2088 2089 2090
i915_gem_evict_everything(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
	bool lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
2091 2092 2093
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev)
			|| list_empty(&dev_priv->bsd_ring.active_list)));
2094 2095
	spin_unlock(&dev_priv->mm.active_list_lock);

2096
	if (lists_empty)
2097 2098 2099
		return -ENOSPC;

	/* Flush everything (on to the inactive lists) and evict */
2100
	ret = i915_gpu_idle(dev);
2101 2102 2103
	if (ret)
		return ret;

2104 2105
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));

2106
	ret = i915_gem_evict_from_inactive_list(dev);
2107 2108 2109 2110 2111 2112
	if (ret)
		return ret;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
2113 2114 2115
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev)
			|| list_empty(&dev_priv->bsd_ring.active_list)));
2116 2117 2118 2119 2120 2121
	spin_unlock(&dev_priv->mm.active_list_lock);
	BUG_ON(!lists_empty);

	return 0;
}

2122
static int
2123
i915_gem_evict_something(struct drm_device *dev, int min_size)
2124 2125 2126
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
2127
	int ret;
2128

2129
	struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
2130
	struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
2131
	for (;;) {
2132
		i915_gem_retire_requests(dev);
2133

2134 2135 2136
		/* If there's an inactive buffer available now, grab it
		 * and be done.
		 */
2137 2138 2139 2140
		obj = i915_gem_find_inactive_object(dev, min_size);
		if (obj) {
			struct drm_i915_gem_object *obj_priv;

2141 2142 2143
#if WATCH_LRU
			DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
2144
			obj_priv = to_intel_bo(obj);
2145
			BUG_ON(obj_priv->pin_count != 0);
2146 2147 2148
			BUG_ON(obj_priv->active);

			/* Wait on the rendering and unbind the buffer. */
2149
			return i915_gem_object_unbind(obj);
2150 2151 2152
		}

		/* If we didn't get anything, but the ring is still processing
2153 2154
		 * things, wait for the next to finish and hopefully leave us
		 * a buffer to evict.
2155
		 */
2156
		if (!list_empty(&render_ring->request_list)) {
2157 2158
			struct drm_i915_gem_request *request;

2159
			request = list_first_entry(&render_ring->request_list,
2160 2161 2162
						   struct drm_i915_gem_request,
						   list);

2163 2164
			ret = i915_wait_request(dev,
					request->seqno, request->ring);
2165
			if (ret)
2166
				return ret;
2167

2168
			continue;
2169 2170
		}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
		if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
			struct drm_i915_gem_request *request;

			request = list_first_entry(&bsd_ring->request_list,
						   struct drm_i915_gem_request,
						   list);

			ret = i915_wait_request(dev,
					request->seqno, request->ring);
			if (ret)
				return ret;

			continue;
		}

2186 2187 2188 2189 2190 2191
		/* If we didn't have anything on the request list but there
		 * are buffers awaiting a flush, emit one and try again.
		 * When we wait on it, those buffers waiting for that flush
		 * will get moved to inactive.
		 */
		if (!list_empty(&dev_priv->mm.flushing_list)) {
2192
			struct drm_i915_gem_object *obj_priv;
2193

2194 2195
			/* Find an object that we can immediately reuse */
			list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2196
				obj = &obj_priv->base;
2197 2198
				if (obj->size >= min_size)
					break;
2199

2200 2201
				obj = NULL;
			}
2202

2203 2204
			if (obj != NULL) {
				uint32_t seqno;
2205

2206 2207
				i915_gem_flush_ring(dev,
					       obj->write_domain,
2208
					       obj->write_domain,
2209 2210 2211 2212
					       obj_priv->ring);
				seqno = i915_add_request(dev, NULL,
						obj->write_domain,
						obj_priv->ring);
2213 2214 2215 2216
				if (seqno == 0)
					return -ENOMEM;
				continue;
			}
2217 2218
		}

2219 2220 2221
		/* If we didn't do any of the above, there's no single buffer
		 * large enough to swap out for the new one, so just evict
		 * everything and start again. (This should be rare.)
2222
		 */
2223
		if (!list_empty (&dev_priv->mm.inactive_list))
2224
			return i915_gem_evict_from_inactive_list(dev);
2225
		else
2226
			return i915_gem_evict_everything(dev);
2227 2228 2229
	}
}

