sched_fair.c 95.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
A
Arjan van de Ven 已提交
25

26
/*
27
 * Targeted preemption latency for CPU-bound tasks:
28
 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37
 */
38 39
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40

41 42 43 44 45 46 47 48 49 50 51 52
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

53
/*
54
 * Minimal preemption granularity for CPU-bound tasks:
55
 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
56
 */
57 58
unsigned int sysctl_sched_min_granularity = 2000000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
59 60

/*
61 62
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
63
static unsigned int sched_nr_latency = 3;
64 65

/*
66
 * After fork, child runs first. If set to 0 (default) then
67
 * parent will (try to) run first.
68
 */
69
unsigned int sysctl_sched_child_runs_first __read_mostly;
70

71 72 73 74 75 76 77 78
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

79 80
/*
 * SCHED_OTHER wake-up granularity.
81
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 83 84 85 86
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
87
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89

90 91
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

92 93
static const struct sched_class fair_sched_class;

94 95 96 97
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

98
#ifdef CONFIG_FAIR_GROUP_SCHED
99

100
/* cpu runqueue to which this cfs_rq is attached */
101 102
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
103
	return cfs_rq->rq;
104 105
}

106 107
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
108

109 110 111 112 113 114 115 116
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

208 209 210 211 212 213
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
214

215 216 217
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
218 219 220 221
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
222 223
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
224

P
Peter Zijlstra 已提交
225
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226
{
P
Peter Zijlstra 已提交
227
	return &task_rq(p)->cfs;
228 229
}

P
Peter Zijlstra 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

263 264 265 266 267
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
268 269
#endif	/* CONFIG_FAIR_GROUP_SCHED */

270 271 272 273 274

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

275
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276
{
277 278
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
279 280 281 282 283
		min_vruntime = vruntime;

	return min_vruntime;
}

284
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
285 286 287 288 289 290 291 292
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

293 294 295 296 297 298
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

299
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300
{
301
	return se->vruntime - cfs_rq->min_vruntime;
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
316
		if (!cfs_rq->curr)
317 318 319 320 321 322 323 324
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

325 326 327
/*
 * Enqueue an entity into the rb-tree:
 */
328
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 330 331 332
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
333
	s64 key = entity_key(cfs_rq, se);
334 335 336 337 338 339 340 341 342 343 344 345
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
346
		if (key < entity_key(cfs_rq, entry)) {
347 348 349 350 351 352 353 354 355 356 357
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
358
	if (leftmost)
I
Ingo Molnar 已提交
359
		cfs_rq->rb_leftmost = &se->run_node;
360 361 362 363 364

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

365
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366
{
P
Peter Zijlstra 已提交
367 368 369 370 371 372
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
373

374 375 376 377 378
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
379 380 381 382 383 384
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
385 386
}

387
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388
{
389
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390

391 392
	if (!last)
		return NULL;
393 394

	return rb_entry(last, struct sched_entity, run_node);
395 396
}

397 398 399 400
/**************************************************************
 * Scheduling class statistics methods:
 */

401
#ifdef CONFIG_SCHED_DEBUG
402
int sched_proc_update_handler(struct ctl_table *table, int write,
403
		void __user *buffer, size_t *lenp,
404 405
		loff_t *ppos)
{
406
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407
	int factor = get_update_sysctl_factor();
408 409 410 411 412 413 414

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

415 416 417 418 419 420 421 422
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
	WRT_SYSCTL(sched_shares_ratelimit);
#undef WRT_SYSCTL

423 424 425
	return 0;
}
#endif
426

427
/*
428
 * delta /= w
429 430 431 432
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
433 434
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435 436 437 438

	return delta;
}

439 440 441 442 443 444 445 446
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
447 448 449
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
450
	unsigned long nr_latency = sched_nr_latency;
451 452

	if (unlikely(nr_running > nr_latency)) {
453
		period = sysctl_sched_min_granularity;
454 455 456 457 458 459
		period *= nr_running;
	}

	return period;
}

460 461 462 463
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
464
 * s = p*P[w/rw]
465
 */
P
Peter Zijlstra 已提交
466
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467
{
M
Mike Galbraith 已提交
468
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469

M
Mike Galbraith 已提交
470
	for_each_sched_entity(se) {
L
Lin Ming 已提交
471
		struct load_weight *load;
472
		struct load_weight lw;
L
Lin Ming 已提交
473 474 475

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
476

M
Mike Galbraith 已提交
477
		if (unlikely(!se->on_rq)) {
478
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
479 480 481 482 483 484 485

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
486 487
}

488
/*
489
 * We calculate the vruntime slice of a to be inserted task
490
 *
491
 * vs = s/w
492
 */
493
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
494
{
495
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
496 497
}

498 499 500 501 502
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
503 504
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
505
{
506
	unsigned long delta_exec_weighted;
507

508 509
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
510 511

	curr->sum_exec_runtime += delta_exec;
512
	schedstat_add(cfs_rq, exec_clock, delta_exec);
513
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514

I
Ingo Molnar 已提交
515
	curr->vruntime += delta_exec_weighted;
516
	update_min_vruntime(cfs_rq);
517 518
}

519
static void update_curr(struct cfs_rq *cfs_rq)
520
{
521
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
522
	u64 now = rq_of(cfs_rq)->clock;
523 524 525 526 527 528 529 530 531 532
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
533
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
534 535
	if (!delta_exec)
		return;
536

I
Ingo Molnar 已提交
537 538
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
539 540 541 542

