sched_fair.c 41.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

189
#else	/* CONFIG_FAIR_GROUP_SCHED */
190

191 192 193
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
194 195 196 197
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
198 199
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
200

P
Peter Zijlstra 已提交
201
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202
{
P
Peter Zijlstra 已提交
203
	return &task_rq(p)->cfs;
204 205
}

P
Peter Zijlstra 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

239 240 241 242 243
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
244 245
#endif	/* CONFIG_FAIR_GROUP_SCHED */

246 247 248 249 250

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

251
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252
{
253 254
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
255 256 257 258 259
		min_vruntime = vruntime;

	return min_vruntime;
}

260
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267 268
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

269
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270
{
271
	return se->vruntime - cfs_rq->min_vruntime;
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
286
		if (!cfs_rq->curr)
287 288 289 290 291 292 293 294
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

295 296 297
/*
 * Enqueue an entity into the rb-tree:
 */
298
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 300 301 302
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
303
	s64 key = entity_key(cfs_rq, se);
304 305 306 307 308 309 310 311 312 313 314 315
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
316
		if (key < entity_key(cfs_rq, entry)) {
317 318 319 320 321 322 323 324 325 326 327
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
328
	if (leftmost)
I
Ingo Molnar 已提交
329
		cfs_rq->rb_leftmost = &se->run_node;
330 331 332 333 334

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

335
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336
{
P
Peter Zijlstra 已提交
337 338 339 340 341 342
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
343

344 345 346 347 348
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
349 350 351 352 353 354
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
355 356
}

357
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
358
{
359
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
360

361 362
	if (!last)
		return NULL;
363 364

	return rb_entry(last, struct sched_entity, run_node);
365 366
}

367 368 369 370
/**************************************************************
 * Scheduling class statistics methods:
 */

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
387

388
/*
389
 * delta /= w
390 391 392 393
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
394 395
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
396 397 398 399

	return delta;
}

400 401 402 403 404 405 406 407
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
408 409 410
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
411
	unsigned long nr_latency = sched_nr_latency;
412 413

	if (unlikely(nr_running > nr_latency)) {
414
		period = sysctl_sched_min_granularity;
415 416 417 418 419 420
		period *= nr_running;
	}

	return period;
}

421 422 423 424
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
425
 * s = p*P[w/rw]
426
 */
P
Peter Zijlstra 已提交
427
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
428
{
M
Mike Galbraith 已提交
429
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
430

M
Mike Galbraith 已提交
431 432
	for_each_sched_entity(se) {
		struct load_weight *load = &cfs_rq->load;
433

M
Mike Galbraith 已提交
434 435 436 437 438 439 440 441 442
		if (unlikely(!se->on_rq)) {
			struct load_weight lw = cfs_rq->load;

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
443 444
}

445
/*
446
 * We calculate the vruntime slice of a to be inserted task
447
 *
448
 * vs = s/w
449
 */
450
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
451
{
452
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
453 454
}

455 456 457 458 459
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
460 461
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
462
{
463
	unsigned long delta_exec_weighted;
464

465
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
466 467

	curr->sum_exec_runtime += delta_exec;
468
	schedstat_add(cfs_rq, exec_clock, delta_exec);
469
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
470
	curr->vruntime += delta_exec_weighted;
471
	update_min_vruntime(cfs_rq);
472 473
}

474
static void update_curr(struct cfs_rq *cfs_rq)
475
{
476
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
477
	u64 now = rq_of(cfs_rq)->clock;
478 479 480 481 482 483 484 485 486 487
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
488
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
489 490
	if (!delta_exec)
		return;
491

I
Ingo Molnar 已提交
492 493
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
494 495 496 497 498

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
499
		account_group_exec_runtime(curtask, delta_exec);
500
	}
501 502 503
}

static inline void
504
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
505
{
506
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
507 508 509 510 511
}

/*
 * Task is being enqueued - update stats:
 */
512
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
513 514 515 516 517
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
518
	if (se != cfs_rq->curr)
519
		update_stats_wait_start(cfs_rq, se);
520 521 522
}

static void
523
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
524
{
525 526
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
527 528 529
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
530
	schedstat_set(se->wait_start, 0);
531 532 533
}

static inline void
534
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
535 536 537 538 539
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
540
	if (se != cfs_rq->curr)
541
		update_stats_wait_end(cfs_rq, se);
542 543 544 545 546 547
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
548
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 550 551 552
{
	/*
	 * We are starting a new run period:
	 */
553
	se->exec_start = rq_of(cfs_rq)->clock;
554 555 556 557 558 559
}

