sched_fair.c 44.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50

/*
51
 * After fork, child runs first. If set to 0 (default) then
52
 * parent will (try to) run first.
53
 */
54
unsigned int sysctl_sched_child_runs_first __read_mostly;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

82
#ifdef CONFIG_FAIR_GROUP_SCHED
83

84
/* cpu runqueue to which this cfs_rq is attached */
85 86
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
87
	return cfs_rq->rq;
88 89
}

90 91
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
92

93 94 95 96 97 98 99 100
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

192 193 194 195 196 197
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
198

199 200 201
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
202 203 204 205
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
206 207
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
208

P
Peter Zijlstra 已提交
209
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210
{
P
Peter Zijlstra 已提交
211
	return &task_rq(p)->cfs;
212 213
}

P
Peter Zijlstra 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

247 248 249 250 251
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
252 253
#endif	/* CONFIG_FAIR_GROUP_SCHED */

254 255 256 257 258

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

259
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260
{
261 262
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
263 264 265 266 267
		min_vruntime = vruntime;

	return min_vruntime;
}

268
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

277 278 279 280 281 282
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

283
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284
{
285
	return se->vruntime - cfs_rq->min_vruntime;
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
300
		if (!cfs_rq->curr)
301 302 303 304 305 306 307 308
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

309 310 311
/*
 * Enqueue an entity into the rb-tree:
 */
312
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 314 315 316
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
317
	s64 key = entity_key(cfs_rq, se);
318 319 320 321 322 323 324 325 326 327 328 329
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
330
		if (key < entity_key(cfs_rq, entry)) {
331 332 333 334 335 336 337 338 339 340 341
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
342
	if (leftmost)
I
Ingo Molnar 已提交
343
		cfs_rq->rb_leftmost = &se->run_node;
344 345 346 347 348

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

349
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350
{
P
Peter Zijlstra 已提交
351 352 353 354 355 356
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
357

358 359 360 361 362
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
363 364 365 366 367 368
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
369 370
}

371
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372
{
373
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374

375 376
	if (!last)
		return NULL;
377 378

	return rb_entry(last, struct sched_entity, run_node);
379 380
}

381 382 383 384
/**************************************************************
 * Scheduling class statistics methods:
 */

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
401

402
/*
403
 * delta /= w
404 405 406 407
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
408 409
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410 411 412 413

	return delta;
}

414 415 416 417 418 419 420 421
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
422 423 424
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
425
	unsigned long nr_latency = sched_nr_latency;
426 427

	if (unlikely(nr_running > nr_latency)) {
428
		period = sysctl_sched_min_granularity;
429 430 431 432 433 434
		period *= nr_running;
	}

	return period;
}

435 436 437 438
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
439
 * s = p*P[w/rw]
440
 */
P
Peter Zijlstra 已提交
441
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442
{
M
Mike Galbraith 已提交
443
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444

M
Mike Galbraith 已提交
445
	for_each_sched_entity(se) {
L
Lin Ming 已提交
446
		struct load_weight *load;
447
		struct load_weight lw;
L
Lin Ming 已提交
448 449 450

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
451

M
Mike Galbraith 已提交
452
		if (unlikely(!se->on_rq)) {
453
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
454 455 456 457 458 459 460

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
461 462
}

463
/*
464
 * We calculate the vruntime slice of a to be inserted task
465
 *
466
 * vs = s/w
467
 */
468
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
469
{
470
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 472
}

473 474 475 476 477
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
478 479
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
480
{
481
	unsigned long delta_exec_weighted;
482

483
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484 485

	curr->sum_exec_runtime += delta_exec;
486
	schedstat_add(cfs_rq, exec_clock, delta_exec);
487
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
488
	curr->vruntime += delta_exec_weighted;
489
	update_min_vruntime(cfs_rq);
490 491
}

492
static void update_curr(struct cfs_rq *cfs_rq)
493
{
494
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
495
	u64 now = rq_of(cfs_rq)->clock;
496 497 498 499 500 501 502 503 504 505
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
506
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
507 508
	if (!delta_exec)
		return;
509