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

543
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
544
		cpuacct_charge(curtask, delta_exec);
545
		account_group_exec_runtime(curtask, delta_exec);
546
	}
547 548 549
}

static inline void
550
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551
{
552
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
553 554 555 556 557
}

/*
 * Task is being enqueued - update stats:
 */
558
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 560 561 562 563
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
564
	if (se != cfs_rq->curr)
565
		update_stats_wait_start(cfs_rq, se);
566 567 568
}

static void
569
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570
{
571 572 573 574 575
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
576 577 578
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
579
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
580 581
	}
#endif
582
	schedstat_set(se->statistics.wait_start, 0);
583 584 585
}

static inline void
586
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 588 589 590 591
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
592
	if (se != cfs_rq->curr)
593
		update_stats_wait_end(cfs_rq, se);
594 595 596 597 598 599
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
600
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 602 603 604
{
	/*
	 * We are starting a new run period:
	 */
605
	se->exec_start = rq_of(cfs_rq)->clock;
606 607 608 609 610 611
}

/**************************************************
 * Scheduling class queueing methods:
 */

612 613 614 615 616 617 618 619 620 621 622 623 624
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

625 626 627 628
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
629 630
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
631
	if (entity_is_task(se)) {
632
		add_cfs_task_weight(cfs_rq, se->load.weight);
633 634
		list_add(&se->group_node, &cfs_rq->tasks);
	}
635 636 637 638 639 640 641 642
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
643 644
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
645
	if (entity_is_task(se)) {
646
		add_cfs_task_weight(cfs_rq, -se->load.weight);
647 648
		list_del_init(&se->group_node);
	}
649 650 651 652
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

653
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 655
{
#ifdef CONFIG_SCHEDSTATS
656 657 658 659 660
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

661 662
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
663 664 665 666

		if ((s64)delta < 0)
			delta = 0;

667 668
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
669

670 671
		se->statistics.sleep_start = 0;
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
672

673
		if (tsk) {
674
			account_scheduler_latency(tsk, delta >> 10, 1);
675 676
			trace_sched_stat_sleep(tsk, delta);
		}
677
	}
678 679
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
680 681 682 683

		if ((s64)delta < 0)
			delta = 0;

684 685
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
686

687 688
		se->statistics.block_start = 0;
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
689

690
		if (tsk) {
691
			if (tsk->in_iowait) {
692 693
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
694
				trace_sched_stat_iowait(tsk, delta);
695 696
			}

697 698 699 700 701 702 703 704 705 706 707
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
708
		}
709 710 711 712
	}
#endif
}

P
Peter Zijlstra 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

726 727 728
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
729
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
730

731 732 733 734 735 736
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
737
	if (initial && sched_feat(START_DEBIT))
738
		vruntime += sched_vslice(cfs_rq, se);
739

740
	/* sleeps up to a single latency don't count. */
741
	if (!initial) {
742
		unsigned long thresh = sysctl_sched_latency;
743

744 745 746 747 748 749
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
750

751
		vruntime -= thresh;
752 753
	}

754 755 756
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
757
	se->vruntime = vruntime;
758 759
}

760
static void
761
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
762
{
763 764 765 766
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
767
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
768 769
		se->vruntime += cfs_rq->min_vruntime;

770
	/*
771
	 * Update run-time statistics of the 'current'.
772
	 */
773
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
774
	account_entity_enqueue(cfs_rq, se);
775

776
	if (flags & ENQUEUE_WAKEUP) {
777
		place_entity(cfs_rq, se, 0);
778
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
779
	}
780

781
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
782
	check_spread(cfs_rq, se);
783 784
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
785 786
}

P
Peter Zijlstra 已提交
787
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
788
{
789
	if (!se || cfs_rq->last == se)
P
Peter Zijlstra 已提交
790 791
		cfs_rq->last = NULL;

792
	if (!se || cfs_rq->next == se)
P
Peter Zijlstra 已提交
793 794 795
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
796 797 798 799 800 801
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

802
static void
803
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
804
{
805 806 807 808 809
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

810
	update_stats_dequeue(cfs_rq, se);
811
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
812
#ifdef CONFIG_SCHEDSTATS
813 814 815 816
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
817
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
818
			if (tsk->state & TASK_UNINTERRUPTIBLE)
819
				se->statistics.block_start = rq_of(cfs_rq)->clock;
820
		}
821
#endif
P
Peter Zijlstra 已提交
822 823
	}

P
Peter Zijlstra 已提交
824
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
825

826
	if (se != cfs_rq->curr)
827 828
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
829
	update_min_vruntime(cfs_rq);
830 831 832 833 834 835

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
836
	if (!(flags & DEQUEUE_SLEEP))
837
		se->vruntime -= cfs_rq->min_vruntime;
838 839 840 841 842
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
843
static void
I
Ingo Molnar 已提交
844
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
845
{
846 847
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
848
	ideal_runtime = sched_slice(cfs_rq, curr);
849
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
850
	if (delta_exec > ideal_runtime) {
851
		resched_task(rq_of(cfs_rq)->curr);
852 853 854 855 856
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

	if (delta_exec < sysctl_sched_min_granularity)
		return;

	if (cfs_rq->nr_running > 1) {
		struct sched_entity *se = __pick_next_entity(cfs_rq);
		s64 delta = curr->vruntime - se->vruntime;

		if (delta > ideal_runtime)
			resched_task(rq_of(cfs_rq)->curr);
877
	}
878 879
}

880
static void
881
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
882
{
883 884 885 886 887 888 889 890 891 892 893
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