/**************************************************
 * Scheduling class queueing methods:
 */

560 561 562 563 564 565 566 567 568 569 570 571 572
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

573 574 575 576
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
577 578
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
579
	if (entity_is_task(se)) {
580
		add_cfs_task_weight(cfs_rq, se->load.weight);
581 582
		list_add(&se->group_node, &cfs_rq->tasks);
	}
583 584 585 586 587 588 589 590
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
591 592
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
593
	if (entity_is_task(se)) {
594
		add_cfs_task_weight(cfs_rq, -se->load.weight);
595 596
		list_del_init(&se->group_node);
	}
597 598 599 600
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

601
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
602 603 604
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
605
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
606
		struct task_struct *tsk = task_of(se);
607 608 609 610 611 612 613 614 615

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
616 617

		account_scheduler_latency(tsk, delta >> 10, 1);
618 619
	}
	if (se->block_start) {
620
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
621
		struct task_struct *tsk = task_of(se);
622 623 624 625 626 627 628 629 630

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
631 632 633 634 635 636 637

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
638

I
Ingo Molnar 已提交
639 640 641
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
642
		account_scheduler_latency(tsk, delta >> 10, 0);
643 644 645 646
	}
#endif
}

P
Peter Zijlstra 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

660 661 662
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
663
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
664

665 666 667 668 669 670
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
671
	if (initial && sched_feat(START_DEBIT))
672
		vruntime += sched_vslice(cfs_rq, se);
673

I
Ingo Molnar 已提交
674
	if (!initial) {
675
		/* sleeps upto a single latency don't count. */
676 677 678 679
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
680 681 682 683
			 * Convert the sleeper threshold into virtual time.
			 * SCHED_IDLE is a special sub-class.  We care about
			 * fairness only relative to other SCHED_IDLE tasks,
			 * all of which have the same weight.
684
			 */
685 686
			if (sched_feat(NORMALIZED_SLEEPER) &&
					task_of(se)->policy != SCHED_IDLE)
687 688 689 690
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
691

692 693
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
694 695
	}

P
Peter Zijlstra 已提交
696
	se->vruntime = vruntime;
697 698
}

699
static void
700
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
701 702
{
	/*
703
	 * Update run-time statistics of the 'current'.
704
	 */
705
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
706
	account_entity_enqueue(cfs_rq, se);
707

I
Ingo Molnar 已提交
708
	if (wakeup) {
709
		place_entity(cfs_rq, se, 0);
710
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
711
	}
712

713
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
714
	check_spread(cfs_rq, se);
715 716
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
717 718
}

P
Peter Zijlstra 已提交
719 720 721 722 723 724 725 726 727
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->last == se)
		cfs_rq->last = NULL;

	if (cfs_rq->next == se)
		cfs_rq->next = NULL;
}

728
static void
729
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
730
{
731 732 733 734 735
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

736
	update_stats_dequeue(cfs_rq, se);
737
	if (sleep) {
P
Peter Zijlstra 已提交
738
#ifdef CONFIG_SCHEDSTATS
739 740 741 742
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
743
				se->sleep_start = rq_of(cfs_rq)->clock;
744
			if (tsk->state & TASK_UNINTERRUPTIBLE)
745
				se->block_start = rq_of(cfs_rq)->clock;
746
		}
747
#endif
P
Peter Zijlstra 已提交
748 749
	}

P
Peter Zijlstra 已提交
750
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
751

752
	if (se != cfs_rq->curr)
753 754
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
755
	update_min_vruntime(cfs_rq);
756 757 758 759 760
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
761
static void
I
Ingo Molnar 已提交
762
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
763
{
764 765
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
766
	ideal_runtime = sched_slice(cfs_rq, curr);
767
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
768
	if (delta_exec > ideal_runtime)
769 770 771
		resched_task(rq_of(cfs_rq)->curr);
}

772
static void
773
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
774
{
775 776 777 778 779 780 781 782 783 784 785
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

786
	update_stats_curr_start(cfs_rq, se);
787
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
788 789 790 791 792 793
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
794
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
795 796 797 798
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
799
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
800 801
}

802 803 804
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

805
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
806
{
807 808
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
809 810
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
811

P
Peter Zijlstra 已提交
812 813 814 815
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
816 817
}