I
Ingo Molnar 已提交
510 511
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
512 513 514 515 516

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
517
		account_group_exec_runtime(curtask, delta_exec);
518
	}
519 520 521
}

static inline void
522
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
524
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
525 526 527 528 529
}

/*
 * Task is being enqueued - update stats:
 */
530
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 532 533 534 535
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
536
	if (se != cfs_rq->curr)
537
		update_stats_wait_start(cfs_rq, se);
538 539 540
}

static void
541
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
542
{
543 544
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
545 546 547
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
548
	schedstat_set(se->wait_start, 0);
549 550 551 552 553 554 555

#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
			rq_of(cfs_rq)->clock - se->wait_start);
	}
#endif
556 557 558
}

static inline void
559
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 561 562 563 564
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
565
	if (se != cfs_rq->curr)
566
		update_stats_wait_end(cfs_rq, se);
567 568 569 570 571 572
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
573
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574 575 576 577
{
	/*
	 * We are starting a new run period:
	 */
578
	se->exec_start = rq_of(cfs_rq)->clock;
579 580 581 582 583 584
}

/**************************************************
 * Scheduling class queueing methods:
 */

585 586 587 588 589 590 591 592 593 594 595 596 597
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

598 599 600 601
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
602 603
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604
	if (entity_is_task(se)) {
605
		add_cfs_task_weight(cfs_rq, se->load.weight);
606 607
		list_add(&se->group_node, &cfs_rq->tasks);
	}
608 609 610 611 612 613 614 615
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
616 617
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618
	if (entity_is_task(se)) {
619
		add_cfs_task_weight(cfs_rq, -se->load.weight);
620 621
		list_del_init(&se->group_node);
	}
622 623 624 625
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

626
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 628
{
#ifdef CONFIG_SCHEDSTATS
629 630 631 632 633
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

634
	if (se->sleep_start) {
635
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636 637 638 639 640 641 642 643 644

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
645

646
		if (tsk) {
647
			account_scheduler_latency(tsk, delta >> 10, 1);
648 649
			trace_sched_stat_sleep(tsk, delta);
		}
650 651
	}
	if (se->block_start) {
652
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653 654 655 656 657 658 659 660 661

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
662

663
		if (tsk) {
664 665 666
			if (tsk->in_iowait) {
				se->iowait_sum += delta;
				se->iowait_count++;
667
				trace_sched_stat_iowait(tsk, delta);
668 669
			}

670 671 672 673 674 675 676 677 678 679 680
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
681
		}
682 683 684 685
	}
#endif
}

P
Peter Zijlstra 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

699 700 701
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
702
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
703

704 705 706 707 708 709
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
710
	if (initial && sched_feat(START_DEBIT))
711
		vruntime += sched_vslice(cfs_rq, se);
712

I
Ingo Molnar 已提交
713
	if (!initial) {
714
		/* sleeps upto a single latency don't count. */
715 716 717 718
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
719 720 721 722
			 * Convert the sleeper threshold into virtual time.
			 * SCHED_IDLE is a special sub-class.  We care about
			 * fairness only relative to other SCHED_IDLE tasks,
			 * all of which have the same weight.
723
			 */
724
			if (sched_feat(NORMALIZED_SLEEPER) &&
725 726
					(!entity_is_task(se) ||
					 task_of(se)->policy != SCHED_IDLE))
727 728 729 730
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
731 732
	}

733 734 735
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
736
	se->vruntime = vruntime;
737 738
}

739
static void
740
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
741 742
{
	/*
743
	 * Update run-time statistics of the 'current'.
744
	 */
745
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
746
	account_entity_enqueue(cfs_rq, se);
747

I
Ingo Molnar 已提交
748
	if (wakeup) {
749
		place_entity(cfs_rq, se, 0);
750
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
751
	}
752

753
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
754
	check_spread(cfs_rq, se);
755 756
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
757 758
}

