sched_fair.c 49.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
37
unsigned int sysctl_sched_latency = 5000000ULL;
38
unsigned int normalized_sysctl_sched_latency = 5000000ULL;
39 40

/*
41
 * Minimal preemption granularity for CPU-bound tasks:
42
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
43
 */
44
unsigned int sysctl_sched_min_granularity = 1000000ULL;
45
unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
46 47

/*
48 49
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
50
static unsigned int sched_nr_latency = 5;
51 52

/*
53
 * After fork, child runs first. If set to 0 (default) then
54
 * parent will (try to) run first.
55
 */
56
unsigned int sysctl_sched_child_runs_first __read_mostly;
57

58 59 60 61 62 63 64 65
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

66 67
/*
 * SCHED_OTHER wake-up granularity.
68
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 70 71 72 73
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
74
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
75
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
76

77 78
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

79 80
static const struct sched_class fair_sched_class;

81 82 83 84
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

96 97 98 99 100 101 102 103
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

195 196 197 198 199 200
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
201

202 203 204
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
205 206 207 208
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
209 210
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
211

P
Peter Zijlstra 已提交
212
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
213
{
P
Peter Zijlstra 已提交
214
	return &task_rq(p)->cfs;
215 216
}

P
Peter Zijlstra 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

250 251 252 253 254
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
255 256
#endif	/* CONFIG_FAIR_GROUP_SCHED */

257 258 259 260 261

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

262
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
263
{
264 265
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
266 267 268 269 270
		min_vruntime = vruntime;

	return min_vruntime;
}

271
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
272 273 274 275 276 277 278 279
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

280 281 282 283 284 285
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

286
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
287
{
288
	return se->vruntime - cfs_rq->min_vruntime;
289 290
}

291 292 293 294 295 296 297 298 299 300 301 302
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
303
		if (!cfs_rq->curr)
304 305 306 307 308 309 310 311
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

312 313 314
/*
 * Enqueue an entity into the rb-tree:
 */
315
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
316 317 318 319
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
320
	s64 key = entity_key(cfs_rq, se);
321 322 323 324 325 326 327 328 329 330 331 332
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
333
		if (key < entity_key(cfs_rq, entry)) {
334 335 336 337 338 339 340 341 342 343 344
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
345
	if (leftmost)
I
Ingo Molnar 已提交
346
		cfs_rq->rb_leftmost = &se->run_node;
347 348 349 350 351

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

352
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
353
{
P
Peter Zijlstra 已提交
354 355 356 357 358 359
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
360

361 362 363 364 365
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
366 367 368 369 370 371
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
372 373
}

374
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
375
{
376
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
377

378 379
	if (!last)
		return NULL;
380 381

	return rb_entry(last, struct sched_entity, run_node);
382 383
}

384 385 386 387
/**************************************************************
 * Scheduling class statistics methods:
 */

388 389
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
390
		void __user *buffer, size_t *lenp,
391 392
		loff_t *ppos)
{
393
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
394 395 396 397 398 399 400 401 402 403

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
404

405
/*
406
 * delta /= w
407 408 409 410
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
411 412
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
413 414 415 416

	return delta;
}

417 418 419 420 421 422 423 424
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
425 426 427
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
428
	unsigned long nr_latency = sched_nr_latency;
429 430

	if (unlikely(nr_running > nr_latency)) {
431
		period = sysctl_sched_min_granularity;
432 433 434 435 436 437
		period *= nr_running;
	}

	return period;
}

438 439 440 441
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
442
 * s = p*P[w/rw]
443
 */
P
Peter Zijlstra 已提交
444
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
445
{
M
Mike Galbraith 已提交
446
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
447

M
Mike Galbraith 已提交
448
	for_each_sched_entity(se) {
L
Lin Ming 已提交
449
		struct load_weight *load;
450
		struct load_weight lw;
L
Lin Ming 已提交
451 452 453

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
454

M
Mike Galbraith 已提交
455
		if (unlikely(!se->on_rq)) {
456
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
457 458 459 460 461 462 463

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
464 465
}

466
/*
467
 * We calculate the vruntime slice of a to be inserted task
468
 *
469
 * vs = s/w
470
 */
471
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
472
{
473
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
474 475
}