894
	update_stats_curr_start(cfs_rq, se);
895
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
896 897 898 899 900 901
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
902
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
903
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
904 905 906
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
907
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
908 909
}

910 911 912
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

913
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
914
{
915
	struct sched_entity *se = __pick_next_entity(cfs_rq);
916
	struct sched_entity *left = se;
917

918 919
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;
920

921 922 923 924 925 926 927
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
928 929

	return se;
930 931
}

932
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
933 934 935 936 937 938
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
939
		update_curr(cfs_rq);
940

P
Peter Zijlstra 已提交
941
	check_spread(cfs_rq, prev);
942
	if (prev->on_rq) {
943
		update_stats_wait_start(cfs_rq, prev);
944 945 946
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
947
	cfs_rq->curr = NULL;
948 949
}

P
Peter Zijlstra 已提交
950 951
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
952 953
{
	/*
954
	 * Update run-time statistics of the 'current'.
955
	 */
956
	update_curr(cfs_rq);
957

P
Peter Zijlstra 已提交
958 959 960 961 962
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
963 964 965 966
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
967 968 969 970 971 972 973 974
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

975
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
976
		check_preempt_tick(cfs_rq, curr);
977 978 979 980 981 982
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
1006
		if (rq->curr != p)
1007
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
1008

1009
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
1010 1011
	}
}
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
1028
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1029 1030 1031 1032
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
1033 1034 1035 1036

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
1037 1038
#endif

1039 1040 1041 1042 1043
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
1044
static void
1045
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1046 1047
{
	struct cfs_rq *cfs_rq;
1048
	struct sched_entity *se = &p->se;
1049 1050

	for_each_sched_entity(se) {
1051
		if (se->on_rq)
1052 1053
			break;
		cfs_rq = cfs_rq_of(se);
1054 1055
		enqueue_entity(cfs_rq, se, flags);
		flags = ENQUEUE_WAKEUP;
1056
	}
P
Peter Zijlstra 已提交
1057

1058
	hrtick_update(rq);
1059 1060 1061 1062 1063 1064 1065
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1066
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1067 1068
{
	struct cfs_rq *cfs_rq;
1069
	struct sched_entity *se = &p->se;
1070 1071 1072

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1073
		dequeue_entity(cfs_rq, se, flags);
1074
		/* Don't dequeue parent if it has other entities besides us */
1075
		if (cfs_rq->load.weight)
1076
			break;
1077
		flags |= DEQUEUE_SLEEP;
1078
	}
P
Peter Zijlstra 已提交
1079

1080
	hrtick_update(rq);
1081 1082 1083
}

/*
1084 1085 1086
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1087
 */
1088
static void yield_task_fair(struct rq *rq)
1089
{
1090 1091 1092
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1093 1094

	/*
1095 1096 1097 1098 1099
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1100 1101
	clear_buddies(cfs_rq, se);

1102
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1103
		update_rq_clock(rq);
1104
		/*
1105
		 * Update run-time statistics of the 'current'.
1106
		 */
D
Dmitry Adamushko 已提交
1107
		update_curr(cfs_rq);
1108 1109 1110 1111 1112

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1113
	 */
D
Dmitry Adamushko 已提交
1114
	rightmost = __pick_last_entity(cfs_rq);
1115 1116 1117
	/*
	 * Already in the rightmost position?
	 */
1118
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1119 1120 1121 1122
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1123 1124
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1125
	 */
1126
	se->vruntime = rightmost->vruntime + 1;
1127 1128
}

1129
#ifdef CONFIG_SMP
1130

1131 1132 1133 1134 1135 1136 1137 1138
static void task_waking_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	se->vruntime -= cfs_rq->min_vruntime;
}

1139
#ifdef CONFIG_FAIR_GROUP_SCHED
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1161 1162
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1163
{
P
Peter Zijlstra 已提交
1164
	struct sched_entity *se = tg->se[cpu];
1165 1166 1167 1168

	if (!tg->parent)
		return wl;

1169 1170 1171 1172 1173 1174 1175
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1176
	for_each_sched_entity(se) {
1177
		long S, rw, s, a, b;
1178 1179 1180 1181 1182 1183 1184 1185 1186
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1187 1188 1189

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1190
		rw = se->my_q->rq_weight;
1191

1192 1193
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1194

1195 1196 1197 1198 1199
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1200 1201 1202 1203 1204 1205 1206
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1207 1208
		wg = 0;
	}
1209

P
Peter Zijlstra 已提交
1210
	return wl;
1211
}
P
Peter Zijlstra 已提交
1212

1213
#else
P
Peter Zijlstra 已提交
1214

1215 1216
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1217
{
1218
	return wl;
1219
}
P
Peter Zijlstra 已提交
1220

1221 1222
#endif

1223
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1224
{
1225 1226
	unsigned long this_load, load;
	int idx, this_cpu, prev_cpu;
1227
	unsigned long tl_per_task;
1228
	struct task_group *tg;
1229
	unsigned long weight;
1230
	int balanced;
1231

1232 1233 1234 1235 1236
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
1237

1238 1239 1240 1241 1242
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1243 1244 1245 1246
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

1247
		this_load += effective_load(tg, this_cpu, -weight, -weight);
1248 1249
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1250

1251 1252
	tg = task_group(p);
	weight = p->se.load.weight;
1253

1254 1255
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1256 1257 1258
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
1259 1260 1261 1262
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	if (this_load) {
		unsigned long this_eff_load, prev_eff_load;

