sched_fair.c 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

23 24 25 26 27 28 29 30 31
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

32
/*
33 34
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
35
 *
36 37 38 39
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
40 41 42 43
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
44
 * Targeted preemption latency for CPU-bound tasks:
45
 */
46 47 48 49 50 51 52
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
53 54 55 56 57

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
58
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
59

60 61 62 63 64 65 66 67
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

68 69
/*
 * SCHED_BATCH wake-up granularity.
70
 * (default: 25 msec, units: nanoseconds)
71 72 73 74 75
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
76
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
77 78 79 80 81 82 83 84 85

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
86
const_debug unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
87 88 89 90 91 92 93 94 95 96

unsigned int sysctl_sched_runtime_limit __read_mostly;

/*
 * Debugging: various feature bits
 */
enum {
	SCHED_FEAT_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_SLEEPER_AVG		= 2,
	SCHED_FEAT_SLEEPER_LOAD_AVG	= 4,
I
Ingo Molnar 已提交
97 98
	SCHED_FEAT_START_DEBIT		= 8,
	SCHED_FEAT_SKIP_INITIAL		= 16,
99 100
};

101
const_debug unsigned int sysctl_sched_features =
102
		SCHED_FEAT_FAIR_SLEEPERS	*1 |
I
Ingo Molnar 已提交
103
		SCHED_FEAT_SLEEPER_AVG		*0 |
104 105 106 107
		SCHED_FEAT_SLEEPER_LOAD_AVG	*1 |
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_SKIP_INITIAL		*0;

P
Peter Zijlstra 已提交
108 109
#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

110 111 112 113 114 115
extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

116
#ifdef CONFIG_FAIR_GROUP_SCHED
117

118
/* cpu runqueue to which this cfs_rq is attached */
119 120
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
121
	return cfs_rq->rq;
122 123
}

124 125
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
126

127
#else	/* CONFIG_FAIR_GROUP_SCHED */
128

129 130 131
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

/*
 * Enqueue an entity into the rb-tree:
 */
151
static void
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	s64 key = se->fair_key;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (key - entry->fair_key < 0) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
		cfs_rq->rb_leftmost = &se->run_node;

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
190 191

	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
192 193
}

194
static void
195 196 197 198 199 200 201 202
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
203 204

	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

/**************************************************************
 * Scheduling class statistics methods:
 */

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/*
 * Calculate the preemption granularity needed to schedule every
 * runnable task once per sysctl_sched_latency amount of time.
 * (down to a sensible low limit on granularity)
 *
 * For example, if there are 2 tasks running and latency is 10 msecs,
 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
 * for each task. We do finer and finer scheduling up to until we
 * reach the minimum granularity value.
 *
 * To achieve this we use the following dynamic-granularity rule:
 *
 *    gran = lat/nr - lat/nr/nr
 *
 * This comes out of the following equations:
 *
 *    kA1 + gran = kB1
 *    kB2 + gran = kA2
 *    kA2 = kA1
 *    kB2 = kB1 - d + d/nr
 *    lat = d * nr
 *
 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
 * '1' is start of time, '2' is end of time, 'd' is delay between
 * 1 and 2 (during which task B was running), 'nr' is number of tasks
 * running, 'lat' is the the period of each task. ('lat' is the
 * sched_latency that we aim for.)
 */
static long
sched_granularity(struct cfs_rq *cfs_rq)
{
	unsigned int gran = sysctl_sched_latency;
	unsigned int nr = cfs_rq->nr_running;

	if (nr > 1) {
		gran = gran/nr - gran/nr/nr;
258
		gran = max(gran, sysctl_sched_min_granularity);
259 260 261 262 263
	}

	return gran;
}

264 265 266 267 268 269 270 271 272
/*
 * We rescale the rescheduling granularity of tasks according to their
 * nice level, but only linearly, not exponentially:
 */
static long
niced_granularity(struct sched_entity *curr, unsigned long granularity)
{
	u64 tmp;