476 477 478 479 480
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
481 482
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
483
{
484
	unsigned long delta_exec_weighted;
485

486
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
487 488

	curr->sum_exec_runtime += delta_exec;
489
	schedstat_add(cfs_rq, exec_clock, delta_exec);
490
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
491
	curr->vruntime += delta_exec_weighted;
492
	update_min_vruntime(cfs_rq);
493 494
}

495
static void update_curr(struct cfs_rq *cfs_rq)
496
{
497
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
498
	u64 now = rq_of(cfs_rq)->clock;
499 500 501 502 503 504 505 506 507 508
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
509
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
510 511
	if (!delta_exec)
		return;
512

I
Ingo Molnar 已提交
513 514
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
515 516 517 518

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

519
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
520
		cpuacct_charge(curtask, delta_exec);
521
		account_group_exec_runtime(curtask, delta_exec);
522
	}
523 524 525
}

static inline void
526
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
527
{
528
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
529 530 531 532 533
}

/*
 * Task is being enqueued - update stats:
 */
534
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
535 536 537 538 539
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
540
	if (se != cfs_rq->curr)
541
		update_stats_wait_start(cfs_rq, se);
542 543 544
}

static void
545
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
546
{
547 548
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
549 550 551
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
552 553 554 555 556 557
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
			rq_of(cfs_rq)->clock - se->wait_start);
	}
#endif
558
	schedstat_set(se->wait_start, 0);
559 560 561
}

static inline void
562
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
563 564 565 566 567
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
568
	if (se != cfs_rq->curr)
569
		update_stats_wait_end(cfs_rq, se);
570 571 572 573 574 575
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
576
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
577 578 579 580
{
	/*
	 * We are starting a new run period:
	 */
581
	se->exec_start = rq_of(cfs_rq)->clock;
582 583 584 585 586 587
}

/**************************************************
 * Scheduling class queueing methods:
 */

588 589 590 591 592 593 594 595 596 597 598 599 600
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

601 602 603 604
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
605 606
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
607
	if (entity_is_task(se)) {
608
		add_cfs_task_weight(cfs_rq, se->load.weight);
609 610
		list_add(&se->group_node, &cfs_rq->tasks);
	}
611 612 613 614 615 616 617 618
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
619 620
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
621
	if (entity_is_task(se)) {
622
		add_cfs_task_weight(cfs_rq, -se->load.weight);
623 624
		list_del_init(&se->group_node);
	}
625 626 627 628
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

629
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
630 631
{
#ifdef CONFIG_SCHEDSTATS
632 633 634 635 636
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

637
	if (se->sleep_start) {
638
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
639 640 641 642 643 644 645 646 647

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
648

649
		if (tsk) {
650
			account_scheduler_latency(tsk, delta >> 10, 1);
651 652
			trace_sched_stat_sleep(tsk, delta);
		}
653 654
	}
	if (se->block_start) {
655
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
656 657 658 659 660 661 662 663 664

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
665

666
		if (tsk) {
667 668 669
			if (tsk->in_iowait) {
				se->iowait_sum += delta;
				se->iowait_count++;
670
				trace_sched_stat_iowait(tsk, delta);
671 672
			}

673 674 675 676 677 678 679 680 681 682 683
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
684
		}
685 686 687 688
	}
#endif
}

P
Peter Zijlstra 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

702 703 704
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
705
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
706

707 708 709 710 711 712
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
713
	if (initial && sched_feat(START_DEBIT))
714
		vruntime += sched_vslice(cfs_rq, se);
715

716 717 718
	/* sleeps up to a single latency don't count. */
	if (!initial && sched_feat(FAIR_SLEEPERS)) {
		unsigned long thresh = sysctl_sched_latency;
719

720 721 722 723 724 725 726 727 728
		/*
		 * Convert the sleeper threshold into virtual time.
		 * SCHED_IDLE is a special sub-class.  We care about
		 * fairness only relative to other SCHED_IDLE tasks,
		 * all of which have the same weight.
		 */
		if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
				 task_of(se)->policy != SCHED_IDLE))
			thresh = calc_delta_fair(thresh, se);
729

