sched_fair.c 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146
#else	/* CONFIG_FAIR_GROUP_SCHED */
147

148 149 150
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
151 152 153 154
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
155 156
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
157

P
Peter Zijlstra 已提交
158
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
159
{
P
Peter Zijlstra 已提交
160
	return &task_rq(p)->cfs;
161 162
}

P
Peter Zijlstra 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

198 199 200 201 202

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

203
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
204
{
205 206
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
207 208 209 210 211
		min_vruntime = vruntime;

	return min_vruntime;
}

212
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
213 214 215 216 217 218 219 220
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

221
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
222
{
223
	return se->vruntime - cfs_rq->min_vruntime;
224 225
}

226 227 228
/*
 * Enqueue an entity into the rb-tree:
 */
229
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
230 231 232 233
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
234
	s64 key = entity_key(cfs_rq, se);
235 236 237 238 239 240 241 242 243 244 245 246
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
247
		if (key < entity_key(cfs_rq, entry)) {
248 249 250 251 252 253 254 255 256 257 258
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
259
	if (leftmost) {
I
Ingo Molnar 已提交
260
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
268 269 270 271 272

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

273
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
274
{
P
Peter Zijlstra 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
290

291 292 293
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

294 295 296 297 298 299 300 301 302 303 304 305 306
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

307 308
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
309
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
310

311 312
	if (!last)
		return NULL;
313 314

	return rb_entry(last, struct sched_entity, run_node);
315 316
}

317 318 319 320
/**************************************************************
 * Scheduling class statistics methods:
 */

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
337

338
/*
339
 * delta *= P[w / rw]
340 341 342 343 344 345 346 347 348 349 350 351 352
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
353
 * delta /= w
354 355 356 357
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
358 359
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
360 361 362 363

	return delta;
}

364 365 366 367 368 369 370 371
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
372 373 374
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
375
	unsigned long nr_latency = sched_nr_latency;
376 377

	if (unlikely(nr_running > nr_latency)) {
378
		period = sysctl_sched_min_granularity;
379 380 381 382 383 384
		period *= nr_running;
	}

	return period;
}

385 386 387 388
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
389
 * s = p*P[w/rw]
390
 */
P
Peter Zijlstra 已提交
391
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392
{
393 394 395 396 397 398
	unsigned long nr_running = cfs_rq->nr_running;

	if (unlikely(!se->on_rq))
		nr_running++;

	return calc_delta_weight(__sched_period(nr_running), se);
399 400
}

401
/*
402
 * We calculate the vruntime slice of a to be inserted task
403
 *
404
 * vs = s/w
405
 */
406
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
407
{
408
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
409 410
}

411 412 413 414 415
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
416 417
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
418
{
419
	unsigned long delta_exec_weighted;
420

421
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
422 423

	curr->sum_exec_runtime += delta_exec;
424
	schedstat_add(cfs_rq, exec_clock, delta_exec);
425
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
426
	curr->vruntime += delta_exec_weighted;
427 428
}

429
static void update_curr(struct cfs_rq *cfs_rq)
430
{
431
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
432
	u64 now = rq_of(cfs_rq)->clock;
433 434 435 436 437 438 439 440 441 442
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
443
	delta_exec = (unsigned long)(now - curr->exec_start);
444

I
Ingo Molnar 已提交
445 446
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
447 448 449 450 451 452

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
453 454 455
}

static inline void
456
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
457
{
458
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
459 460 461 462 463
}

/*
 * Task is being enqueued - update stats:
 */
464
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
465 466 467 468 469
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
470
	if (se != cfs_rq->curr)
471
		update_stats_wait_start(cfs_rq, se);
472 473 474
}

static void
475
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
476
{
477 478
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
479 480 481
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
482
	schedstat_set(se->wait_start, 0);
483 484 485
}

static inline void
486
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
492
	if (se != cfs_rq->curr)
493
		update_stats_wait_end(cfs_rq, se);
494 495 496 497 498 499
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
500
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
501 502 503 504
{
	/*
	 * We are starting a new run period:
	 */
505
	se->exec_start = rq_of(cfs_rq)->clock;
506 507 508 509 510 511
}