818
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
819 820 821 822 823 824
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
825
		update_curr(cfs_rq);
826

P
Peter Zijlstra 已提交
827
	check_spread(cfs_rq, prev);
828
	if (prev->on_rq) {
829
		update_stats_wait_start(cfs_rq, prev);
830 831 832
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
833
	cfs_rq->curr = NULL;
834 835
}

P
Peter Zijlstra 已提交
836 837
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
838 839
{
	/*
840
	 * Update run-time statistics of the 'current'.
841
	 */
842
	update_curr(cfs_rq);
843

P
Peter Zijlstra 已提交
844 845 846 847 848
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
849 850 851 852
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
853 854 855 856 857 858 859 860
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

861
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
862
		check_preempt_tick(cfs_rq, curr);
863 864 865 866 867 868
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
892
		if (rq->curr != p)
893
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
894

895
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
896 897
	}
}
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
914
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
915 916 917 918
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
919 920 921 922

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
923 924
#endif

925 926 927 928 929
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
930
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
931 932
{
	struct cfs_rq *cfs_rq;
933
	struct sched_entity *se = &p->se;
934 935

	for_each_sched_entity(se) {
936
		if (se->on_rq)
937 938
			break;
		cfs_rq = cfs_rq_of(se);
939
		enqueue_entity(cfs_rq, se, wakeup);
940
		wakeup = 1;
941
	}
P
Peter Zijlstra 已提交
942

943
	hrtick_update(rq);
944 945 946 947 948 949 950
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
951
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
952 953
{
	struct cfs_rq *cfs_rq;
954
	struct sched_entity *se = &p->se;
955 956 957

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
958
		dequeue_entity(cfs_rq, se, sleep);
959
		/* Don't dequeue parent if it has other entities besides us */
960
		if (cfs_rq->load.weight)
961
			break;
962
		sleep = 1;
963
	}
P
Peter Zijlstra 已提交
964

965
	hrtick_update(rq);
966 967 968
}

/*
969 970 971
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
972
 */
973
static void yield_task_fair(struct rq *rq)
974
{
975 976 977
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
978 979

	/*
980 981 982 983 984
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
985 986
	clear_buddies(cfs_rq, se);

987
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
988
		update_rq_clock(rq);
989
		/*
990
		 * Update run-time statistics of the 'current'.
991
		 */
D
Dmitry Adamushko 已提交
992
		update_curr(cfs_rq);
993 994 995 996 997

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
998
	 */
D
Dmitry Adamushko 已提交
999
	rightmost = __pick_last_entity(cfs_rq);
1000 1001 1002
	/*
	 * Already in the rightmost position?
	 */
1003
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1004 1005 1006 1007
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1008 1009
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1010
	 */
1011
	se->vruntime = rightmost->vruntime + 1;
1012 1013
}

1014 1015 1016 1017 1018
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1019
 * Domains may include CPUs that are not usable for migration,
1020
 * hence we need to mask them out (cpu_active_mask)
1021 1022 1023 1024 1025 1026 1027 1028
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	struct sched_domain *sd;
	int i;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	unsigned int chosen_wakeup_cpu;
	int this_cpu;

	/*
	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
	 * are idle and this is not a kernel thread and this task's affinity
	 * allows it to be moved to preferred cpu, then just move!
	 */

	this_cpu = smp_processor_id();
	chosen_wakeup_cpu =
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;

	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
		idle_cpu(cpu) && idle_cpu(this_cpu) &&
		p->mm && !(p->flags & PF_KTHREAD) &&
		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
		return chosen_wakeup_cpu;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1057
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1058 1059 1060
		return cpu;

	for_each_domain(cpu, sd) {
1061 1062 1063
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1064 1065 1066
			for_each_cpu_and(i, sched_domain_span(sd),
					 &p->cpus_allowed) {
				if (cpu_active(i) && idle_cpu(i)) {
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1080
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1081 1082 1083 1084 1085 1086 1087
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1088

1089
#ifdef CONFIG_FAIR_GROUP_SCHED
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1111 1112
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1113
{
P
Peter Zijlstra 已提交
1114
	struct sched_entity *se = tg->se[cpu];
1115 1116 1117 1118

	if (!tg->parent)
		return wl;

1119 1120 1121 1122 1123 1124 1125
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1126
	for_each_sched_entity(se) {
1127
		long S, rw, s, a, b;
1128 1129 1130 1131 1132 1133 1134 1135 1136
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1137 1138 1139