730 731 732 733 734 735
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
736

737
		vruntime -= thresh;
738 739
	}

740 741 742
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
743
	se->vruntime = vruntime;
744 745
}

746
static void
747
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
748 749
{
	/*
750
	 * Update run-time statistics of the 'current'.
751
	 */
752
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
753
	account_entity_enqueue(cfs_rq, se);
754

I
Ingo Molnar 已提交
755
	if (wakeup) {
756
		place_entity(cfs_rq, se, 0);
757
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
758
	}
759

760
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
761
	check_spread(cfs_rq, se);
762 763
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
764 765
}

P
Peter Zijlstra 已提交
766
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
767
{
768
	if (!se || cfs_rq->last == se)
P
Peter Zijlstra 已提交
769 770
		cfs_rq->last = NULL;

771
	if (!se || cfs_rq->next == se)
P
Peter Zijlstra 已提交
772 773 774
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
775 776 777 778 779 780
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

781
static void
782
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
783
{
784 785 786 787 788
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

789
	update_stats_dequeue(cfs_rq, se);
790
	if (sleep) {
P
Peter Zijlstra 已提交
791
#ifdef CONFIG_SCHEDSTATS
792 793 794 795
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
796
				se->sleep_start = rq_of(cfs_rq)->clock;
797
			if (tsk->state & TASK_UNINTERRUPTIBLE)
798
				se->block_start = rq_of(cfs_rq)->clock;
799
		}
800
#endif
P
Peter Zijlstra 已提交
801 802
	}

P
Peter Zijlstra 已提交
803
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
804

805
	if (se != cfs_rq->curr)
806 807
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
808
	update_min_vruntime(cfs_rq);
809 810 811 812 813
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
814
static void
I
Ingo Molnar 已提交
815
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
816
{
817 818
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
819
	ideal_runtime = sched_slice(cfs_rq, curr);
820
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
821
	if (delta_exec > ideal_runtime) {
822
		resched_task(rq_of(cfs_rq)->curr);
823 824 825 826 827
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

	if (delta_exec < sysctl_sched_min_granularity)
		return;

	if (cfs_rq->nr_running > 1) {
		struct sched_entity *se = __pick_next_entity(cfs_rq);
		s64 delta = curr->vruntime - se->vruntime;

		if (delta > ideal_runtime)
			resched_task(rq_of(cfs_rq)->curr);
848
	}
849 850
}

851
static void
852
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
853
{
854 855 856 857 858 859 860 861 862 863 864
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

865
	update_stats_curr_start(cfs_rq, se);
866
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
867 868 869 870 871 872
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
873
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
874 875 876 877
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
878
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
879 880
}

881 882 883
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

884
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
885
{
886
	struct sched_entity *se = __pick_next_entity(cfs_rq);
887
	struct sched_entity *left = se;
888

889 890
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;
891

892 893 894 895 896 897 898
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
899 900

	return se;
901 902
}

903
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
904 905 906 907 908 909
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
910
		update_curr(cfs_rq);
911

P
Peter Zijlstra 已提交
912
	check_spread(cfs_rq, prev);
913
	if (prev->on_rq) {
914
		update_stats_wait_start(cfs_rq, prev);
915 916 917
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
918
	cfs_rq->curr = NULL;
919 920
}

P
Peter Zijlstra 已提交
921 922
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
923 924
{
	/*
925
	 * Update run-time statistics of the 'current'.
926
	 */
927
	update_curr(cfs_rq);
928

P
Peter Zijlstra 已提交
929 930 931 932 933
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
934 935 936 937
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
938 939 940 941 942 943 944 945
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

946
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
947
		check_preempt_tick(cfs_rq, curr);
948 949 950 951 952 953
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
977
		if (rq->curr != p)
978
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
979

980
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
981 982
	}
}
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
999
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1000 1001 1002 1003
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
1004 1005 1006 1007