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
1278

1279
	/*
I
Ingo Molnar 已提交
1280 1281 1282
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1283
	 */
1284 1285
	if (sync && balanced)
		return 1;
1286

1287
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1288 1289
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1290 1291 1292
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1293 1294 1295 1296 1297
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
1298
		schedstat_inc(sd, ttwu_move_affine);
1299
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
1300 1301 1302 1303 1304 1305

		return 1;
	}
	return 0;
}

1306 1307 1308 1309 1310
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
1311
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1312
		  int this_cpu, int load_idx)
1313
{
1314 1315 1316
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1317

1318 1319 1320 1321
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
1378 1379 1380
		}
	}

1381 1382
	return idlest;
}
1383

1384 1385 1386
/*
 * Try and locate an idle CPU in the sched_domain.
 */
1387
static int select_idle_sibling(struct task_struct *p, int target)
1388 1389 1390
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
1391
	struct sched_domain *sd;
1392 1393 1394
	int i;

	/*
1395 1396
	 * If the task is going to be woken-up on this cpu and if it is
	 * already idle, then it is the right target.
1397
	 */
1398 1399 1400 1401 1402 1403 1404 1405
	if (target == cpu && idle_cpu(cpu))
		return cpu;

	/*
	 * If the task is going to be woken-up on the cpu where it previously
	 * ran and if it is currently idle, then it the right target.
	 */
	if (target == prev_cpu && idle_cpu(prev_cpu))
1406
		return prev_cpu;
1407 1408

	/*
1409
	 * Otherwise, iterate the domains and find an elegible idle cpu.
1410
	 */
1411 1412
	for_each_domain(target, sd) {
		if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1413
			break;
1414 1415 1416 1417 1418 1419

		for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
			if (idle_cpu(i)) {
				target = i;
				break;
			}
1420
		}
1421 1422 1423 1424 1425 1426 1427 1428

		/*
		 * Lets stop looking for an idle sibling when we reached
		 * the domain that spans the current cpu and prev_cpu.
		 */
		if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
			break;
1429 1430 1431 1432 1433
	}

	return target;
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
1445 1446
static int
select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1447
{
1448
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1449 1450 1451
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
1452
	int want_affine = 0;
1453
	int want_sd = 1;
1454
	int sync = wake_flags & WF_SYNC;
1455

1456
	if (sd_flag & SD_BALANCE_WAKE) {
1457
		if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1458 1459 1460
			want_affine = 1;
		new_cpu = prev_cpu;
	}
1461 1462

	for_each_domain(cpu, tmp) {
1463 1464 1465
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

1466
		/*
1467 1468
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
1469
		 */
P
Peter Zijlstra 已提交
1470
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);

P
Peter Zijlstra 已提交
1483 1484 1485 1486
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
1487
				want_sd = 0;
1488
		}
1489

1490
		/*
1491 1492
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
1493
		 */
1494 1495 1496 1497
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
			want_affine = 0;
1498 1499
		}

1500 1501 1502
		if (!want_sd && !want_affine)
			break;

1503
		if (!(tmp->flags & sd_flag))
1504 1505
			continue;

1506 1507 1508 1509
		if (want_sd)
			sd = tmp;
	}

1510
#ifdef CONFIG_FAIR_GROUP_SCHED
1511 1512 1513 1514 1515
	if (sched_feat(LB_SHARES_UPDATE)) {
		/*
		 * Pick the largest domain to update shares over
		 */
		tmp = sd;
1516
		if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1517 1518
			tmp = affine_sd;

1519 1520
		if (tmp) {
			raw_spin_unlock(&rq->lock);
1521
			update_shares(tmp);
1522 1523
			raw_spin_lock(&rq->lock);
		}
1524
	}
1525
#endif
1526

1527
	if (affine_sd) {
1528 1529 1530 1531
		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
			return select_idle_sibling(p, cpu);
		else
			return select_idle_sibling(p, prev_cpu);
1532
	}
1533

1534
	while (sd) {
1535
		int load_idx = sd->forkexec_idx;
1536
		struct sched_group *group;
1537
		int weight;
1538

1539
		if (!(sd->flags & sd_flag)) {
1540 1541 1542
			sd = sd->child;
			continue;
		}
1543

1544 1545
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
1546

1547
		group = find_idlest_group(sd, p, cpu, load_idx);
1548 1549 1550 1551
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
1552

1553
		new_cpu = find_idlest_cpu(group, p, cpu);
1554 1555 1556 1557
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
1558
		}
1559 1560 1561

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
1562
		weight = sd->span_weight;
1563 1564
		sd = NULL;
		for_each_domain(cpu, tmp) {
1565
			if (weight <= tmp->span_weight)
1566
				break;
1567
			if (tmp->flags & sd_flag)
1568 1569 1570
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
1571 1572
	}

1573
	return new_cpu;
1574 1575 1576
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1577 1578
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1579 1580 1581 1582
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
1583 1584
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
1594
	 */
M
Mike Galbraith 已提交
1595 1596
	if (unlikely(se->load.weight != NICE_0_LOAD))
		gran = calc_delta_fair(gran, se);
1597 1598 1599 1600

	return gran;
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1623
	gran = wakeup_gran(curr, se);
1624 1625 1626 1627 1628 1629
	if (vdiff > gran)
		return 1;

	return 0;
}

1630 1631
static void set_last_buddy(struct sched_entity *se)
{
1632 1633 1634 1635
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1636 1637 1638 1639
}

static void set_next_buddy(struct sched_entity *se)
{
1640 1641 1642 1643
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1644 1645
}