2230
int
2231 2232
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2233
{
2234
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2235 2236 2237 2238 2239
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2240 2241 2242
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2243
	if (obj_priv->pages_refcount++ != 0)
2244 2245 2246 2247 2248 2249
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2250
	BUG_ON(obj_priv->pages != NULL);
2251
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2252 2253
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2254 2255 2256 2257 2258 2259
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2260
		page = read_cache_page_gfp(mapping, i,
2261
					   GFP_HIGHUSER |
2262
					   __GFP_COLD |
2263
					   __GFP_RECLAIMABLE |
2264
					   gfpmask);
2265 2266 2267
		if (IS_ERR(page))
			goto err_pages;

2268
		obj_priv->pages[i] = page;
2269
	}
2270 2271 2272 2273

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2274
	return 0;
2275 2276 2277 2278 2279 2280 2281 2282 2283

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2284 2285
}

2286 2287 2288 2289 2290
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2291
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2308 2309 2310 2311 2312
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2313
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2333
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2334
	int regnum = obj_priv->fence_reg;
2335
	int tile_width;
2336
	uint32_t fence_reg, val;
2337 2338 2339 2340
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2341
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2342
		     __func__, obj_priv->gtt_offset, obj->size);
2343 2344 2345
		return;
	}

2346 2347 2348
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2349
	else
2350 2351 2352 2353 2354
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2355

2356 2357 2358 2359 2360 2361
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2362 2363 2364 2365 2366 2367 2368
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2369 2370 2371 2372 2373
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2374 2375 2376 2377 2378 2379 2380
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2381
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2382 2383 2384
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2385
	uint32_t fence_size_bits;
2386

2387
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2388
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2389
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2390
		     __func__, obj_priv->gtt_offset);
2391 2392 2393
		return;
	}

2394 2395 2396 2397
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2398 2399 2400
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2401 2402 2403
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2404 2405 2406 2407 2408 2409
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
static int i915_find_fence_reg(struct drm_device *dev)
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2425
		obj_priv = to_intel_bo(reg->obj);
2426 2427 2428 2429 2430 2431 2432 2433 2434
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2435 2436 2437 2438
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
	ret = i915_gem_object_put_fence_reg(obj);
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2476 2477
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2478 2479
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2480
	struct drm_i915_private *dev_priv = dev->dev_private;
2481
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2482
	struct drm_i915_fence_reg *reg = NULL;
2483
	int ret;
2484

2485 2486
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2487 2488
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2489 2490 2491
		return 0;
	}

2492 2493 2494 2495 2496
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2497 2498 2499 2500 2501
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2502 2503
		break;
	case I915_TILING_Y:
2504 2505 2506 2507 2508
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2509 2510 2511
		break;
	}

2512 2513 2514
	ret = i915_find_fence_reg(dev);
	if (ret < 0)
		return ret;
2515

2516 2517
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2518
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2519

2520 2521
	reg->obj = obj;

2522 2523 2524
	if (IS_GEN6(dev))
		sandybridge_write_fence_reg(reg);
	else if (IS_I965G(dev))
2525 2526 2527 2528 2529
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2530

2531 2532
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2533

2534
	return 0;
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2548
	drm_i915_private_t *dev_priv = dev->dev_private;
2549
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2550 2551
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2552

2553 2554 2555 2556
	if (IS_GEN6(dev)) {
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
	} else if (IS_I965G(dev)) {
2557
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2558
	} else {
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2569

2570
	reg->obj = NULL;
2571
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2572
	list_del_init(&reg->lru_list);
2573 2574
}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2587
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2588 2589 2590 2591

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2592 2593 2594 2595 2596 2597
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2598 2599 2600 2601 2602 2603 2604
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

2605 2606 2607 2608
		ret = i915_gem_object_flush_gpu_write_domain(obj);
		if (ret != 0)
			return ret;

2609 2610 2611 2612 2613
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

2614
	i915_gem_object_flush_gtt_write_domain(obj);
2615 2616 2617 2618 2619
	i915_gem_clear_fence_reg (obj);

	return 0;
}

2620 2621 2622 2623 2624 2625 2626 2627
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2628
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2629
	struct drm_mm_node *free_space;
2630
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2631
	int ret;
2632