/**************************************************
 * Scheduling class queueing methods:
 */

512 513 514 515 516 517 518 519 520 521 522 523 524
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

525 526 527 528
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
529 530
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
531
	if (entity_is_task(se)) {
532
		add_cfs_task_weight(cfs_rq, se->load.weight);
533 534
		list_add(&se->group_node, &cfs_rq->tasks);
	}
535 536 537 538 539 540 541 542
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
543 544
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
545
	if (entity_is_task(se)) {
546
		add_cfs_task_weight(cfs_rq, -se->load.weight);
547 548
		list_del_init(&se->group_node);
	}
549 550 551 552
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

553
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
554 555 556
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
557
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
558
		struct task_struct *tsk = task_of(se);
559 560 561 562 563 564 565 566 567

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
568 569

		account_scheduler_latency(tsk, delta >> 10, 1);
570 571
	}
	if (se->block_start) {
572
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
573
		struct task_struct *tsk = task_of(se);
574 575 576 577 578 579 580 581 582

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
583 584 585 586 587 588 589

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
590

I
Ingo Molnar 已提交
591 592 593
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
594
		account_scheduler_latency(tsk, delta >> 10, 0);
595 596 597 598
	}
#endif
}

P
Peter Zijlstra 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

612 613 614
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
615
	u64 vruntime;
616

P
Peter Zijlstra 已提交
617 618 619 620 621
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
622

623 624 625 626 627 628
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
629
	if (initial && sched_feat(START_DEBIT))
630
		vruntime += sched_vslice(cfs_rq, se);
631

I
Ingo Molnar 已提交
632
	if (!initial) {
633
		/* sleeps upto a single latency don't count. */
634 635 636 637 638 639 640 641 642 643 644
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
645

646 647
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
648 649
	}

P
Peter Zijlstra 已提交
650
	se->vruntime = vruntime;
651 652
}

653
static void
654
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
655 656
{
	/*
657
	 * Update run-time statistics of the 'current'.
658
	 */
659
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
660
	account_entity_enqueue(cfs_rq, se);
661

I
Ingo Molnar 已提交
662
	if (wakeup) {
663
		place_entity(cfs_rq, se, 0);
664
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
665
	}
666

667
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
668
	check_spread(cfs_rq, se);
669 670
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
671 672 673
}

static void
674
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
675
{
676 677 678 679 680
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

681
	update_stats_dequeue(cfs_rq, se);
682
	if (sleep) {
P
Peter Zijlstra 已提交
683
#ifdef CONFIG_SCHEDSTATS
684 685 686 687
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
688
				se->sleep_start = rq_of(cfs_rq)->clock;
689
			if (tsk->state & TASK_UNINTERRUPTIBLE)
690
				se->block_start = rq_of(cfs_rq)->clock;
691
		}
692
#endif
P
Peter Zijlstra 已提交
693 694
	}

695
	if (se != cfs_rq->curr)
696 697
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
698 699 700 701 702
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
703
static void
I
Ingo Molnar 已提交
704
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
705
{
706 707
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
708
	ideal_runtime = sched_slice(cfs_rq, curr);
709
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
710
	if (delta_exec > ideal_runtime)
711 712 713
		resched_task(rq_of(cfs_rq)->curr);
}

714
static void
715
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
716
{
717 718 719 720 721 722 723 724 725 726 727
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

728
	update_stats_curr_start(cfs_rq, se);
729
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
730 731 732 733 734 735
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
736
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
737 738 739 740
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
741
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
742 743
}

744 745 746
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
747 748
	struct rq *rq = rq_of(cfs_rq);
	u64 pair_slice = rq->clock - cfs_rq->pair_start;
749

750
	if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
751
		cfs_rq->pair_start = rq->clock;
752
		return se;
753
	}
754 755 756 757

	return cfs_rq->next;
}

758
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
759
{
D
Dmitry Adamushko 已提交
760
	struct sched_entity *se = NULL;
761

D
Dmitry Adamushko 已提交
762 763
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
764
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
765 766
		set_next_entity(cfs_rq, se);
	}
767 768 769 770

	return se;
}

771
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
772 773 774 775 776 777
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
778
		update_curr(cfs_rq);
779