1646 1647 1648
/*
 * Preempt the current task with a newly woken task if needed:
 */
1649
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1650 1651
{
	struct task_struct *curr = rq->curr;
1652
	struct sched_entity *se = &curr->se, *pse = &p->se;
1653
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1654
	int scale = cfs_rq->nr_running >= sched_nr_latency;
1655

1656 1657
	if (unlikely(rt_prio(p->prio)))
		goto preempt;
1658

P
Peter Zijlstra 已提交
1659 1660 1661
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1662 1663 1664
	if (unlikely(se == pse))
		return;

1665
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
M
Mike Galbraith 已提交
1666
		set_next_buddy(pse);
P
Peter Zijlstra 已提交
1667

1668 1669 1670 1671 1672 1673 1674
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1675
	/*
1676
	 * Batch and idle tasks do not preempt (their preemption is driven by
1677 1678
	 * the tick):
	 */
1679
	if (unlikely(p->policy != SCHED_NORMAL))
1680
		return;
1681

1682
	/* Idle tasks are by definition preempted by everybody. */
1683 1684
	if (unlikely(curr->policy == SCHED_IDLE))
		goto preempt;
1685

1686 1687 1688
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

1689
	update_curr(cfs_rq);
1690
	find_matching_se(&se, &pse);
1691
	BUG_ON(!pse);
1692 1693
	if (wakeup_preempt_entity(se, pse) == 1)
		goto preempt;
1694

1695
	return;
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
1713 1714
}

1715
static struct task_struct *pick_next_task_fair(struct rq *rq)
1716
{
P
Peter Zijlstra 已提交
1717
	struct task_struct *p;
1718 1719 1720
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

1721
	if (!cfs_rq->nr_running)
1722 1723 1724
		return NULL;

	do {
1725
		se = pick_next_entity(cfs_rq);
1726
		set_next_entity(cfs_rq, se);
1727 1728 1729
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1730 1731 1732 1733
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1734 1735 1736 1737 1738
}

/*
 * Account for a descheduled task:
 */
1739
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1740 1741 1742 1743 1744 1745
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1746
		put_prev_entity(cfs_rq, se);
1747 1748 1749
	}
}

1750
#ifdef CONFIG_SMP
1751 1752 1753 1754
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
{
	deactivate_task(src_rq, p, 0);
	set_task_cpu(p, this_cpu);
	activate_task(this_rq, p, 0);
	check_preempt_curr(this_rq, p, 0);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
		     struct sched_domain *sd, enum cpu_idle_type idle,
		     int *all_pinned)
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1784
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1785 1786 1787 1788 1789
		return 0;
	}
	*all_pinned = 0;

	if (task_running(rq, p)) {
1790
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(sd, lb_hot_gained[idle]);
1806
			schedstat_inc(p, se.statistics.nr_forced_migrations);
1807 1808 1809 1810 1811 1812
		}
#endif
		return 1;
	}

	if (tsk_cache_hot) {
1813
		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1814 1815 1816 1817 1818
		return 0;
	}
	return 1;
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int
move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct task_struct *p, *n;
	struct cfs_rq *cfs_rq;
	int pinned = 0;

	for_each_leaf_cfs_rq(busiest, cfs_rq) {
		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {

			if (!can_migrate_task(p, busiest, this_cpu,
						sd, idle, &pinned))
				continue;

			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);
			return 1;
		}
	}

	return 0;
}

1855 1856 1857 1858
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
1859
	      int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1860 1861 1862
{
	int loops = 0, pulled = 0, pinned = 0;
	long rem_load_move = max_load_move;
1863
	struct task_struct *p, *n;
1864 1865 1866 1867 1868 1869

	if (max_load_move == 0)
		goto out;

	pinned = 1;

1870 1871 1872
	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
		if (loops++ > sysctl_sched_nr_migrate)
			break;
1873

1874 1875 1876
		if ((p->se.load.weight >> 1) > rem_load_move ||
		    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
			continue;
1877

1878 1879 1880
		pull_task(busiest, p, this_rq, this_cpu);
		pulled++;
		rem_load_move -= p->se.load.weight;
1881 1882

#ifdef CONFIG_PREEMPT
1883 1884 1885 1886 1887 1888 1889
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
		if (idle == CPU_NEWLY_IDLE)
			break;
1890 1891
#endif

1892 1893 1894 1895 1896 1897 1898
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
		if (rem_load_move <= 0)
			break;

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
	}
out:
	/*
	 * Right now, this is one of only two places pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);

	if (all_pinned)
		*all_pinned = pinned;

	return max_load_move - rem_load_move;
}

P
Peter Zijlstra 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
#ifdef CONFIG_FAIR_GROUP_SCHED
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	long rem_load_move = max_load_move;
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;

	rcu_read_lock();
	update_h_load(busiest_cpu);

	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
		u64 rem_load, moved_load;

		/*
		 * empty group
		 */
		if (!busiest_cfs_rq->task_weight)
			continue;