P
Peter Zijlstra 已提交
759
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
760 761 762 763 764 765 766 767
{
	if (cfs_rq->last == se)
		cfs_rq->last = NULL;

	if (cfs_rq->next == se)
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
768 769 770 771 772 773
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

774
static void
775
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
776
{
777 778 779 780 781
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

782
	update_stats_dequeue(cfs_rq, se);
783
	if (sleep) {
P
Peter Zijlstra 已提交
784
#ifdef CONFIG_SCHEDSTATS
785 786 787 788
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
789
				se->sleep_start = rq_of(cfs_rq)->clock;
790
			if (tsk->state & TASK_UNINTERRUPTIBLE)
791
				se->block_start = rq_of(cfs_rq)->clock;
792
		}
793
#endif
P
Peter Zijlstra 已提交
794 795
	}

P
Peter Zijlstra 已提交
796
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
797

798
	if (se != cfs_rq->curr)
799 800
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
801
	update_min_vruntime(cfs_rq);
802 803 804 805 806
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
807
static void
I
Ingo Molnar 已提交
808
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
809
{
810 811
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
812
	ideal_runtime = sched_slice(cfs_rq, curr);
813
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
814
	if (delta_exec > ideal_runtime) {
815
		resched_task(rq_of(cfs_rq)->curr);
816 817 818 819 820 821
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
	}
822 823
}

824
static void
825
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
826
{
827 828 829 830 831 832 833 834 835 836 837
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

838
	update_stats_curr_start(cfs_rq, se);
839
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
840 841 842 843 844 845
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
846
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
847 848 849 850
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
851
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
852 853
}

854 855 856
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

857
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
858
{
859 860
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
861 862
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
863

P
Peter Zijlstra 已提交
864 865 866 867
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
868 869
}

870
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
871 872 873 874 875 876
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
877
		update_curr(cfs_rq);
878

P
Peter Zijlstra 已提交
879
	check_spread(cfs_rq, prev);
880
	if (prev->on_rq) {
881
		update_stats_wait_start(cfs_rq, prev);
882 883 884
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
885
	cfs_rq->curr = NULL;
886 887
}

P
Peter Zijlstra 已提交
888 889
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
890 891
{
	/*
892
	 * Update run-time statistics of the 'current'.
893
	 */
894
	update_curr(cfs_rq);
895

P
Peter Zijlstra 已提交
896 897 898 899 900
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
901 902 903 904
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
905 906 907 908 909 910 911 912
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

913
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
914
		check_preempt_tick(cfs_rq, curr);
915 916 917 918 919 920
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
944
		if (rq->curr != p)
945
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
946

947
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
948 949
	}
}
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
966
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
967 968 969 970
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
971 972 973 974

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
975 976
#endif

977 978 979 980 981
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
982
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
983 984
{
	struct cfs_rq *cfs_rq;
985
	struct sched_entity *se = &p->se;
986 987

	for_each_sched_entity(se) {
988
		if (se->on_rq)
989 990
			break;
		cfs_rq = cfs_rq_of(se);
991
		enqueue_entity(cfs_rq, se, wakeup);
992
		wakeup = 1;
993
	}
P
Peter Zijlstra 已提交
994

995
	hrtick_update(rq);
996 997 998 999 1000 1001 1002
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1003
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1004 1005
{
	struct cfs_rq *cfs_rq;
1006
	struct sched_entity *se = &p->se;
1007 1008 1009

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1010
		dequeue_entity(cfs_rq, se, sleep);
1011
		/* Don't dequeue parent if it has other entities besides us */
1012
		if (cfs_rq->load.weight)
1013
			break;
1014
		sleep = 1;
1015
	}
P
Peter Zijlstra 已提交
1016

1017
	hrtick_update(rq);
1018 1019 1020
}

/*
1021 1022 1023
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1024
 */
1025
static void yield_task_fair(struct rq *rq)
1026
{
1027 1028 1029
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1030 1031

