sched_fair.c 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
28 29 30
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
31
 *
I
Ingo Molnar 已提交
32 33
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
34
 */
35 36 37 38 39 40 41
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
42 43 44 45 46

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
47
const_debug unsigned int sysctl_sched_nr_latency = 20;
48

49 50 51 52 53 54 55 56
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

57 58
/*
 * SCHED_BATCH wake-up granularity.
I
Ingo Molnar 已提交
59
 * (default: 10 msec, units: nanoseconds)
60 61 62 63 64
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
65
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
66 67 68

/*
 * SCHED_OTHER wake-up granularity.
I
Ingo Molnar 已提交
69
 * (default: 10 msec, units: nanoseconds)
70 71 72 73 74
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
75
const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
76

77 78
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

79 80 81 82
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

83
#ifdef CONFIG_FAIR_GROUP_SCHED
84

85
/* cpu runqueue to which this cfs_rq is attached */
86 87
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
88
	return cfs_rq->rq;
89 90
}

91 92
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
93

94
#else	/* CONFIG_FAIR_GROUP_SCHED */
95

96 97 98
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

115
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
116
{
117 118
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
119 120 121 122 123
		min_vruntime = vruntime;

	return min_vruntime;
}

124
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
125 126 127 128 129 130 131 132
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

133
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
134
{
135
	return se->vruntime - cfs_rq->min_vruntime;
136 137
}

138 139 140
/*
 * Enqueue an entity into the rb-tree:
 */
141
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
142 143 144 145
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
146
	s64 key = entity_key(cfs_rq, se);
147 148 149 150 151 152 153 154 155 156 157 158
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
159
		if (key < entity_key(cfs_rq, entry)) {
160 161 162 163 164 165 166 167 168 169 170 171
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
172
		cfs_rq->rb_leftmost = &se->run_node;
173 174 175 176 177

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

178
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
179 180
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
181
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
I
Ingo Molnar 已提交
182

183 184 185 186 187 188 189 190 191 192 193 194 195
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

211 212 213 214
/**************************************************************
 * Scheduling class statistics methods:
 */

215 216 217 218 219 220 221 222 223

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
224 225 226
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
227
	unsigned long nr_latency = sysctl_sched_nr_latency;
228 229 230 231 232 233 234 235 236

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

237 238 239 240 241 242
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
243
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
244
{
245
	u64 slice = __sched_period(cfs_rq->nr_running);
246

247 248
	slice *= se->load.weight;
	do_div(slice, cfs_rq->load.weight);
249

250
	return slice;
251 252
}

253 254 255 256 257 258
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
259
{
260
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
261

262
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
263

264 265
	return vslice;
}
266

267 268 269 270 271 272 273 274 275
static u64 sched_vslice(struct cfs_rq *cfs_rq)
{
	return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
}

static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
276 277
}

278 279 280 281 282
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
283 284
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
285
{
286
	unsigned long delta_exec_weighted;
P
Peter Zijlstra 已提交
287
	u64 vruntime;
288

289
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
290 291

	curr->sum_exec_runtime += delta_exec;
292
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
293 294 295 296 297 298
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
299 300 301 302 303 304

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
P
Peter Zijlstra 已提交
305 306
		vruntime = min_vruntime(curr->vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
307
	} else
P
Peter Zijlstra 已提交
308
		vruntime = curr->vruntime;
309 310

	cfs_rq->min_vruntime =
P
Peter Zijlstra 已提交
311
		max_vruntime(cfs_rq->min_vruntime, vruntime);
312 313
}

314
static void update_curr(struct cfs_rq *cfs_rq)
315
{
316
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
317
	u64 now = rq_of(cfs_rq)->clock;
318 319 320 321 322 323 324 325 326 327
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
328
	delta_exec = (unsigned long)(now - curr->exec_start);
329

I
Ingo Molnar 已提交
330 331
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
332 333 334
}

static inline void
335
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
336
{
337
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
338 339 340 341 342
}

/*
 * Task is being enqueued - update stats:
 */
343
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
344 345 346 347 348
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
349
	if (se != cfs_rq->curr)
350
		update_stats_wait_start(cfs_rq, se);
351 352 353
}

static void
354
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
355
{
356 357
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
I
Ingo Molnar 已提交
358
	schedstat_set(se->wait_start, 0);
359 360 361
}

static inline void
362
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
363 364 365 366 367
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
368
	if (se != cfs_rq->curr)
369
		update_stats_wait_end(cfs_rq, se);
370 371 372 373 374 375
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
376
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
377 378 379 380
{
	/*
	 * We are starting a new run period:
	 */
381
	se->exec_start = rq_of(cfs_rq)->clock;
382 383 384 385 386 387
}

/**************************************************
 * Scheduling class queueing methods:
 */