		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);

		moved_load = balance_tasks(this_rq, this_cpu, busiest,
				rem_load, sd, idle, all_pinned, this_best_prio,
				busiest_cfs_rq);

		if (!moved_load)
			continue;

		moved_load *= busiest_h_load;
		moved_load = div_u64(moved_load, busiest_weight + 1);

		rem_load_move -= moved_load;
		if (rem_load_move < 0)
			break;
	}
	rcu_read_unlock();

	return max_load_move - rem_load_move;
}
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
/*
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
1988
	unsigned long total_load_moved = 0, load_moved;
1989 1990 1991
	int this_best_prio = this_rq->curr->prio;

	do {
1992
		load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1993 1994
				max_load_move - total_load_moved,
				sd, idle, all_pinned, &this_best_prio);
1995 1996

		total_load_moved += load_moved;
1997 1998 1999 2000 2001 2002 2003 2004 2005

#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
2006 2007 2008 2009

		if (raw_spin_is_contended(&this_rq->lock) ||
				raw_spin_is_contended(&busiest->lock))
			break;
2010
#endif
2011
	} while (load_moved && max_load_move > total_load_moved);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

	return total_load_moved > 0;
}

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
2037
	unsigned long busiest_group_capacity;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

	int group_imb; /* Is there imbalance in this sd */
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
#endif
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};

/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}


#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}

/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{

	if (!sds->power_savings_balance)
		return;

	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;

	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;

	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}

	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
		return;

	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}

/**
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;

	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;

	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;

	return 1;

}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}

static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
2251
	unsigned long weight = sd->span_weight;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
2284
	unsigned long weight = sd->span_weight;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

	power >>= SCHED_LOAD_SHIFT;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

		power >>= SCHED_LOAD_SHIFT;
	}

	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;

2310
	cpu_rq(cpu)->cpu_power = power;
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	sdg->cpu_power = power;
}

static void update_group_power(struct sched_domain *sd, int cpu)
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

	group = child->groups;
	do {
		power += group->cpu_power;
		group = group->next;
	} while (group != child->groups);

	sdg->cpu_power = power;
}

/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: The sched_domain whose statistics are to be updated.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
2358
	unsigned long avg_load_per_task = 0;
2359

2360
	if (local_group)
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;

	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);

		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;

		/* Bias balancing toward cpus of our domain */
		if (local_group) {
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
		}

		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);

	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
P
Peter Zijlstra 已提交
2402
	    balance_cpu != this_cpu) {
2403 2404 2405 2406
		*balance = 0;
		return;
	}

2407 2408
	update_group_power(sd, this_cpu);

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
2421 2422
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity =
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
}

/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
{
	struct sched_domain *child = sd->child;
	struct sched_group *group = sd->groups;
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

	init_sd_power_savings_stats(sd, sds, idle);
	load_idx = get_sd_load_idx(sd, idle);

	do {
		int local_group;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
		memset(&sgs, 0, sizeof(sgs));
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);

P
Peter Zijlstra 已提交
2466
		if (local_group && !(*balance))
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
			return;

		sds->total_load += sgs.group_load;
		sds->total_pwr += group->cpu_power;

		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
2491
			sds->busiest_group_capacity = sgs.group_capacity;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
		}

		update_sd_power_savings_stats(group, sds, local_group, &sgs);
		group = group->next;
	} while (group != sd->groups);
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
2514
	unsigned long scaled_busy_load_per_task;
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);

2525 2526 2527 2528 2529 2530
	scaled_busy_load_per_task = sds->busiest_load_per_task
						 * SCHED_LOAD_SCALE;
	scaled_busy_load_per_task /= sds->busiest->cpu_power;

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
		*imbalance = sds->busiest_load_per_task;
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

	pwr_now += sds->busiest->cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
	else
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
2581 2582 2583 2584 2585 2586 2587 2588
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
		*imbalance = 0;
		return fix_small_imbalance(sds, this_cpu, imbalance);
	}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);

		load_above_capacity /= sds->busiest->cpu_power;
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689

	/* How much load to actually move to equalise the imbalance */
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
			/ SCHED_LOAD_SCALE;

	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);

}
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 */
P
Peter Zijlstra 已提交
2690
	if (!(*balance))
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
		goto ret;

	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

	if (sds.this_load >= sds.max_load)
		goto out_balanced;

	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;

	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
		goto out_balanced;

	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
	return sds.busiest;

out_balanced:
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
ret:
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
static struct rq *
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
		   unsigned long imbalance, const struct cpumask *cpus)
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
		unsigned long wl;

		if (!cpumask_test_cpu(i, cpus))
			continue;

		rq = cpu_rq(i);
2743
		wl = weighted_cpuload(i);
2744

2745 2746 2747 2748
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
2749 2750 2751
		if (capacity && rq->nr_running == 1 && wl > imbalance)
			continue;

2752 2753 2754 2755 2756 2757 2758 2759
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
		wl = (wl * SCHED_LOAD_SCALE) / power;

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
{
	if (idle == CPU_NEWLY_IDLE) {
		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package.
		 *
		 * The package power saving logic comes from
		 * find_busiest_group(). If there are no imbalance, then
		 * f_b_g() will return NULL. However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
			return 0;

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return 0;
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

2811 2812
static int active_load_balance_cpu_stop(void *data);

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
	struct sched_group *group;
	unsigned long imbalance;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);

	cpumask_copy(cpus, cpu_active_mask);

	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
	 * portraying it as CPU_NOT_IDLE.
	 */
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
		sd_idle = 1;

	schedstat_inc(sd, lb_count[idle]);

redo:
	update_shares(sd);
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
				   cpus, balance);

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

	busiest = find_busiest_queue(group, idle, imbalance, cpus);
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

	BUG_ON(busiest == this_rq);

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
		local_irq_save(flags);
		double_rq_lock(this_rq, busiest);
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
				      imbalance, sd, idle, &all_pinned);
		double_rq_unlock(this_rq, busiest);
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
		if (ld_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