C
Chris Wilson 已提交
2633
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2634 2635 2636 2637
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2638
	if (alignment == 0)
2639
		alignment = i915_gem_get_gtt_alignment(obj);
2640
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2641 2642 2643 2644
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2645 2646 2647 2648 2649 2650 2651 2652
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2653 2654 2655 2656 2657 2658
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2659
		if (obj_priv->gtt_space != NULL)
2660 2661 2662 2663 2664 2665 2666 2667 2668
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2669
		ret = i915_gem_evict_something(dev, obj->size);
2670
		if (ret)
2671
			return ret;
2672

2673 2674 2675 2676
		goto search_free;
	}

#if WATCH_BUF
2677
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2678 2679
		 obj->size, obj_priv->gtt_offset);
#endif
2680
	ret = i915_gem_object_get_pages(obj, gfpmask);
2681 2682 2683
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2684 2685 2686 2687 2688 2689

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
			ret = i915_gem_evict_something(dev, obj->size);
			if (ret) {
				/* now try to shrink everyone else */
2690 2691 2692
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2693 2694 2695 2696 2697 2698 2699 2700
				}

				return ret;
			}

			goto search_free;
		}

2701 2702 2703 2704 2705 2706 2707
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2708
					       obj_priv->pages,
2709
					       obj->size >> PAGE_SHIFT,
2710 2711
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2712
	if (obj_priv->agp_mem == NULL) {
2713
		i915_gem_object_put_pages(obj);
2714 2715
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2716 2717

		ret = i915_gem_evict_something(dev, obj->size);
2718
		if (ret)
2719 2720 2721
			return ret;

		goto search_free;
2722 2723 2724 2725 2726 2727 2728 2729
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2730 2731
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2732

C
Chris Wilson 已提交
2733 2734
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2735 2736 2737 2738 2739 2740
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2741
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2742 2743 2744 2745 2746

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2747
	if (obj_priv->pages == NULL)
2748 2749
		return;

C
Chris Wilson 已提交
2750
	trace_i915_gem_object_clflush(obj);
2751

2752
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2753 2754
}

2755
/** Flushes any GPU write domain for the object if it's dirty. */
2756
static int
2757 2758 2759
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2760
	uint32_t old_write_domain;
2761
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2762 2763

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2764
		return 0;
2765 2766

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2767
	old_write_domain = obj->write_domain;
2768
	i915_gem_flush(dev, 0, obj->write_domain);
2769 2770
	if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
		return -ENOMEM;
C
Chris Wilson 已提交
2771 2772 2773 2774

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2775
	return 0;
2776 2777 2778 2779 2780 2781
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2782 2783
	uint32_t old_write_domain;

2784 2785 2786 2787 2788 2789 2790
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2791
	old_write_domain = obj->write_domain;
2792
	obj->write_domain = 0;
C
Chris Wilson 已提交
2793 2794 2795 2796

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2797 2798 2799 2800 2801 2802 2803
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2804
	uint32_t old_write_domain;
2805 2806 2807 2808 2809 2810

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2811
	old_write_domain = obj->write_domain;
2812
	obj->write_domain = 0;
C
Chris Wilson 已提交
2813 2814 2815 2816

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2817 2818
}

2819
int
2820 2821
i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
{
2822 2823
	int ret = 0;

2824 2825 2826 2827 2828 2829 2830 2831
	switch (obj->write_domain) {
	case I915_GEM_DOMAIN_GTT:
		i915_gem_object_flush_gtt_write_domain(obj);
		break;
	case I915_GEM_DOMAIN_CPU:
		i915_gem_object_flush_cpu_write_domain(obj);
		break;
	default:
2832
		ret = i915_gem_object_flush_gpu_write_domain(obj);
2833 2834
		break;
	}
2835 2836

	return ret;
2837 2838
}

2839 2840 2841 2842 2843 2844
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2845
int
2846 2847
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2848
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2849
	uint32_t old_write_domain, old_read_domains;
2850
	int ret;
2851

2852 2853 2854 2855
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2856 2857 2858 2859
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret != 0)
		return ret;

2860 2861 2862 2863 2864
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2865 2866 2867
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2868 2869
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2870
	 */
2871 2872
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2873

2874
	i915_gem_object_flush_cpu_write_domain(obj);
2875

2876 2877 2878 2879 2880 2881 2882 2883
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2884 2885
	}

C
Chris Wilson 已提交
2886 2887 2888 2889
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2890 2891 2892
	return 0;
}