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
1008 1009
#endif

1010 1011 1012 1013 1014
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
1015
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1016 1017
{
	struct cfs_rq *cfs_rq;
1018
	struct sched_entity *se = &p->se;
1019 1020

	for_each_sched_entity(se) {
1021
		if (se->on_rq)
1022 1023
			break;
		cfs_rq = cfs_rq_of(se);
1024
		enqueue_entity(cfs_rq, se, wakeup);
1025
		wakeup = 1;
1026
	}
P
Peter Zijlstra 已提交
1027

1028
	hrtick_update(rq);
1029 1030 1031 1032 1033 1034 1035
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1036
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1037 1038
{
	struct cfs_rq *cfs_rq;
1039
	struct sched_entity *se = &p->se;
1040 1041 1042

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1043
		dequeue_entity(cfs_rq, se, sleep);
1044
		/* Don't dequeue parent if it has other entities besides us */
1045
		if (cfs_rq->load.weight)
1046
			break;
1047
		sleep = 1;
1048
	}
P
Peter Zijlstra 已提交
1049

1050
	hrtick_update(rq);
1051 1052 1053
}

/*
1054 1055 1056
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1057
 */
1058
static void yield_task_fair(struct rq *rq)
1059
{
1060 1061 1062
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1063 1064

	/*
1065 1066 1067 1068 1069
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1070 1071
	clear_buddies(cfs_rq, se);

1072
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1073
		update_rq_clock(rq);
1074
		/*
1075
		 * Update run-time statistics of the 'current'.
1076
		 */
D
Dmitry Adamushko 已提交
1077
		update_curr(cfs_rq);
1078 1079 1080 1081 1082

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1083
	 */
D
Dmitry Adamushko 已提交
1084
	rightmost = __pick_last_entity(cfs_rq);
1085 1086 1087
	/*
	 * Already in the rightmost position?
	 */
1088
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1089 1090 1091 1092
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1093 1094
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1095
	 */
1096
	se->vruntime = rightmost->vruntime + 1;
1097 1098
}

1099
#ifdef CONFIG_SMP
1100

1101
#ifdef CONFIG_FAIR_GROUP_SCHED
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1123 1124
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1125
{
P
Peter Zijlstra 已提交
1126
	struct sched_entity *se = tg->se[cpu];
1127 1128 1129 1130

	if (!tg->parent)
		return wl;

1131 1132 1133 1134 1135 1136 1137
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1138
	for_each_sched_entity(se) {
1139
		long S, rw, s, a, b;
1140 1141 1142 1143 1144 1145 1146 1147 1148
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1149 1150 1151

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1152
		rw = se->my_q->rq_weight;
1153

1154 1155
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1156

1157 1158 1159 1160 1161
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1162 1163 1164 1165 1166 1167 1168
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1169 1170
		wg = 0;
	}
1171

P
Peter Zijlstra 已提交
1172
	return wl;
1173
}
P
Peter Zijlstra 已提交
1174

1175
#else
P
Peter Zijlstra 已提交
1176

1177 1178
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1179
{
1180
	return wl;
1181
}
P
Peter Zijlstra 已提交
1182

1183 1184
#endif

1185
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1186
{
1187 1188 1189
	struct task_struct *curr = current;
	unsigned long this_load, load;
	int idx, this_cpu, prev_cpu;
1190
	unsigned long tl_per_task;
1191 1192
	unsigned int imbalance;
	struct task_group *tg;
1193
	unsigned long weight;
1194
	int balanced;
1195

1196 1197 1198 1199 1200
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	if (sync) {
	       if (sched_feat(SYNC_LESS) &&
		   (curr->se.avg_overlap > sysctl_sched_migration_cost ||
		    p->se.avg_overlap > sysctl_sched_migration_cost))
		       sync = 0;
	} else {
		if (sched_feat(SYNC_MORE) &&
		    (curr->se.avg_overlap < sysctl_sched_migration_cost &&
		     p->se.avg_overlap < sysctl_sched_migration_cost))
			sync = 1;
	}
1213

1214 1215 1216 1217 1218
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1219 1220 1221 1222
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

1223
		this_load += effective_load(tg, this_cpu, -weight, -weight);
1224 1225
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1226

1227 1228
	tg = task_group(p);
	weight = p->se.load.weight;
1229

1230 1231
	imbalance = 100 + (sd->imbalance_pct - 100) / 2;