		/* All tasks on this runqueue were pinned by CPU affinity */
		if (unlikely(all_pinned)) {
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
				goto redo;
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

2899
		if (need_active_balance(sd, sd_idle, idle)) {
2900 2901
			raw_spin_lock_irqsave(&busiest->lock, flags);

2902 2903 2904
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
2905 2906 2907 2908 2909 2910 2911 2912 2913
			 */
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
				all_pinned = 1;
				goto out_one_pinned;
			}

2914 2915 2916 2917 2918
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
2919 2920 2921 2922 2923 2924
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
2925

2926
			if (active_balance)
2927 2928 2929
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
		ld_moved = -1;

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	if (ld_moved)
		update_shares(sd);
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static void idle_balance(int this_cpu, struct rq *this_rq)
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

2997 2998 2999 3000 3001
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

3002 3003
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
3004
		int balance = 1;
3005 3006 3007 3008

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

3009
		if (sd->flags & SD_BALANCE_NEWIDLE) {
3010
			/* If we've pulled tasks over stop searching: */
3011 3012 3013
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
3014 3015 3016 3017 3018 3019 3020 3021 3022

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task) {
			this_rq->idle_stamp = 0;
			break;
		}
	}
3023 3024 3025

	raw_spin_lock(&this_rq->lock);

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
3036 3037 3038 3039
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
3040
 */
3041
static int active_load_balance_cpu_stop(void *data)
3042
{
3043 3044
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
3045
	int target_cpu = busiest_rq->push_cpu;
3046
	struct rq *target_rq = cpu_rq(target_cpu);
3047
	struct sched_domain *sd;
3048 3049 3050 3051 3052 3053 3054

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
3055 3056 3057

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
3058
		goto out_unlock;
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
		schedstat_inc(sd, alb_count);

		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
	double_unlock_balance(busiest_rq, target_rq);
3087 3088 3089 3090
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
3091 3092 3093
}

#ifdef CONFIG_NO_HZ
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119

static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);

static void trigger_sched_softirq(void *data)
{
	raise_softirq_irqoff(SCHED_SOFTIRQ);
}

static inline void init_sched_softirq_csd(struct call_single_data *csd)
{
	csd->func = trigger_sched_softirq;
	csd->info = NULL;
	csd->flags = 0;
	csd->priv = 0;
}

/*
 * idle load balancing details
 * - One of the idle CPUs nominates itself as idle load_balancer, while
 *   entering idle.
 * - This idle load balancer CPU will also go into tickless mode when
 *   it is idle, just like all other idle CPUs
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
3120 3121
static struct {
	atomic_t load_balancer;
3122 3123 3124 3125 3126 3127
	atomic_t first_pick_cpu;
	atomic_t second_pick_cpu;
	cpumask_var_t idle_cpus_mask;
	cpumask_var_t grp_idle_mask;
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
3181
	cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3182 3183 3184 3185 3186 3187
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
3188
	if (cpumask_empty(nohz.grp_idle_mask))
3189 3190
		return 0;

3191
	if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
3224
	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3225 3226 3227 3228 3229 3230 3231
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
3232
				return cpumask_first(nohz.grp_idle_mask);
3233 3234 3235 3236 3237 3238 3239

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
3240
	return nr_cpu_ids;
3241 3242 3243 3244
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
3245
	return nr_cpu_ids;
3246 3247 3248
}
#endif

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

	ilb_cpu = get_nohz_load_balancer();

	if (ilb_cpu >= nr_cpu_ids) {
		ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
		if (ilb_cpu >= nr_cpu_ids)
			return;
	}

	if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
		struct call_single_data *cp;

		cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
		cp = &per_cpu(remote_sched_softirq_cb, cpu);
		__smp_call_function_single(ilb_cpu, cp, 0);
	}
	return;
}

3278 3279 3280
/*
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3281
 * load balancing on behalf of all those cpus.
3282
 *
3283 3284 3285
 * When the ilb owner becomes busy, we will not have new ilb owner until some
 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
 * idle load balancing by kicking one of the idle CPUs.
3286
 *
3287 3288 3289
 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
 * ilb owner CPU in future (when there is a need for idle load balancing on
 * behalf of all idle CPUs).
3290
 */
3291
void select_nohz_load_balancer(int stop_tick)
3292 3293 3294 3295 3296 3297
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
3298
				return;
3299 3300 3301 3302 3303

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
3304 3305
			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
					   nr_cpu_ids) != cpu)
3306 3307
				BUG();

3308
			return;
3309 3310
		}

3311
		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3312

3313 3314 3315 3316
		if (atomic_read(&nohz.first_pick_cpu) == cpu)
			atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
		if (atomic_read(&nohz.second_pick_cpu) == cpu)
			atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3317

3318
		if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3319 3320
			int new_ilb;

3321 3322 3323 3324 3325
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
					   cpu) != nr_cpu_ids)
				return;

3326 3327 3328 3329 3330 3331
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3332
				atomic_set(&nohz.load_balancer, nr_cpu_ids);
3333
				resched_cpu(new_ilb);
3334
				return;
3335
			}
3336
			return;
3337 3338
		}
	} else {
3339 3340
		if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
			return;
3341

3342
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3343 3344

		if (atomic_read(&nohz.load_balancer) == cpu)
3345 3346
			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
					   nr_cpu_ids) != cpu)
3347 3348
				BUG();
	}
3349
	return;
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * We've pulled tasks over so either we're no
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
				idle = CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