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

404
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 406 407
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
408
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
409 410 411 412 413 414 415 416 417 418 419

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
420
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
421 422 423 424 425 426 427 428 429

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
430 431 432 433 434 435 436

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
437 438
			struct task_struct *tsk = task_of(se);

I
Ingo Molnar 已提交
439 440 441
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
442 443 444 445
	}
#endif
}

P
Peter Zijlstra 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

459 460 461
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
462
	u64 vruntime;
463

P
Peter Zijlstra 已提交
464
	vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
465

466
	if (sched_feat(TREE_AVG)) {
P
Peter Zijlstra 已提交
467 468
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
P
Peter Zijlstra 已提交
469 470
			vruntime += last->vruntime;
			vruntime >>= 1;
P
Peter Zijlstra 已提交
471
		}
P
Peter Zijlstra 已提交
472
	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
473
		vruntime += sched_vslice(cfs_rq)/2;
P
Peter Zijlstra 已提交
474 475

	if (initial && sched_feat(START_DEBIT))
476
		vruntime += sched_vslice_add(cfs_rq, se);
477

I
Ingo Molnar 已提交
478
	if (!initial) {
479 480
		if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
				task_of(se)->policy != SCHED_BATCH)
481 482
			vruntime -= sysctl_sched_latency;

483
		vruntime = max_t(s64, vruntime, se->vruntime);
484 485
	}

P
Peter Zijlstra 已提交
486 487
	se->vruntime = vruntime;

488 489
}

490
static void
491
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
492 493
{
	/*
494
	 * Update run-time statistics of the 'current'.
495
	 */
496
	update_curr(cfs_rq);
497

I
Ingo Molnar 已提交
498
	if (wakeup) {
499
		place_entity(cfs_rq, se, 0);
500
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
501
	}
502

503
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
504
	check_spread(cfs_rq, se);
505 506
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
507
	account_entity_enqueue(cfs_rq, se);
508 509 510
}

static void
511
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
512
{
513 514 515 516 517
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

518
	update_stats_dequeue(cfs_rq, se);
519
	if (sleep) {
520
		se->peer_preempt = 0;
P
Peter Zijlstra 已提交
521
#ifdef CONFIG_SCHEDSTATS
522 523 524 525
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
526
				se->sleep_start = rq_of(cfs_rq)->clock;
527
			if (tsk->state & TASK_UNINTERRUPTIBLE)
528
				se->block_start = rq_of(cfs_rq)->clock;
529
		}
530
#endif
P
Peter Zijlstra 已提交
531 532
	}

533
	if (se != cfs_rq->curr)
534 535
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
536 537 538 539 540
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
541
static void
I
Ingo Molnar 已提交
542
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
543
{
544 545
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
546
	ideal_runtime = sched_slice(cfs_rq, curr);
547
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
548 549
	if (delta_exec > ideal_runtime ||
			(sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
550
		resched_task(rq_of(cfs_rq)->curr);
551
	curr->peer_preempt = 0;
552 553
}

554
static void
555
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
556
{
557 558 559 560 561 562 563 564 565 566 567
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

568
	update_stats_curr_start(cfs_rq, se);
569
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
570 571 572 573 574 575
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
576
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
577 578 579 580
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
581
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
582 583
}

584
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
585
{
D
Dmitry Adamushko 已提交
586
	struct sched_entity *se = NULL;
587

D
Dmitry Adamushko 已提交
588 589 590 591
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
		set_next_entity(cfs_rq, se);
	}
592 593 594 595

	return se;
}

596
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
597 598 599 600 601 602
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
603
		update_curr(cfs_rq);
604

P
Peter Zijlstra 已提交
605
	check_spread(cfs_rq, prev);
606
	if (prev->on_rq) {
607
		update_stats_wait_start(cfs_rq, prev);
608 609 610
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
611
	cfs_rq->curr = NULL;
612 613 614 615 616
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
617
	 * Update run-time statistics of the 'current'.
618
	 */
619
	update_curr(cfs_rq);
620

621
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
622
		check_preempt_tick(cfs_rq, curr);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
657
	return cfs_rq->tg->cfs_rq[this_cpu];
658 659 660 661 662 663
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

664 665 666
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
667
{
668
	if (se->cfs_rq == pse->cfs_rq)
669 670 671 672 673
		return 1;

	return 0;
}

674 675 676 677 678
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

711 712
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
713 714 715 716
{
	return 1;
}

717 718 719 720 721
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

722 723 724 725 726 727 728
#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
729
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
730 731 732 733 734 735 736 737
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
738
		enqueue_entity(cfs_rq, se, wakeup);
739
		wakeup = 1;
740 741 742 743 744 745 746 747
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
748
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
749 750 751 752 753 754
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
755
		dequeue_entity(cfs_rq, se, sleep);
756 757 758
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
759
		sleep = 1;
760 761 762 763
	}
}