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1140
		rw = se->my_q->rq_weight;
1141

1142 1143
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1144

1145 1146 1147 1148 1149
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1150 1151 1152 1153 1154 1155 1156
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1157 1158
		wg = 0;
	}
1159

P
Peter Zijlstra 已提交
1160
	return wl;
1161
}
P
Peter Zijlstra 已提交
1162

1163
#else
P
Peter Zijlstra 已提交
1164

1165 1166
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1167
{
1168
	return wl;
1169
}
P
Peter Zijlstra 已提交
1170

1171 1172
#endif

1173
static int
1174
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1175 1176
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1177 1178
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1179
	struct task_struct *curr = this_rq->curr;
1180
	struct task_group *tg;
1181 1182
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1183
	unsigned long weight;
1184
	int balanced;
1185

1186
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1187 1188
		return 0;

M
Mike Galbraith 已提交
1189 1190 1191
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;
1192

1193 1194 1195 1196 1197
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1198 1199 1200 1201 1202 1203 1204
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1205

1206 1207
	tg = task_group(p);
	weight = p->se.load.weight;
1208

1209 1210
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1211

1212
	/*
I
Ingo Molnar 已提交
1213 1214 1215
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1216
	 */
1217 1218
	if (sync && balanced)
		return 1;
1219 1220 1221 1222

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1223 1224
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1238 1239 1240
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1241
	int prev_cpu, this_cpu, new_cpu;
1242
	unsigned long load, this_load;
1243
	struct rq *this_rq;
1244 1245
	unsigned int imbalance;
	int idx;
1246

1247 1248
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1249
	this_rq		= cpu_rq(this_cpu);
1250
	new_cpu		= prev_cpu;
1251

1252 1253
	if (prev_cpu == this_cpu)
		goto out;
1254 1255 1256 1257
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1258
	for_each_domain(this_cpu, sd) {
1259
		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1260 1261 1262 1263 1264
			this_sd = sd;
			break;
		}
	}

1265
	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1266
		goto out;
1267 1268 1269 1270

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1271
	if (!this_sd)
1272
		goto out;
1273

1274 1275 1276 1277
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1278
	load = source_load(prev_cpu, idx);
1279 1280
	this_load = target_load(this_cpu, idx);

1281
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1282 1283 1284
				     load, this_load, imbalance))
		return this_cpu;

1285 1286 1287 1288 1289 1290 1291 1292
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1293
			return this_cpu;
1294 1295 1296
		}
	}

1297
out:
1298 1299 1300 1301
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1302 1303 1304 1305 1306
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1307 1308
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1309
	 */
1310 1311
	if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
		gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1312 1313 1314 1315

	return gran;
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}

1345 1346
static void set_last_buddy(struct sched_entity *se)
{
1347 1348 1349 1350
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1351 1352 1353 1354
}

static void set_next_buddy(struct sched_entity *se)
{
1355 1356 1357 1358
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1359 1360
}

1361 1362 1363
/*
 * Preempt the current task with a newly woken task if needed:
 */
1364
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1365 1366
{
	struct task_struct *curr = rq->curr;
1367
	struct sched_entity *se = &curr->se, *pse = &p->se;
1368
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1369

1370
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1371

1372
	if (unlikely(rt_prio(p->prio))) {
1373 1374 1375
		resched_task(curr);
		return;
	}
1376

P
Peter Zijlstra 已提交
1377 1378 1379
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1380 1381 1382
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1393 1394
		set_last_buddy(se);
	set_next_buddy(pse);
P
Peter Zijlstra 已提交
1395

1396 1397 1398 1399 1400 1401 1402
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1403
	/*
1404
	 * Batch and idle tasks do not preempt (their preemption is driven by
1405 1406
	 * the tick):
	 */
1407
	if (unlikely(p->policy != SCHED_NORMAL))
1408
		return;
1409

1410 1411 1412 1413 1414 1415
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
		return;
	}

1416 1417
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1418

1419 1420 1421
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1422 1423 1424 1425
		resched_task(curr);
		return;
	}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	find_matching_se(&se, &pse);

	while (se) {
		BUG_ON(!pse);

		if (wakeup_preempt_entity(se, pse) == 1) {
			resched_task(curr);
			break;
		}

		se = parent_entity(se);
		pse = parent_entity(pse);
	}
1439 1440
}

1441
static struct task_struct *pick_next_task_fair(struct rq *rq)
1442
{
P
Peter Zijlstra 已提交
1443
	struct task_struct *p;
1444 1445 1446 1447 1448 1449 1450
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1451
		se = pick_next_entity(cfs_rq);
1452
		set_next_entity(cfs_rq, se);
1453 1454 1455
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1456 1457 1458 1459
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1460 1461 1462 1463 1464
}