273 274
	if (likely(curr->load.weight == NICE_0_LOAD))
		return granularity;
275
	/*
276
	 * Positive nice levels get the same granularity as nice-0:
277
	 */
278 279 280 281
	if (likely(curr->load.weight < NICE_0_LOAD)) {
		tmp = curr->load.weight * (u64)granularity;
		return (long) (tmp >> NICE_0_SHIFT);
	}
282
	/*
283
	 * Negative nice level tasks get linearly finer
284 285
	 * granularity:
	 */
286
	tmp = curr->load.inv_weight * (u64)granularity;
287 288 289 290

	/*
	 * It will always fit into 'long':
	 */
291
	return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
}

static inline void
limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	long limit = sysctl_sched_runtime_limit;

	/*
	 * Niced tasks have the same history dynamic range as
	 * non-niced tasks:
	 */
	if (unlikely(se->wait_runtime > limit)) {
		se->wait_runtime = limit;
		schedstat_inc(se, wait_runtime_overruns);
		schedstat_inc(cfs_rq, wait_runtime_overruns);
	}
	if (unlikely(se->wait_runtime < -limit)) {
		se->wait_runtime = -limit;
		schedstat_inc(se, wait_runtime_underruns);
		schedstat_inc(cfs_rq, wait_runtime_underruns);
	}
}

static inline void
__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	se->wait_runtime += delta;
	schedstat_add(se, sum_wait_runtime, delta);
	limit_wait_runtime(cfs_rq, se);
}

static void
add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
	__add_wait_runtime(cfs_rq, se, delta);
	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
336 337
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
338
{
I
Ingo Molnar 已提交
339
	unsigned long delta, delta_fair, delta_mine;
340 341 342
	struct load_weight *lw = &cfs_rq->load;
	unsigned long load = lw->weight;

343
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
344 345 346 347

	curr->sum_exec_runtime += delta_exec;
	cfs_rq->exec_clock += delta_exec;

I
Ingo Molnar 已提交
348 349 350
	if (unlikely(!load))
		return;

351 352 353
	delta_fair = calc_delta_fair(delta_exec, lw);
	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);

M
Mike Galbraith 已提交
354
	if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
355
		delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
356 357
		delta = min(delta, (unsigned long)(
			(long)sysctl_sched_runtime_limit - curr->wait_runtime));
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		cfs_rq->sleeper_bonus -= delta;
		delta_mine -= delta;
	}

	cfs_rq->fair_clock += delta_fair;
	/*
	 * We executed delta_exec amount of time on the CPU,
	 * but we were only entitled to delta_mine amount of
	 * time during that period (if nr_running == 1 then
	 * the two values are equal)
	 * [Note: delta_mine - delta_exec is negative]:
	 */
	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
}

373
static void update_curr(struct cfs_rq *cfs_rq)
374
{
375
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
376
	u64 now = rq_of(cfs_rq)->clock;
377 378 379 380 381 382 383 384 385 386
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
387
	delta_exec = (unsigned long)(now - curr->exec_start);
388

I
Ingo Molnar 已提交
389 390
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
391 392 393
}

static inline void
394
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
395 396
{
	se->wait_start_fair = cfs_rq->fair_clock;
397
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
398 399 400
}

static inline unsigned long
I
Ingo Molnar 已提交
401
calc_weighted(unsigned long delta, struct sched_entity *se)
402
{
I
Ingo Molnar 已提交
403
	unsigned long weight = se->load.weight;
404

I
Ingo Molnar 已提交
405 406 407 408
	if (unlikely(weight != NICE_0_LOAD))
		return (u64)delta * se->load.weight >> NICE_0_SHIFT;
	else
		return delta;
409 410 411 412 413
}

/*
 * Task is being enqueued - update stats:
 */
414
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
415 416 417 418 419 420 421
{
	s64 key;

	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
422
	if (se != cfs_rq->curr)
423
		update_stats_wait_start(cfs_rq, se);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	/*
	 * Update the key:
	 */
	key = cfs_rq->fair_clock;