	/*
1032 1033 1034 1035 1036
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1037 1038
	clear_buddies(cfs_rq, se);

1039
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1040
		update_rq_clock(rq);
1041
		/*
1042
		 * Update run-time statistics of the 'current'.
1043
		 */
D
Dmitry Adamushko 已提交
1044
		update_curr(cfs_rq);
1045 1046 1047 1048 1049

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1050
	 */
D
Dmitry Adamushko 已提交
1051
	rightmost = __pick_last_entity(cfs_rq);
1052 1053 1054
	/*
	 * Already in the rightmost position?
	 */
1055
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1056 1057 1058 1059
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1060 1061
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1062
	 */
1063
	se->vruntime = rightmost->vruntime + 1;
1064 1065
}

1066 1067 1068 1069 1070
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1071
 * Domains may include CPUs that are not usable for migration,
1072
 * hence we need to mask them out (rq->rd->online)
1073 1074 1075 1076
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1077 1078 1079

#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)

1080 1081 1082 1083
static int wake_idle(int cpu, struct task_struct *p)
{
	struct sched_domain *sd;
	int i;
1084 1085
	unsigned int chosen_wakeup_cpu;
	int this_cpu;
1086
	struct rq *task_rq = task_rq(p);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	/*
	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
	 * are idle and this is not a kernel thread and this task's affinity
	 * allows it to be moved to preferred cpu, then just move!
	 */

	this_cpu = smp_processor_id();
	chosen_wakeup_cpu =
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;

	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
		idle_cpu(cpu) && idle_cpu(this_cpu) &&
		p->mm && !(p->flags & PF_KTHREAD) &&
		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
		return chosen_wakeup_cpu;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1113
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1114 1115 1116
		return cpu;

	for_each_domain(cpu, sd) {
1117 1118
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
1119
			&& !task_hot(p, task_rq->clock, sd))) {
1120 1121
			for_each_cpu_and(i, sched_domain_span(sd),
					 &p->cpus_allowed) {
1122
				if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1136
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1137 1138 1139 1140 1141 1142 1143
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1144

1145
#ifdef CONFIG_FAIR_GROUP_SCHED
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1167 1168
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1169
{
P
Peter Zijlstra 已提交
1170
	struct sched_entity *se = tg->se[cpu];
1171 1172 1173 1174

	if (!tg->parent)
		return wl;

1175 1176 1177 1178 1179 1180 1181
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1182
	for_each_sched_entity(se) {
1183
		long S, rw, s, a, b;
1184 1185 1186 1187 1188 1189 1190 1191 1192
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1193 1194 1195

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1196
		rw = se->my_q->rq_weight;
1197

1198 1199
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1200

1201 1202 1203 1204 1205
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1206 1207 1208 1209 1210 1211 1212
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1213 1214
		wg = 0;
	}
1215

P
Peter Zijlstra 已提交
1216
	return wl;
1217
}
P
Peter Zijlstra 已提交
1218

1219
#else
P
Peter Zijlstra 已提交
1220

1221 1222
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1223
{
1224
	return wl;
1225
}
P
Peter Zijlstra 已提交
1226

1227 1228
#endif

1229
static int
1230
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1231 1232
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1233 1234
	    unsigned int imbalance)
{
1235 1236
	struct task_struct *curr = this_rq->curr;
	struct task_group *tg;
1237 1238
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1239
	unsigned long weight;
1240
	int balanced;
1241

1242
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1243 1244
		return 0;

1245 1246 1247 1248
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;

1249 1250 1251 1252 1253
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1254 1255 1256 1257 1258 1259 1260
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1261

1262 1263
	tg = task_group(p);
	weight = p->se.load.weight;
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
	 * due to the sync cause above having dropped tl to 0, we'll always have
	 * an imbalance, but there's really nothing you can do about that, so
	 * that's good too.
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
	balanced = !tl ||
		100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1276
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1277

1278
	/*
I
Ingo Molnar 已提交
1279 1280 1281
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1282
	 */
1283 1284
	if (sync && balanced)
		return 1;
1285 1286 1287 1288