P
Peter Zijlstra 已提交
780
	check_spread(cfs_rq, prev);
781
	if (prev->on_rq) {
782
		update_stats_wait_start(cfs_rq, prev);
783 784 785
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
786
	cfs_rq->curr = NULL;
787 788
}

P
Peter Zijlstra 已提交
789 790
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
791 792
{
	/*
793
	 * Update run-time statistics of the 'current'.
794
	 */
795
	update_curr(cfs_rq);
796

P
Peter Zijlstra 已提交
797 798 799 800 801
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
802 803 804 805
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
806 807 808 809 810 811 812 813
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

814
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
815
		check_preempt_tick(cfs_rq, curr);
816 817 818 819 820 821
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
845
		if (rq->curr != p)
846
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
847

848
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
849 850
	}
}
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
867
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
868 869 870 871
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
872 873 874 875

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
876 877
#endif

878 879 880 881 882
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
883
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
884 885
{
	struct cfs_rq *cfs_rq;
886
	struct sched_entity *se = &p->se;
887 888

	for_each_sched_entity(se) {
889
		if (se->on_rq)
890 891
			break;
		cfs_rq = cfs_rq_of(se);
892
		enqueue_entity(cfs_rq, se, wakeup);
893
		wakeup = 1;
894
	}
P
Peter Zijlstra 已提交
895

896
	hrtick_update(rq);
897 898 899 900 901 902 903
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
904
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
905 906
{
	struct cfs_rq *cfs_rq;
907
	struct sched_entity *se = &p->se;
908 909 910

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
911
		dequeue_entity(cfs_rq, se, sleep);
912
		/* Don't dequeue parent if it has other entities besides us */
913
		if (cfs_rq->load.weight)
914
			break;
915
		sleep = 1;
916
	}
P
Peter Zijlstra 已提交
917

918
	hrtick_update(rq);
919 920 921
}

/*
922 923 924
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
925
 */
926
static void yield_task_fair(struct rq *rq)
927
{
928 929 930
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
931 932

	/*
933 934 935 936 937
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

938
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
939
		update_rq_clock(rq);
940
		/*
941
		 * Update run-time statistics of the 'current'.
942
		 */
D
Dmitry Adamushko 已提交
943
		update_curr(cfs_rq);
944 945 946 947 948

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
949
	 */
D
Dmitry Adamushko 已提交
950
	rightmost = __pick_last_entity(cfs_rq);
951 952 953
	/*
	 * Already in the rightmost position?
	 */
954
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
955 956 957 958
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
959 960
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
961
	 */
962
	se->vruntime = rightmost->vruntime + 1;
963 964
}

965 966 967 968 969
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
970 971
 * Domains may include CPUs that are not usable for migration,
 * hence we need to mask them out (cpu_active_map)
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
991
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
992 993 994
		return cpu;

	for_each_domain(cpu, sd) {
995 996 997
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
998
			cpus_and(tmp, sd->span, p->cpus_allowed);
999
			cpus_and(tmp, tmp, cpu_active_map);
1000
			for_each_cpu_mask_nr(i, tmp) {
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1015
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1016 1017 1018 1019 1020 1021 1022
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1023

1024
#ifdef CONFIG_FAIR_GROUP_SCHED
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1046 1047
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1048
{
P
Peter Zijlstra 已提交
1049
	struct sched_entity *se = tg->se[cpu];
1050 1051 1052 1053

	if (!tg->parent)
		return wl;

1054 1055 1056 1057 1058 1059 1060
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1061
	for_each_sched_entity(se) {
1062
		long S, rw, s, a, b;
1063 1064 1065 1066 1067 1068 1069 1070 1071
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1072 1073 1074

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1075
		rw = se->my_q->rq_weight;
1076

1077 1078
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1079

1080 1081 1082 1083 1084
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1085 1086 1087 1088 1089 1090 1091
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1092 1093
		wg = 0;
	}
1094