1232 1233
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1234 1235 1236
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
1237 1238 1239 1240
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
1241 1242
	balanced = !this_load ||
		100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1243
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1244

1245
	/*
I
Ingo Molnar 已提交
1246 1247 1248
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1249
	 */
1250 1251
	if (sync && balanced)
		return 1;
1252 1253 1254 1255

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1256 1257 1258
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1259 1260 1261 1262 1263
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
1264
		schedstat_inc(sd, ttwu_move_affine);
1265 1266 1267 1268 1269 1270 1271
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1272 1273 1274 1275 1276
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
1277
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1278
		  int this_cpu, int load_idx)
1279
{
1280 1281 1282
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1283

1284 1285 1286 1287
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
1344 1345 1346
		}
	}

1347 1348
	return idlest;
}
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/*
 * Try and locate an idle CPU in the sched_domain.
 */
static int
select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int i;

	/*
	 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
	 * test in select_task_rq_fair) and the prev_cpu is idle then that's
	 * always a better target than the current cpu.
	 */
1365 1366
	if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
		return prev_cpu;
1367 1368 1369 1370

	/*
	 * Otherwise, iterate the domain and find an elegible idle cpu.
	 */
1371 1372 1373 1374
	for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
		if (!cpu_rq(i)->cfs.nr_running) {
			target = i;
			break;
1375 1376 1377 1378 1379 1380
		}
	}

	return target;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
1392
static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1393
{
1394
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1395 1396 1397 1398
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
	int want_affine = 0;
1399
	int want_sd = 1;
1400
	int sync = wake_flags & WF_SYNC;
1401

1402
	if (sd_flag & SD_BALANCE_WAKE) {
1403 1404
		if (sched_feat(AFFINE_WAKEUPS) &&
		    cpumask_test_cpu(cpu, &p->cpus_allowed))
1405 1406 1407
			want_affine = 1;
		new_cpu = prev_cpu;
	}
1408 1409 1410

	for_each_domain(cpu, tmp) {
		/*
1411 1412
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
1413
		 */
P
Peter Zijlstra 已提交
1414
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);

P
Peter Zijlstra 已提交
1427 1428 1429 1430
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
1431
				want_sd = 0;
1432
		}
1433

1434 1435 1436 1437 1438 1439
		/*
		 * While iterating the domains looking for a spanning
		 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
		 * in cache sharing domains along the way.
		 */
		if (want_affine) {
1440
			int target = -1;
1441

1442 1443 1444 1445
			/*
			 * If both cpu and prev_cpu are part of this domain,
			 * cpu is a valid SD_WAKE_AFFINE target.
			 */
1446
			if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1447
				target = cpu;
1448 1449

			/*
1450 1451
			 * If there's an idle sibling in this domain, make that
			 * the wake_affine target instead of the current cpu.
1452
			 */
1453 1454
			if (tmp->flags & SD_PREFER_SIBLING)
				target = select_idle_sibling(p, tmp, target);
1455

1456
			if (target >= 0) {
1457 1458 1459 1460
				if (tmp->flags & SD_WAKE_AFFINE) {
					affine_sd = tmp;
					want_affine = 0;
				}
1461
				cpu = target;
1462
			}
1463 1464
		}

1465 1466 1467
		if (!want_sd && !want_affine)
			break;

1468
		if (!(tmp->flags & sd_flag))
1469 1470
			continue;

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		if (want_sd)
			sd = tmp;
	}

	if (sched_feat(LB_SHARES_UPDATE)) {
		/*
		 * Pick the largest domain to update shares over
		 */
		tmp = sd;
		if (affine_sd && (!tmp ||
				  cpumask_weight(sched_domain_span(affine_sd)) >
				  cpumask_weight(sched_domain_span(sd))))
			tmp = affine_sd;

		if (tmp)
			update_shares(tmp);
1487
	}
1488

1489 1490
	if (affine_sd && wake_affine(affine_sd, p, sync))
		return cpu;
1491

1492
	while (sd) {
1493
		int load_idx = sd->forkexec_idx;
1494
		struct sched_group *group;
1495
		int weight;
1496