2893 2894 2895 2896 2897 2898 2899 2900
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2901
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2902 2903 2904 2905 2906 2907 2908
	uint32_t old_write_domain, old_read_domains;
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2909 2910 2911
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;
2912 2913 2914 2915 2916 2917 2918

	/* Wait on any GPU rendering and flushing to occur. */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
2919 2920 2921 2922
		ret = i915_do_wait_request(dev,
				obj_priv->last_rendering_seqno,
				0,
				obj_priv->ring);
2923 2924 2925 2926
		if (ret != 0)
			return ret;
	}

2927 2928
	i915_gem_object_flush_cpu_write_domain(obj);

2929 2930 2931 2932 2933 2934 2935
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2936
	obj->read_domains = I915_GEM_DOMAIN_GTT;
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	obj->write_domain = I915_GEM_DOMAIN_GTT;
	obj_priv->dirty = 1;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

	return 0;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2956
	uint32_t old_write_domain, old_read_domains;
2957 2958
	int ret;

2959 2960 2961 2962
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2963
	/* Wait on any GPU rendering and flushing to occur. */
2964 2965 2966
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2967

2968
	i915_gem_object_flush_gtt_write_domain(obj);
2969

2970 2971
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2972
	 */
2973
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2974

C
Chris Wilson 已提交
2975 2976 2977
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2978 2979
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2980 2981
		i915_gem_clflush_object(obj);

2982
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2983 2984 2985 2986 2987
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2988 2989 2990 2991 2992 2993 2994 2995 2996
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2997

C
Chris Wilson 已提交
2998 2999 3000 3001
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3002 3003 3004
	return 0;
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3116
static void
3117
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3118 3119
{
	struct drm_device		*dev = obj->dev;
3120
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3121 3122
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3123
	uint32_t			old_read_domains;
3124

3125 3126
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3127

3128 3129
	intel_mark_busy(dev, obj);

3130 3131 3132
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
3133 3134
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
3135 3136 3137 3138 3139
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3140 3141
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3142 3143 3144 3145 3146 3147 3148 3149 3150
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3151 3152
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3153
		flush_domains |= obj->write_domain;
3154 3155
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3156 3157 3158 3159 3160
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3161
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3162 3163 3164 3165 3166 3167 3168 3169
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3170 3171
	old_read_domains = obj->read_domains;

3172 3173 3174 3175 3176 3177 3178 3179
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3180
	obj->read_domains = obj->pending_read_domains;
3181 3182 3183 3184 3185 3186 3187 3188 3189

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3190 3191 3192 3193

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3194 3195 3196
}

/**
3197
 * Moves the object from a partially CPU read to a full one.
3198
 *
3199 3200
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3201
 */
3202 3203
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3204
{
3205
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3206

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3218
			drm_clflush_pages(obj_priv->pages + i, 1);
3219 3220 3221 3222 3223 3224
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3225
	kfree(obj_priv->page_cpu_valid);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3245
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3246
	uint32_t old_read_domains;
3247
	int i, ret;
3248

3249 3250
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3251

3252 3253 3254 3255
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3256
	/* Wait on any GPU rendering and flushing to occur. */
3257
	ret = i915_gem_object_wait_rendering(obj);
3258
	if (ret != 0)
3259
		return ret;
3260 3261 3262 3263 3264 3265
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3266

3267 3268 3269
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3270
	if (obj_priv->page_cpu_valid == NULL) {
3271 3272
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3273 3274 3275 3276
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3277 3278 3279 3280

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3281 3282
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3283 3284 3285
		if (obj_priv->page_cpu_valid[i])
			continue;

3286
		drm_clflush_pages(obj_priv->pages + i, 1);
3287 3288 3289 3290

		obj_priv->page_cpu_valid[i] = 1;
	}

3291 3292 3293 3294 3295
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3296
	old_read_domains = obj->read_domains;
3297 3298
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3299 3300 3301 3302
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3303 3304 3305 3306 3307 3308 3309 3310 3311
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3312
				 struct drm_i915_gem_exec_object2 *entry,
3313
				 struct drm_i915_gem_relocation_entry *relocs)
3314 3315
{
	struct drm_device *dev = obj->dev;
3316
	drm_i915_private_t *dev_priv = dev->dev_private;
3317
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3318
	int i, ret;
3319
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3320 3321 3322 3323 3324 3325
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3326 3327 3328 3329 3330 3331 3332
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3333 3334 3335 3336 3337 3338