P
Peter Zijlstra 已提交
1095
	return wl;
1096
}
P
Peter Zijlstra 已提交
1097

1098
#else
P
Peter Zijlstra 已提交
1099

1100 1101
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1102
{
1103
	return wl;
1104
}
P
Peter Zijlstra 已提交
1105

1106 1107
#endif

1108
static int
1109
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1110 1111
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1112 1113
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1114
	struct task_struct *curr = this_rq->curr;
1115
	struct task_group *tg;
1116 1117
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1118
	unsigned long weight;
1119
	int balanced;
1120

1121
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1122 1123
		return 0;

1124 1125 1126 1127 1128
	if (!sync && sched_feat(SYNC_WAKEUPS) &&
	    curr->se.avg_overlap < sysctl_sched_migration_cost &&
	    p->se.avg_overlap < sysctl_sched_migration_cost)
		sync = 1;

1129 1130 1131 1132 1133
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1134 1135 1136 1137 1138 1139 1140
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1141

1142 1143
	tg = task_group(p);
	weight = p->se.load.weight;
1144

1145 1146
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1147

1148
	/*
I
Ingo Molnar 已提交
1149 1150 1151
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1152
	 */
1153 1154
	if (sync && balanced)
		return 1;
1155 1156 1157 1158

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1159 1160
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1174 1175 1176
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1177
	int prev_cpu, this_cpu, new_cpu;
1178
	unsigned long load, this_load;
1179
	struct rq *this_rq;
1180 1181
	unsigned int imbalance;
	int idx;
1182

1183 1184
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1185
	this_rq		= cpu_rq(this_cpu);
1186
	new_cpu		= prev_cpu;
1187

1188 1189
	if (prev_cpu == this_cpu)
		goto out;
1190 1191 1192 1193
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1194
	for_each_domain(this_cpu, sd) {
1195
		if (cpu_isset(prev_cpu, sd->span)) {
1196 1197 1198 1199 1200 1201
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1202
		goto out;
1203 1204 1205 1206

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1207
	if (!this_sd)
1208
		goto out;
1209

1210 1211 1212 1213
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1214
	load = source_load(prev_cpu, idx);
1215 1216
	this_load = target_load(this_cpu, idx);

1217
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1218 1219 1220
				     load, this_load, imbalance))
		return this_cpu;

1221 1222 1223 1224 1225 1226 1227 1228
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1229
			return this_cpu;
1230 1231 1232
		}
	}

1233
out:
1234 1235 1236 1237
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1238 1239 1240 1241 1242
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1243 1244
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1245
	 */
P
Peter Zijlstra 已提交
1246
	if (sched_feat(ASYM_GRAN))
P
Peter Zijlstra 已提交
1247
		gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1248 1249 1250 1251

	return gran;
}

1252 1253 1254
/*
 * Preempt the current task with a newly woken task if needed:
 */
1255
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1256 1257
{
	struct task_struct *curr = rq->curr;
1258
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1259
	struct sched_entity *se = &curr->se, *pse = &p->se;
P
Peter Zijlstra 已提交
1260
	s64 delta_exec;
1261 1262

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1263
		update_rq_clock(rq);
1264
		update_curr(cfs_rq);
1265 1266 1267
		resched_task(curr);
		return;
	}
1268

I
Ingo Molnar 已提交
1269 1270 1271
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1272 1273
	cfs_rq_of(pse)->next = pse;

1274 1275 1276 1277 1278 1279 1280
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1281 1282 1283 1284 1285 1286
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1287

1288 1289
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1290

1291 1292 1293
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1294 1295 1296 1297
		resched_task(curr);
		return;
	}

P
Peter Zijlstra 已提交
1298 1299
	delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
	if (delta_exec > wakeup_gran(pse))
1300
		resched_task(curr);
1301 1302
}

1303
static struct task_struct *pick_next_task_fair(struct rq *rq)
1304
{
P
Peter Zijlstra 已提交
1305
	struct task_struct *p;
1306 1307 1308 1309 1310 1311 1312
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1313
		se = pick_next_entity(cfs_rq);
1314 1315 1316
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1317 1318 1319 1320
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1321 1322 1323 1324 1325
}