1497
		if (!(sd->flags & sd_flag)) {
1498 1499 1500
			sd = sd->child;
			continue;
		}
1501

1502 1503
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
1504

1505
		group = find_idlest_group(sd, p, cpu, load_idx);
1506 1507 1508 1509
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
1510

1511
		new_cpu = find_idlest_cpu(group, p, cpu);
1512 1513 1514 1515
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
1516
		}
1517 1518 1519 1520 1521 1522 1523 1524

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = cpumask_weight(sched_domain_span(sd));
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
				break;
1525
			if (tmp->flags & sd_flag)
1526 1527 1528
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
1529 1530
	}

1531
	return new_cpu;
1532 1533 1534
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1565 1566 1567
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1568 1569 1570
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1571
	/*
P
Peter Zijlstra 已提交
1572 1573
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1574
	 */
P
Peter Zijlstra 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1592 1593 1594 1595

	return gran;
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1618
	gran = wakeup_gran(curr, se);
1619 1620 1621 1622 1623 1624
	if (vdiff > gran)
		return 1;

	return 0;
}

1625 1626
static void set_last_buddy(struct sched_entity *se)
{
1627 1628 1629 1630
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1631 1632 1633 1634
}

static void set_next_buddy(struct sched_entity *se)
{
1635 1636 1637 1638
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1639 1640
}

1641 1642 1643
/*
 * Preempt the current task with a newly woken task if needed:
 */
1644
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1645 1646
{
	struct task_struct *curr = rq->curr;
1647
	struct sched_entity *se = &curr->se, *pse = &p->se;
1648
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1649
	int sync = wake_flags & WF_SYNC;
1650
	int scale = cfs_rq->nr_running >= sched_nr_latency;
1651

1652 1653
	if (unlikely(rt_prio(p->prio)))
		goto preempt;
1654

P
Peter Zijlstra 已提交
1655 1656 1657
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1658 1659 1660
	if (unlikely(se == pse))
		return;

1661
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
M
Mike Galbraith 已提交
1662
		set_next_buddy(pse);
P
Peter Zijlstra 已提交
1663

1664 1665 1666 1667 1668 1669 1670
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1671
	/*
1672
	 * Batch and idle tasks do not preempt (their preemption is driven by
1673 1674
	 * the tick):
	 */
1675
	if (unlikely(p->policy != SCHED_NORMAL))
1676
		return;
1677

1678
	/* Idle tasks are by definition preempted by everybody. */
1679 1680
	if (unlikely(curr->policy == SCHED_IDLE))
		goto preempt;
1681

1682 1683
	if (sched_feat(WAKEUP_SYNC) && sync)
		goto preempt;
1684

1685 1686 1687 1688 1689
	if (sched_feat(WAKEUP_OVERLAP) &&
			se->avg_overlap < sysctl_sched_migration_cost &&
			pse->avg_overlap < sysctl_sched_migration_cost)
		goto preempt;

1690 1691 1692
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

1693
	update_curr(cfs_rq);
1694
	find_matching_se(&se, &pse);
1695
	BUG_ON(!pse);
1696 1697
	if (wakeup_preempt_entity(se, pse) == 1)
		goto preempt;
1698

1699
	return;
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
1717 1718
}

1719
static struct task_struct *pick_next_task_fair(struct rq *rq)
1720
{
P
Peter Zijlstra 已提交
1721
	struct task_struct *p;
1722 1723 1724
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

1725
	if (!cfs_rq->nr_running)
1726 1727 1728
		return NULL;

	do {
1729
		se = pick_next_entity(cfs_rq);
1730
		set_next_entity(cfs_rq, se);
1731 1732 1733
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1734 1735 1736 1737
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1738 1739 1740 1741 1742
}

/*
 * Account for a descheduled task:
 */
1743
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1744 1745 1746 1747 1748 1749
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1750
		put_prev_entity(cfs_rq, se);
1751 1752 1753
	}
}

1754
#ifdef CONFIG_SMP
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1766
static struct task_struct *
1767
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1768
{
D
Dhaval Giani 已提交
1769 1770
	struct task_struct *p = NULL;
	struct sched_entity *se;
1771