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
		ret = i915_gem_object_get_fence_reg(obj);
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
	}

3351 3352 3353 3354 3355 3356
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3357
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3358 3359
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3360 3361
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3362 3363

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3364
						   reloc->target_handle);
3365 3366 3367 3368
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
			return -EBADF;
		}
3369
		target_obj_priv = to_intel_bo(target_obj);
3370

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3386 3387 3388 3389 3390
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3391
				  reloc->target_handle);
3392 3393 3394 3395 3396
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3397
		/* Validate that the target is in a valid r/w GPU domain */
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3408 3409
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3410 3411 3412
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3413 3414 3415 3416
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3417 3418
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3419 3420
			return -EINVAL;
		}
3421 3422
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3423 3424 3425
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3426 3427 3428
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3429 3430 3431 3432 3433 3434
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3435 3436
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3437 3438 3439 3440

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3441
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3442 3443 3444 3445
			drm_gem_object_unreference(target_obj);
			continue;
		}

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3477 3478 3479 3480 3481
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3482 3483 3484 3485 3486
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3487
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3488 3489 3490
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
						       ~(PAGE_SIZE - 1)));
3491
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3492
						   (reloc_offset & (PAGE_SIZE - 1)));
3493
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3494 3495 3496

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3497
			  obj, (unsigned int) reloc->offset,
3498 3499 3500
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3501
		io_mapping_unmap_atomic(reloc_page);
3502

3503 3504
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3505
		 */
3506
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3521 3522 3523 3524
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3525 3526 3527 3528 3529 3530 3531 3532
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3533
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3534 3535

	mutex_lock(&dev->struct_mutex);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3546
		ret = i915_wait_request(dev, request->seqno, request->ring);
3547 3548 3549
		if (ret != 0)
			break;
	}
3550
	mutex_unlock(&dev->struct_mutex);
3551

3552 3553 3554
	return ret;
}

3555
static int
J
Jesse Barnes 已提交
3556
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3570
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3571 3572
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3573
		return -ENOMEM;
J
Jesse Barnes 已提交
3574
	}
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3586
			drm_free_large(*relocs);
3587
			*relocs = NULL;
3588
			return -EFAULT;
3589 3590 3591 3592 3593
		}

		reloc_index += exec_list[i].relocation_count;
	}

3594
	return 0;
3595 3596 3597
}

static int
J
Jesse Barnes 已提交
3598
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3599 3600 3601 3602
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3603
	int ret = 0;
3604

3605 3606 3607
	if (relocs == NULL)
	    return 0;

3608 3609
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3610
		int unwritten;
3611 3612 3613

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3614 3615 3616 3617 3618 3619 3620 3621
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3622 3623 3624 3625 3626
		}

		reloc_count += exec_list[i].relocation_count;
	}

3627
err:
3628
	drm_free_large(relocs);
3629 3630 3631 3632

	return ret;
}

3633
static int
J
Jesse Barnes 已提交
3634
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3665
			obj_priv = to_intel_bo(object_list[i]);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

3686

3687
int
J
Jesse Barnes 已提交
3688 3689 3690 3691
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3692 3693 3694 3695
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3696
	struct drm_i915_gem_object *obj_priv;
3697
	struct drm_clip_rect *cliprects = NULL;
3698
	struct drm_i915_gem_relocation_entry *relocs = NULL;
J
Jesse Barnes 已提交
3699
	int ret = 0, ret2, i, pinned = 0;
3700
	uint64_t exec_offset;
3701
	uint32_t seqno, flush_domains, reloc_index;
3702
	int pin_tries, flips;
3703

3704 3705
	struct intel_ring_buffer *ring = NULL;

3706 3707 3708 3709
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3720

3721 3722 3723 3724
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3725
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3726 3727
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3728 3729 3730 3731 3732
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3733
	if (args->num_cliprects != 0) {
3734 3735
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3736 3737
		if (cliprects == NULL) {
			ret = -ENOMEM;
3738
			goto pre_mutex_err;
3739
		}
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3752 3753 3754 3755 3756
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3757 3758 3759 3760
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3761
	if (atomic_read(&dev_priv->mm.wedged)) {
3762
		mutex_unlock(&dev->struct_mutex);
3763 3764
		ret = -EIO;
		goto pre_mutex_err;
3765 3766 3767 3768
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3769 3770
		ret = -EBUSY;
		goto pre_mutex_err;
3771 3772
	}