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1289 1290
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1304 1305 1306
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1307
	int prev_cpu, this_cpu, new_cpu;
1308
	unsigned long load, this_load;
1309
	struct rq *this_rq;
1310 1311
	unsigned int imbalance;
	int idx;
1312

1313 1314
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1315
	this_rq		= cpu_rq(this_cpu);
1316
	new_cpu		= prev_cpu;
1317

1318 1319 1320 1321
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1322
	for_each_domain(this_cpu, sd) {
1323
		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1324 1325 1326 1327 1328
			this_sd = sd;
			break;
		}
	}

1329
	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1330
		goto out;
1331 1332 1333 1334

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1335
	if (!this_sd)
1336
		goto out;
1337

1338 1339 1340 1341
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1342
	load = source_load(prev_cpu, idx);
1343 1344
	this_load = target_load(this_cpu, idx);

1345
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1346 1347 1348
				     load, this_load, imbalance))
		return this_cpu;

1349 1350 1351 1352 1353 1354 1355 1356
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1357
			return this_cpu;
1358 1359 1360
		}
	}

1361
out:
1362 1363 1364 1365
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1396 1397 1398
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1399 1400 1401
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1402
	/*
P
Peter Zijlstra 已提交
1403 1404
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1405
	 */
P
Peter Zijlstra 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1423 1424 1425 1426

	return gran;
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1449
	gran = wakeup_gran(curr, se);
1450 1451 1452 1453 1454 1455
	if (vdiff > gran)
		return 1;

	return 0;
}

1456 1457
static void set_last_buddy(struct sched_entity *se)
{
1458 1459 1460 1461
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1462 1463 1464 1465
}

static void set_next_buddy(struct sched_entity *se)
{
1466 1467 1468 1469
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1470 1471
}

1472 1473 1474
/*
 * Preempt the current task with a newly woken task if needed:
 */
1475
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1476 1477
{
	struct task_struct *curr = rq->curr;
1478
	struct sched_entity *se = &curr->se, *pse = &p->se;
1479
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1480

1481
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1482

1483
	if (unlikely(rt_prio(p->prio))) {
1484 1485 1486
		resched_task(curr);
		return;
	}
1487

P
Peter Zijlstra 已提交
1488 1489 1490
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1491 1492 1493
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1504 1505
		set_last_buddy(se);
	set_next_buddy(pse);
P
Peter Zijlstra 已提交
1506

1507 1508 1509 1510 1511 1512 1513
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1514
	/*
1515
	 * Batch and idle tasks do not preempt (their preemption is driven by
1516 1517
	 * the tick):
	 */
1518
	if (unlikely(p->policy != SCHED_NORMAL))
1519
		return;
1520

1521 1522 1523
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
1524
		return;
1525
	}
1526

1527 1528
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1529

1530 1531 1532
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1533 1534 1535 1536
		resched_task(curr);
		return;
	}

1537 1538
	find_matching_se(&se, &pse);

1539
	BUG_ON(!pse);
1540

1541 1542
	if (wakeup_preempt_entity(se, pse) == 1)
		resched_task(curr);
1543 1544
}

1545
static struct task_struct *pick_next_task_fair(struct rq *rq)
1546
{
P
Peter Zijlstra 已提交
1547
	struct task_struct *p;
1548 1549 1550 1551 1552 1553 1554
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1555
		se = pick_next_entity(cfs_rq);
1556 1557 1558 1559
		/*
		 * If se was a buddy, clear it so that it will have to earn
		 * the favour again.
		 */
P
Peter Zijlstra 已提交
1560
		__clear_buddies(cfs_rq, se);
1561
		set_next_entity(cfs_rq, se);
1562 1563 1564
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1565 1566 1567 1568
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1569 1570 1571 1572 1573
}

/*
 * Account for a descheduled task:
 */
1574
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1575 1576 1577 1578 1579 1580
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1581
		put_prev_entity(cfs_rq, se);
1582 1583 1584
	}
}