/*
 * Account for a descheduled task:
 */
1465
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1466 1467 1468 1469 1470 1471
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1472
		put_prev_entity(cfs_rq, se);
1473 1474 1475
	}
}

1476
#ifdef CONFIG_SMP
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1488
static struct task_struct *
1489
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1490
{
D
Dhaval Giani 已提交
1491 1492
	struct task_struct *p = NULL;
	struct sched_entity *se;
1493

1494 1495 1496
	if (next == &cfs_rq->tasks)
		return NULL;

1497 1498 1499
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1500

1501 1502 1503 1504 1505 1506 1507
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1508
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1509 1510 1511 1512 1513 1514
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1515
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1516 1517
}

1518 1519 1520 1521 1522
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1523
{
1524
	struct rq_iterator cfs_rq_iterator;
1525

1526 1527 1528
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1529

1530 1531 1532
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1533 1534
}

1535
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1536
static unsigned long
1537
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1538
		  unsigned long max_load_move,
1539 1540
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1541 1542
{
	long rem_load_move = max_load_move;
1543 1544
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1545

1546
	rcu_read_lock();
1547
	update_h_load(busiest_cpu);
1548

1549
	list_for_each_entry_rcu(tg, &task_groups, list) {
1550
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1551 1552
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1553
		u64 rem_load, moved_load;
1554

1555 1556 1557
		/*
		 * empty group
		 */
1558
		if (!busiest_cfs_rq->task_weight)
1559 1560
			continue;

S
Srivatsa Vaddagiri 已提交
1561 1562
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1563

1564
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1565
				rem_load, sd, idle, all_pinned, this_best_prio,
1566
				tg->cfs_rq[busiest_cpu]);
1567

1568
		if (!moved_load)
1569 1570
			continue;

1571
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1572
		moved_load = div_u64(moved_load, busiest_weight + 1);
1573

1574 1575
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1576 1577
			break;
	}
1578
	rcu_read_unlock();
1579

P
Peter Williams 已提交
1580
	return max_load_move - rem_load_move;
1581
}
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1618
#endif /* CONFIG_SMP */
1619

1620 1621 1622
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1623
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1624 1625 1626 1627 1628 1629
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1630
		entity_tick(cfs_rq, se, queued);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1641
static void task_new_fair(struct rq *rq, struct task_struct *p)
1642 1643
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1644
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1645
	int this_cpu = smp_processor_id();
1646 1647 1648

	sched_info_queued(p);

1649
	update_curr(cfs_rq);
1650
	place_entity(cfs_rq, se, 1);
1651

1652
	/* 'curr' will be NULL if the child belongs to a different group */
1653
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1654
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1655
		/*
1656 1657 1658
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1659
		swap(curr->vruntime, se->vruntime);
1660
		resched_task(rq->curr);
1661
	}
1662

1663
	enqueue_task_fair(rq, p, 0);
1664 1665
}

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1682
		check_preempt_curr(rq, p, 0);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1699
		check_preempt_curr(rq, p, 0);
1700 1701
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1725 1726 1727
/*
 * All the scheduling class methods:
 */
1728 1729
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1730 1731 1732 1733
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1734
	.check_preempt_curr	= check_preempt_wakeup,
1735 1736 1737 1738

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1739
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1740 1741
	.select_task_rq		= select_task_rq_fair,

1742
	.load_balance		= load_balance_fair,
1743
	.move_one_task		= move_one_task_fair,
1744
#endif
1745

1746
	.set_curr_task          = set_curr_task_fair,
1747 1748
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1749 1750 1751

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1752 1753 1754 1755

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1756 1757 1758
};

#ifdef CONFIG_SCHED_DEBUG
1759
static void print_cfs_stats(struct seq_file *m, int cpu)
1760 1761 1762
{
	struct cfs_rq *cfs_rq;

1763
	rcu_read_lock();
1764
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1765
		print_cfs_rq(m, cpu, cfs_rq);
1766
	rcu_read_unlock();
1767 1768
}
#endif