3773
	/* Look up object handles */
3774
	flips = 0;
3775 3776 3777 3778 3779 3780
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3781 3782
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3783 3784 3785
			ret = -EBADF;
			goto err;
		}
3786

3787
		obj_priv = to_intel_bo(object_list[i]);
3788 3789 3790
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3791 3792
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3793 3794 3795 3796
			ret = -EBADF;
			goto err;
		}
		obj_priv->in_execbuffer = true;
3797 3798 3799 3800 3801 3802 3803 3804
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3805
	}
3806

3807 3808 3809
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3810 3811
		reloc_index = 0;

3812 3813 3814 3815 3816
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3817 3818
							       &exec_list[i],
							       &relocs[reloc_index]);
3819 3820 3821
			if (ret)
				break;
			pinned = i + 1;
3822
			reloc_index += exec_list[i].relocation_count;
3823 3824 3825 3826 3827 3828
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3829
		if (ret != -ENOSPC || pin_tries >= 1) {
3830 3831
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3832 3833
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3834
					obj_priv = to_intel_bo(object_list[i]);
3835

3836
					total_size += object_list[i]->size;
3837 3838 3839 3840 3841
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3842
					  pinned+1, args->buffer_count,
3843 3844
					  total_size, num_fences,
					  ret);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3855 3856
			goto err;
		}
3857 3858 3859 3860

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3861
		pinned = 0;
3862 3863 3864

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3865
		if (ret && ret != -ENOSPC)
3866
			goto err;
3867 3868 3869 3870
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3871 3872 3873 3874 3875 3876
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3877

3878 3879 3880 3881 3882 3883 3884 3885
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3886 3887
	i915_verify_inactive(dev, __FILE__, __LINE__);

3888 3889 3890 3891 3892 3893 3894
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3895 3896 3897
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3898
		/* Compute new gpu domains and update invalidate/flush */
3899
		i915_gem_object_set_to_gpu_domain(obj);
3900 3901 3902 3903
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
3914
		if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
3915
			(void)i915_add_request(dev, file_priv,
3916 3917 3918
					dev->flush_domains,
					&dev_priv->render_ring);

3919 3920 3921 3922
			if (HAS_BSD(dev))
				(void)i915_add_request(dev, file_priv,
						dev->flush_domains,
						&dev_priv->bsd_ring);
3923
		}
3924
	}
3925

3926 3927
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3928
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3929
		uint32_t old_write_domain = obj->write_domain;
3930 3931

		obj->write_domain = obj->pending_write_domain;
3932 3933 3934 3935 3936 3937
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3938 3939 3940
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3941 3942
	}

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3953
	i915_gem_dump_object(batch_obj,
3954 3955 3956 3957 3958 3959
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3960 3961
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3962 3963 3964 3965 3966 3967 3968 3969 3970
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3971
	flush_domains = i915_retire_commands(dev, ring);
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3982
	seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3983 3984 3985
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3986
		obj_priv = to_intel_bo(obj);
3987

3988
		i915_gem_object_move_to_active(obj, seqno, ring);
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
4000 4001 4002
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

4003 4004
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
4005
			obj_priv = to_intel_bo(object_list[i]);
4006 4007
			obj_priv->in_execbuffer = false;
		}
4008
		drm_gem_object_unreference(object_list[i]);
4009
	}
4010 4011 4012

	mutex_unlock(&dev->struct_mutex);

4013
pre_mutex_err:
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

4028
	drm_free_large(object_list);
4029
	kfree(cliprects);
4030 4031 4032 4033

	return ret;
}

J
Jesse Barnes 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (!IS_I965G(dev))
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4100
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4179 4180 4181 4182
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
4183
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4184 4185
	int ret;

4186 4187
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);

4188
	i915_verify_inactive(dev, __FILE__, __LINE__);
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4200 4201
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4202
		if (ret)
4203
			return ret;
4204
	}
J
Jesse Barnes 已提交
4205

4206 4207 4208 4209 4210 4211 4212 4213 4214
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4215
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
		    !list_empty(&obj_priv->list))
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4229
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4242
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}
4269
	obj_priv = to_intel_bo(obj);
4270

C
Chris Wilson 已提交
4271 4272
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4273 4274 4275 4276 4277
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4278 4279 4280
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4281
		drm_gem_object_unreference(obj);
4282
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4295 4296 4297 4298 4299
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4300
	i915_gem_object_flush_cpu_write_domain(obj);
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4314
	struct drm_i915_gem_object *obj_priv;
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