1585
#ifdef CONFIG_SMP
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1597
static struct task_struct *
1598
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1599
{
D
Dhaval Giani 已提交
1600 1601
	struct task_struct *p = NULL;
	struct sched_entity *se;
1602

1603 1604 1605
	if (next == &cfs_rq->tasks)
		return NULL;

1606 1607 1608
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1609

1610 1611 1612 1613 1614 1615 1616
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1617
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1618 1619 1620 1621 1622 1623
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1624
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1625 1626
}

1627 1628 1629 1630 1631
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1632
{
1633
	struct rq_iterator cfs_rq_iterator;
1634

1635 1636 1637
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1638

1639 1640 1641
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1642 1643
}

1644
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1645
static unsigned long
1646
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1647
		  unsigned long max_load_move,
1648 1649
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1650 1651
{
	long rem_load_move = max_load_move;
1652 1653
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1654

1655
	rcu_read_lock();
1656
	update_h_load(busiest_cpu);
1657

1658
	list_for_each_entry_rcu(tg, &task_groups, list) {
1659
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1660 1661
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1662
		u64 rem_load, moved_load;
1663

1664 1665 1666
		/*
		 * empty group
		 */
1667
		if (!busiest_cfs_rq->task_weight)
1668 1669
			continue;

S
Srivatsa Vaddagiri 已提交
1670 1671
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1672

1673
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1674
				rem_load, sd, idle, all_pinned, this_best_prio,
1675
				tg->cfs_rq[busiest_cpu]);
1676

1677
		if (!moved_load)
1678 1679
			continue;

1680
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1681
		moved_load = div_u64(moved_load, busiest_weight + 1);
1682

1683 1684
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1685 1686
			break;
	}
1687
	rcu_read_unlock();
1688

P
Peter Williams 已提交
1689
	return max_load_move - rem_load_move;
1690
}
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1703

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1727
#endif /* CONFIG_SMP */
1728

1729 1730 1731
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1732
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1733 1734 1735 1736 1737 1738
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1739
		entity_tick(cfs_rq, se, queued);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1750
static void task_new_fair(struct rq *rq, struct task_struct *p)
1751 1752
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1753
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1754
	int this_cpu = smp_processor_id();
1755 1756 1757

	sched_info_queued(p);

1758
	update_curr(cfs_rq);
1759 1760
	if (curr)
		se->vruntime = curr->vruntime;
1761
	place_entity(cfs_rq, se, 1);
1762

1763
	/* 'curr' will be NULL if the child belongs to a different group */
1764
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1765
			curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
1766
		/*
1767 1768 1769
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1770
		swap(curr->vruntime, se->vruntime);
1771
		resched_task(rq->curr);
1772
	}
1773

1774
	enqueue_task_fair(rq, p, 0);
1775 1776
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1793
		check_preempt_curr(rq, p, 0);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1810
		check_preempt_curr(rq, p, 0);
1811 1812
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1836 1837 1838
/*
 * All the scheduling class methods:
 */
1839 1840
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1841 1842 1843 1844
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1845
	.check_preempt_curr	= check_preempt_wakeup,
1846 1847 1848 1849

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1850
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1851 1852
	.select_task_rq		= select_task_rq_fair,

1853
	.load_balance		= load_balance_fair,
1854
	.move_one_task		= move_one_task_fair,
1855
#endif
1856

1857
	.set_curr_task          = set_curr_task_fair,
1858 1859
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1860 1861 1862

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1863 1864 1865 1866

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1867 1868 1869
};

#ifdef CONFIG_SCHED_DEBUG
1870
static void print_cfs_stats(struct seq_file *m, int cpu)
1871 1872 1873
{
	struct cfs_rq *cfs_rq;

1874
	rcu_read_lock();
1875
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1876
		print_cfs_rq(m, cpu, cfs_rq);
1877
	rcu_read_unlock();
1878 1879
}
#endif