1772 1773 1774
	if (next == &cfs_rq->tasks)
		return NULL;

1775 1776 1777
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1778

1779 1780 1781 1782 1783 1784 1785
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1786
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1787 1788 1789 1790 1791 1792
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1793
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1794 1795
}

1796 1797 1798 1799 1800
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1801
{
1802
	struct rq_iterator cfs_rq_iterator;
1803

1804 1805 1806
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1807

1808 1809 1810
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1811 1812
}

1813
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1814
static unsigned long
1815
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1816
		  unsigned long max_load_move,
1817 1818
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1819 1820
{
	long rem_load_move = max_load_move;
1821 1822
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1823

1824
	rcu_read_lock();
1825
	update_h_load(busiest_cpu);
1826

1827
	list_for_each_entry_rcu(tg, &task_groups, list) {
1828
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1829 1830
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1831
		u64 rem_load, moved_load;
1832

1833 1834 1835
		/*
		 * empty group
		 */
1836
		if (!busiest_cfs_rq->task_weight)
1837 1838
			continue;

S
Srivatsa Vaddagiri 已提交
1839 1840
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1841

1842
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1843
				rem_load, sd, idle, all_pinned, this_best_prio,
1844
				tg->cfs_rq[busiest_cpu]);
1845

1846
		if (!moved_load)
1847 1848
			continue;

1849
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1850
		moved_load = div_u64(moved_load, busiest_weight + 1);
1851

1852 1853
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1854 1855
			break;
	}
1856
	rcu_read_unlock();
1857

P
Peter Williams 已提交
1858
	return max_load_move - rem_load_move;
1859
}
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
}

1907
#endif /* CONFIG_SMP */
1908

1909 1910 1911
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1912
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1913 1914 1915 1916 1917 1918
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1919
		entity_tick(cfs_rq, se, queued);
1920 1921 1922 1923
	}
}

/*
P
Peter Zijlstra 已提交
1924 1925 1926
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
1927
 */
P
Peter Zijlstra 已提交
1928
static void task_fork_fair(struct task_struct *p)
1929
{
P
Peter Zijlstra 已提交
1930
	struct cfs_rq *cfs_rq = task_cfs_rq(current);
1931
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1932
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
1933 1934 1935 1936
	struct rq *rq = this_rq();
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
1937

P
Peter Zijlstra 已提交
1938 1939
	if (unlikely(task_cpu(p) != this_cpu))
		__set_task_cpu(p, this_cpu);
1940

1941
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1942

1943 1944
	if (curr)
		se->vruntime = curr->vruntime;
1945
	place_entity(cfs_rq, se, 1);
1946

P
Peter Zijlstra 已提交
1947
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
1948
		/*
1949 1950 1951
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1952
		swap(curr->vruntime, se->vruntime);
1953
		resched_task(rq->curr);
1954
	}
1955

P
Peter Zijlstra 已提交
1956
	spin_unlock_irqrestore(&rq->lock, flags);
1957 1958
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1975
		check_preempt_curr(rq, p, 0);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1992
		check_preempt_curr(rq, p, 0);
1993 1994
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

2018
unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

2033 2034 2035
/*
 * All the scheduling class methods:
 */
2036 2037
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
2038 2039 2040 2041
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
2042
	.check_preempt_curr	= check_preempt_wakeup,
2043 2044 2045 2046

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

2047
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2048 2049
	.select_task_rq		= select_task_rq_fair,

2050
	.load_balance		= load_balance_fair,
2051
	.move_one_task		= move_one_task_fair,
2052 2053
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
2054
#endif
2055

2056
	.set_curr_task          = set_curr_task_fair,
2057
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
2058
	.task_fork		= task_fork_fair,
2059 2060 2061

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
2062

2063 2064
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
2065 2066 2067
#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
2068 2069 2070
};

#ifdef CONFIG_SCHED_DEBUG
2071
static void print_cfs_stats(struct seq_file *m, int cpu)
2072 2073 2074
{
	struct cfs_rq *cfs_rq;

2075
	rcu_read_lock();
2076
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2077
		print_cfs_rq(m, cpu, cfs_rq);
2078
	rcu_read_unlock();
2079 2080
}
#endif