4326
	obj_priv = to_intel_bo(obj);
J
Jesse Barnes 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

4360
	mutex_lock(&dev->struct_mutex);
4361 4362 4363 4364 4365
	/* Update the active list for the hardware's current position.
	 * Otherwise this only updates on a delayed timer or when irqs are
	 * actually unmasked, and our working set ends up being larger than
	 * required.
	 */
4366
	i915_gem_retire_requests(dev);
4367

4368
	obj_priv = to_intel_bo(obj);
4369 4370 4371 4372 4373 4374 4375 4376
	/* Don't count being on the flushing list against the object being
	 * done.  Otherwise, a buffer left on the flushing list but not getting
	 * flushed (because nobody's flushing that domain) won't ever return
	 * unbusy and get reused by libdrm's bo cache.  The other expected
	 * consumer of this interface, OpenGL's occlusion queries, also specs
	 * that the objects get unbusy "eventually" without any interference.
	 */
	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

	mutex_lock(&dev->struct_mutex);
4414
	obj_priv = to_intel_bo(obj);
4415 4416 4417 4418 4419 4420 4421 4422 4423

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4424 4425
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4426

4427 4428 4429 4430 4431
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4432 4433
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4434 4435 4436 4437 4438 4439
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4440 4441 4442
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4443
	struct drm_i915_gem_object *obj;
4444

4445 4446 4447
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4448

4449 4450 4451 4452
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4453

4454 4455
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4456

4457
	obj->agp_type = AGP_USER_MEMORY;
4458
	obj->base.driver_private = NULL;
4459 4460 4461 4462
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4463

4464 4465 4466 4467 4468 4469 4470 4471
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4472

4473 4474 4475
	return 0;
}

4476
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4477
{
4478
	struct drm_device *dev = obj->dev;
4479
	drm_i915_private_t *dev_priv = dev->dev_private;
4480
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4481
	int ret;
4482

4483 4484 4485 4486 4487 4488
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4489

4490 4491
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4492

4493 4494
	drm_gem_object_release(obj);

4495
	kfree(obj_priv->page_cpu_valid);
4496
	kfree(obj_priv->bit_17);
4497
	kfree(obj_priv);
4498 4499
}

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4516
/** Unbinds all inactive objects. */
4517
static int
4518
i915_gem_evict_from_inactive_list(struct drm_device *dev)
4519
{
4520
	drm_i915_private_t *dev_priv = dev->dev_private;
4521

4522 4523 4524
	while (!list_empty(&dev_priv->mm.inactive_list)) {
		struct drm_gem_object *obj;
		int ret;
4525

4526 4527 4528
		obj = &list_first_entry(&dev_priv->mm.inactive_list,
					struct drm_i915_gem_object,
					list)->base;
4529 4530 4531

		ret = i915_gem_object_unbind(obj);
		if (ret != 0) {
4532
			DRM_ERROR("Error unbinding object: %d\n", ret);
4533 4534 4535 4536 4537 4538 4539
			return ret;
		}
	}

	return 0;
}

4540 4541 4542 4543 4544
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4545

4546
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4547

4548
	if (dev_priv->mm.suspended ||
4549 4550 4551
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4552 4553
		mutex_unlock(&dev->struct_mutex);
		return 0;
4554 4555
	}

4556
	ret = i915_gpu_idle(dev);
4557 4558
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4559
		return ret;
4560
	}
4561

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
		ret = i915_gem_evict_from_inactive_list(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
	del_timer(&dev_priv->hangcheck_timer);

	i915_kernel_lost_context(dev);
4579
	i915_gem_cleanup_ringbuffer(dev);
4580

4581 4582
	mutex_unlock(&dev->struct_mutex);

4583 4584 4585
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4586 4587 4588
	return 0;
}

4589 4590 4591 4592
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4593
static int
4594 4595 4596 4597 4598 4599 4600
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4601
	obj = i915_gem_alloc_object(dev, 4096);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4632 4633

static void
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4648 4649
}

4650 4651 4652 4653 4654
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4655

4656
	dev_priv->render_ring = render_ring;
4657

4658 4659 4660 4661 4662 4663
	if (!I915_NEED_GFX_HWS(dev)) {
		dev_priv->render_ring.status_page.page_addr
			= dev_priv->status_page_dmah->vaddr;
		memset(dev_priv->render_ring.status_page.page_addr,
				0, PAGE_SIZE);
	}
4664