3431
#ifdef CONFIG_NO_HZ
3432
/*
3433
 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3434 3435
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

	if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
		return;

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
		if (balance_cpu == this_cpu)
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
		if (need_resched()) {
			this_rq->nohz_balance_kick = 0;
			break;
		}

		raw_spin_lock_irq(&this_rq->lock);
		update_cpu_load(this_rq);
		raw_spin_unlock_irq(&this_rq->lock);

		rebalance_domains(balance_cpu, CPU_IDLE);

		rq = cpu_rq(balance_cpu);
		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
	this_rq->nohz_balance_kick = 0;
}

/*
 * Current heuristic for kicking the idle load balancer
 * - first_pick_cpu is the one of the busy CPUs. It will kick
 *   idle load balancer when it has more than one process active. This
 *   eliminates the need for idle load balancing altogether when we have
 *   only one running process in the system (common case).
 * - If there are more than one busy CPU, idle load balancer may have
 *   to run for active_load_balance to happen (i.e., two busy CPUs are
 *   SMT or core siblings and can run better if they move to different
 *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
 *   which will kick idle load balancer as soon as it has any load.
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
	int ret;
	int first_pick_cpu, second_pick_cpu;

	if (time_before(now, nohz.next_balance))
		return 0;

	if (!rq->nr_running)
		return 0;

	first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
	second_pick_cpu = atomic_read(&nohz.second_pick_cpu);

	if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
	    second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
		return 0;

	ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
	if (ret == nr_cpu_ids || ret == cpu) {
		atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
		if (rq->nr_running > 1)
			return 1;
	} else {
		ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
		if (ret == nr_cpu_ids || ret == cpu) {
			if (rq->nr_running)
				return 1;
		}
	}
	return 0;
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
3536
	 * If this cpu has a pending nohz_balance_kick, then do the
3537 3538 3539
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
3540
	nohz_idle_balance(this_cpu, idle);
3541 3542 3543 3544
}

static inline int on_null_domain(int cpu)
{
3545
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
static inline void trigger_load_balance(struct rq *rq, int cpu)
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
3557 3558 3559 3560
#ifdef CONFIG_NO_HZ
	else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
		nohz_balancer_kick(cpu);
#endif
3561 3562
}

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
}

3573 3574 3575 3576 3577 3578 3579 3580 3581
#else	/* CONFIG_SMP */

/*
 * on UP we do not need to balance between CPUs:
 */
static inline void idle_balance(int cpu, struct rq *rq)
{
}

3582
#endif /* CONFIG_SMP */
3583

3584 3585 3586
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
3587
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3588 3589 3590 3591 3592 3593
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
3594
		entity_tick(cfs_rq, se, queued);
3595 3596 3597 3598
	}
}

/*
P
Peter Zijlstra 已提交
3599 3600 3601
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
3602
 */
P
Peter Zijlstra 已提交
3603
static void task_fork_fair(struct task_struct *p)
3604
{
P
Peter Zijlstra 已提交
3605
	struct cfs_rq *cfs_rq = task_cfs_rq(current);
3606
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3607
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
3608 3609 3610
	struct rq *rq = this_rq();
	unsigned long flags;

3611
	raw_spin_lock_irqsave(&rq->lock, flags);
3612

P
Peter Zijlstra 已提交
3613 3614
	if (unlikely(task_cpu(p) != this_cpu))
		__set_task_cpu(p, this_cpu);
3615

3616
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
3617

3618 3619
	if (curr)
		se->vruntime = curr->vruntime;
3620
	place_entity(cfs_rq, se, 1);
3621

P
Peter Zijlstra 已提交
3622
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
3623
		/*
3624 3625 3626
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
3627
		swap(curr->vruntime, se->vruntime);
3628
		resched_task(rq->curr);
3629
	}
3630

3631 3632
	se->vruntime -= cfs_rq->min_vruntime;

3633
	raw_spin_unlock_irqrestore(&rq->lock, flags);
3634 3635
}

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
3652
		check_preempt_curr(rq, p, 0);
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
3669
		check_preempt_curr(rq, p, 0);
3670 3671
}

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
3685
#ifdef CONFIG_FAIR_GROUP_SCHED
3686
static void moved_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
3687 3688 3689 3690
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
3691 3692
	if (!on_rq)
		place_entity(cfs_rq, &p->se, 1);
P
Peter Zijlstra 已提交
3693 3694 3695
}
#endif

3696
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

3711 3712 3713
/*
 * All the scheduling class methods:
 */
3714 3715
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
3716 3717 3718 3719
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
3720
	.check_preempt_curr	= check_preempt_wakeup,
3721 3722 3723 3724

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

3725
#ifdef CONFIG_SMP
L
Li Zefan 已提交
3726 3727
	.select_task_rq		= select_task_rq_fair,

3728 3729
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
3730 3731

	.task_waking		= task_waking_fair,
3732
#endif
3733

3734
	.set_curr_task          = set_curr_task_fair,
3735
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
3736
	.task_fork		= task_fork_fair,
3737 3738 3739

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
3740

3741 3742
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
3743 3744 3745
#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
3746 3747 3748
};

#ifdef CONFIG_SCHED_DEBUG
3749
static void print_cfs_stats(struct seq_file *m, int cpu)
3750 3751 3752
{
	struct cfs_rq *cfs_rq;

3753
	rcu_read_lock();
3754
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3755
		print_cfs_rq(m, cpu, cfs_rq);
3756
	rcu_read_unlock();
3757 3758
}
#endif