/*
 * Account for a descheduled task:
 */
1326
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1327 1328 1329 1330 1331 1332
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1333
		put_prev_entity(cfs_rq, se);
1334 1335 1336
	}
}

1337
#ifdef CONFIG_SMP
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1349
static struct task_struct *
1350
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1351
{
D
Dhaval Giani 已提交
1352 1353
	struct task_struct *p = NULL;
	struct sched_entity *se;
1354

1355 1356 1357
	if (next == &cfs_rq->tasks)
		return NULL;

1358 1359 1360
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1361

1362 1363 1364 1365 1366 1367 1368
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1369
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1370 1371 1372 1373 1374 1375
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1376
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1377 1378
}

1379 1380 1381 1382 1383
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1384
{
1385
	struct rq_iterator cfs_rq_iterator;
1386

1387 1388 1389
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1390

1391 1392 1393
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1394 1395
}

1396
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1397
static unsigned long
1398
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1399
		  unsigned long max_load_move,
1400 1401
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1402 1403
{
	long rem_load_move = max_load_move;
1404 1405
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1406

1407
	rcu_read_lock();
1408
	update_h_load(busiest_cpu);
1409

1410
	list_for_each_entry_rcu(tg, &task_groups, list) {
1411
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1412 1413
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1414
		u64 rem_load, moved_load;
1415

1416 1417 1418
		/*
		 * empty group
		 */
1419
		if (!busiest_cfs_rq->task_weight)
1420 1421
			continue;

S
Srivatsa Vaddagiri 已提交
1422 1423
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1424

1425
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1426
				rem_load, sd, idle, all_pinned, this_best_prio,
1427
				tg->cfs_rq[busiest_cpu]);
1428

1429
		if (!moved_load)
1430 1431
			continue;

1432
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1433
		moved_load = div_u64(moved_load, busiest_weight + 1);
1434

1435 1436
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1437 1438
			break;
	}
1439
	rcu_read_unlock();
1440

P
Peter Williams 已提交
1441
	return max_load_move - rem_load_move;
1442
}
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1479
#endif /* CONFIG_SMP */
1480

1481 1482 1483
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1484
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1485 1486 1487 1488 1489 1490
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1491
		entity_tick(cfs_rq, se, queued);
1492 1493 1494
	}
}

1495
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1496

1497 1498 1499 1500 1501 1502 1503
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1504
static void task_new_fair(struct rq *rq, struct task_struct *p)
1505 1506
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1507
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1508
	int this_cpu = smp_processor_id();
1509 1510 1511

	sched_info_queued(p);

1512
	update_curr(cfs_rq);
1513
	place_entity(cfs_rq, se, 1);
1514

1515
	/* 'curr' will be NULL if the child belongs to a different group */
1516
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1517
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1518
		/*
1519 1520 1521
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1522
		swap(curr->vruntime, se->vruntime);
1523
		resched_task(rq->curr);
1524
	}
1525

1526
	enqueue_task_fair(rq, p, 0);
1527 1528
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1545
		check_preempt_curr(rq, p, 0);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1562
		check_preempt_curr(rq, p, 0);
1563 1564
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1588 1589 1590
/*
 * All the scheduling class methods:
 */
1591 1592
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1593 1594 1595
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1596 1597 1598
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1599

I
Ingo Molnar 已提交
1600
	.check_preempt_curr	= check_preempt_wakeup,
1601 1602 1603 1604

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1605
#ifdef CONFIG_SMP
1606
	.load_balance		= load_balance_fair,
1607
	.move_one_task		= move_one_task_fair,
1608
#endif
1609

1610
	.set_curr_task          = set_curr_task_fair,
1611 1612
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1613 1614 1615

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1616 1617 1618 1619

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1620 1621 1622
};

#ifdef CONFIG_SCHED_DEBUG
1623
static void print_cfs_stats(struct seq_file *m, int cpu)
1624 1625 1626
{
	struct cfs_rq *cfs_rq;

1627
	rcu_read_lock();
1628
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1629
		print_cfs_rq(m, cpu, cfs_rq);
1630
	rcu_read_unlock();
1631 1632
}
#endif