4665 4666 4667 4668 4669
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4670

4671
	ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4672 4673 4674 4675
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4676 4677
		dev_priv->bsd_ring = bsd_ring;
		ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4678 4679
		if (ret)
			goto cleanup_render_ring;
4680
	}
4681 4682 4683 4684 4685 4686 4687 4688

	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4689 4690 4691 4692 4693 4694 4695 4696 4697
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4698 4699
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4700 4701 4702 4703
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4704 4705 4706 4707 4708 4709 4710
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4711 4712 4713
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4714
	if (atomic_read(&dev_priv->mm.wedged)) {
4715
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4716
		atomic_set(&dev_priv->mm.wedged, 0);
4717 4718 4719
	}

	mutex_lock(&dev->struct_mutex);
4720 4721 4722
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4723 4724
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4725
		return ret;
4726
	}
4727

4728
	spin_lock(&dev_priv->mm.active_list_lock);
4729
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4730
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4731 4732
	spin_unlock(&dev_priv->mm.active_list_lock);

4733 4734
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4735
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4736
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4737
	mutex_unlock(&dev->struct_mutex);
4738

4739 4740 4741
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4742

4743
	return 0;
4744 4745 4746 4747 4748 4749 4750 4751

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4752 4753 4754 4755 4756 4757
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4758 4759 4760
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4761
	drm_irq_uninstall(dev);
4762
	return i915_gem_idle(dev);
4763 4764 4765 4766 4767 4768 4769
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4770 4771 4772
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4773 4774 4775
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4776 4777 4778 4779 4780
}

void
i915_gem_load(struct drm_device *dev)
{
4781
	int i;
4782 4783
	drm_i915_private_t *dev_priv = dev->dev_private;

4784
	spin_lock_init(&dev_priv->mm.active_list_lock);
4785
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4786
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4787
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4788
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4789
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4790 4791
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4792 4793 4794 4795
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4796 4797
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4798 4799
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4800 4801 4802 4803
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4814
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4815 4816
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4817

4818
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4819 4820 4821 4822
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}
4834
	i915_gem_detect_bit_6_swizzle(dev);
4835
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4836
}
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
			      int id, int size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4852
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4853 4854 4855 4856 4857
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4858
	phys_obj->handle = drm_pci_alloc(dev, size, 0);
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4871
	kfree(phys_obj);
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4900
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4912
	obj_priv = to_intel_bo(obj);
4913 4914 4915
	if (!obj_priv->phys_obj)
		return;

4916
	ret = i915_gem_object_get_pages(obj, 0);
4917 4918 4919 4920 4921 4922
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4923
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4924 4925 4926 4927 4928
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4929
	drm_clflush_pages(obj_priv->pages, page_count);
4930
	drm_agp_chipset_flush(dev);
4931 4932

	i915_gem_object_put_pages(obj);
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
			    struct drm_gem_object *obj, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4951
	obj_priv = to_intel_bo(obj);
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}


	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
						obj->size);
		if (ret) {
4965
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4966 4967 4968 4969 4970 4971 4972 4973
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4974
	ret = i915_gem_object_get_pages(obj, 0);
4975 4976 4977 4978 4979 4980 4981 4982
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4983
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4984 4985 4986 4987 4988 4989
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4990 4991
	i915_gem_object_put_pages(obj);

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
5002
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5003 5004 5005 5006 5007 5008 5009
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

5010
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5011 5012 5013 5014 5015 5016 5017
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
5032

5033 5034 5035 5036 5037 5038 5039 5040
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5041
		      list_empty(&dev_priv->render_ring.active_list);
5042 5043
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
5044 5045 5046 5047 5048
	spin_unlock(&dev_priv->mm.active_list_lock);

	return !lists_empty;
}

5049
static int
5050
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

5078
rescan:
5079 5080 5081 5082 5083 5084 5085 5086 5087
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
5088
		i915_gem_retire_requests(dev);
5089 5090 5091 5092 5093

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
5094
				i915_gem_object_unbind(&obj_priv->base);
5095 5096 5097 5098 5099 5100 5101 5102
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5103 5104
		would_deadlock = 0;

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5123
				i915_gem_object_unbind(&obj_priv->base);
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}