/*
764 765 766
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
767
 */
768
static void yield_task_fair(struct rq *rq)
769
{
S
Srivatsa Vaddagiri 已提交
770
	struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
771
	struct sched_entity *rightmost, *se = &rq->curr->se;
772 773

	/*
774 775 776 777 778 779 780 781
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
782
		 * Update run-time statistics of the 'current'.
783
		 */
D
Dmitry Adamushko 已提交
784
		update_curr(cfs_rq);
785 786 787 788 789

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
790
	 */
D
Dmitry Adamushko 已提交
791
	rightmost = __pick_last_entity(cfs_rq);
792 793 794
	/*
	 * Already in the rightmost position?
	 */
D
Dmitry Adamushko 已提交
795
	if (unlikely(rightmost->vruntime < se->vruntime))
796 797 798 799
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
800 801
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
802
	 */
803
	se->vruntime = rightmost->vruntime + 1;
804 805 806 807 808
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
809
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
810 811
{
	struct task_struct *curr = rq->curr;
812
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
813
	struct sched_entity *se = &curr->se, *pse = &p->se;
814
	s64 delta, gran;
815 816

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
817
		update_rq_clock(rq);
818
		update_curr(cfs_rq);
819 820 821
		resched_task(curr);
		return;
	}
822 823 824 825 826 827
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
828

829 830 831 832 833
	if (sched_feat(WAKEUP_PREEMPT)) {
		while (!is_same_group(se, pse)) {
			se = parent_entity(se);
			pse = parent_entity(pse);
		}
834

835 836 837 838
		delta = se->vruntime - pse->vruntime;
		gran = sysctl_sched_wakeup_granularity;
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, &se->load);
839

840 841 842 843 844 845
		if (delta > gran) {
			int now = !sched_feat(PREEMPT_RESTRICT);

			if (now || p->prio < curr->prio || !se->peer_preempt++)
				resched_task(curr);
		}
846
	}
847 848
}

849
static struct task_struct *pick_next_task_fair(struct rq *rq)
850 851 852 853 854 855 856 857
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
858
		se = pick_next_entity(cfs_rq);
859 860 861 862 863 864 865 866 867
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
868
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
869 870 871 872 873 874
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
875
		put_prev_entity(cfs_rq, se);
876 877 878 879 880 881 882 883 884 885 886 887 888 889
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
890
static struct task_struct *
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

918
#ifdef CONFIG_FAIR_GROUP_SCHED
919 920 921 922 923 924 925 926
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

927 928 929 930
	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

931 932 933 934
	p = task_of(curr);

	return p->prio;
}
935
#endif
936

P
Peter Williams 已提交
937
static unsigned long
938
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
939 940 941
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
942 943 944 945 946 947 948 949 950 951
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
952
#ifdef CONFIG_FAIR_GROUP_SCHED
953
		struct cfs_rq *this_cfs_rq;
954
		long imbalance;
955 956 957 958
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

959
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
960 961 962 963 964 965 966 967
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

968 969
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
970
# define maxload rem_load_move
971
#endif
972 973 974 975 976 977
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
978
				&load_moved, this_best_prio, &cfs_rq_iterator);
979 980 981 982 983 984 985 986 987

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
988
	return max_load_move - rem_load_move;
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

1005 1006
#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)

1007 1008 1009 1010 1011 1012 1013
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1014
static void task_new_fair(struct rq *rq, struct task_struct *p)
1015 1016
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1017
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1018
	int this_cpu = smp_processor_id();
1019 1020 1021

	sched_info_queued(p);

1022
	update_curr(cfs_rq);
1023
	place_entity(cfs_rq, se, 1);
1024

1025
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1026
			curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1027
		/*
1028 1029 1030
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1031 1032
		swap(curr->vruntime, se->vruntime);
	}
1033

1034
	se->peer_preempt = 0;
1035
	enqueue_task_fair(rq, p, 0);
1036
	resched_task(rq->curr);
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

1052 1053 1054
/*
 * All the scheduling class methods:
 */
1055 1056
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1057 1058 1059 1060
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1061
	.check_preempt_curr	= check_preempt_wakeup,
1062 1063 1064 1065 1066 1067

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

1068
	.set_curr_task          = set_curr_task_fair,
1069 1070 1071 1072 1073
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1074
static void print_cfs_stats(struct seq_file *m, int cpu)
1075 1076 1077
{
	struct cfs_rq *cfs_rq;

S
Srivatsa Vaddagiri 已提交
1078 1079 1080
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1081
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1082
		print_cfs_rq(m, cpu, cfs_rq);
1083 1084
}
#endif