	/*
	 * Optimize the common nice 0 case:
	 */
	if (likely(se->load.weight == NICE_0_LOAD)) {
		key -= se->wait_runtime;
	} else {
		u64 tmp;

		if (se->wait_runtime < 0) {
			tmp = -se->wait_runtime;
			key += (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
		} else {
			tmp = se->wait_runtime;
443 444
			key -= (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
445 446 447 448 449 450 451 452 453 454
		}
	}

	se->fair_key = key;
}

/*
 * Note: must be called with a freshly updated rq->fair_clock.
 */
static inline void
I
Ingo Molnar 已提交
455 456
__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
			unsigned long delta_fair)
457
{
458 459
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
460

I
Ingo Molnar 已提交
461
	delta_fair = calc_weighted(delta_fair, se);
462 463 464 465 466

	add_wait_runtime(cfs_rq, se, delta_fair);
}

static void
467
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
468 469 470
{
	unsigned long delta_fair;

471 472 473
	if (unlikely(!se->wait_start_fair))
		return;

474 475 476
	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
			(u64)(cfs_rq->fair_clock - se->wait_start_fair));

I
Ingo Molnar 已提交
477
	__update_stats_wait_end(cfs_rq, se, delta_fair);
478 479

	se->wait_start_fair = 0;
I
Ingo Molnar 已提交
480
	schedstat_set(se->wait_start, 0);
481 482 483
}

static inline void
484
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
485
{
486
	update_curr(cfs_rq);
487 488 489 490
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
491
	if (se != cfs_rq->curr)
492
		update_stats_wait_end(cfs_rq, se);
493 494 495 496 497 498
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
499
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
500 501 502 503
{
	/*
	 * We are starting a new run period:
	 */
504
	se->exec_start = rq_of(cfs_rq)->clock;
505 506 507 508 509 510
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
511
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
512 513 514 515 516 517 518 519
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

I
Ingo Molnar 已提交
520 521
static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
			      unsigned long delta_fair)
522
{
I
Ingo Molnar 已提交
523
	unsigned long load = cfs_rq->load.weight;
524 525
	long prev_runtime;

526 527 528 529 530 531 532
	/*
	 * Do not boost sleepers if there's too much bonus 'in flight'
	 * already:
	 */
	if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
		return;

P
Peter Zijlstra 已提交
533
	if (sched_feat(SLEEPER_LOAD_AVG))
534 535 536 537 538 539
		load = rq_of(cfs_rq)->cpu_load[2];

	/*
	 * Fix up delta_fair with the effect of us running
	 * during the whole sleep period:
	 */
P
Peter Zijlstra 已提交
540
	if (sched_feat(SLEEPER_AVG))
541 542 543
		delta_fair = div64_likely32((u64)delta_fair * load,
						load + se->load.weight);

I
Ingo Molnar 已提交
544
	delta_fair = calc_weighted(delta_fair, se);
545 546 547 548 549 550 551 552 553 554 555

	prev_runtime = se->wait_runtime;
	__add_wait_runtime(cfs_rq, se, delta_fair);
	delta_fair = se->wait_runtime - prev_runtime;

	/*
	 * Track the amount of bonus we've given to sleepers:
	 */
	cfs_rq->sleeper_bonus += delta_fair;
}

556
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
557 558 559 560 561
{
	struct task_struct *tsk = task_of(se);
	unsigned long delta_fair;

	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
P
Peter Zijlstra 已提交
562
			 !sched_feat(FAIR_SLEEPERS))
563 564 565 566 567
		return;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));

I
Ingo Molnar 已提交
568
	__enqueue_sleeper(cfs_rq, se, delta_fair);
569 570 571 572 573

	se->sleep_start_fair = 0;

#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
574
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
575 576 577 578 579 580 581 582 583 584 585

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
586
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
587 588 589 590 591 592 593 594 595

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
596 597 598 599 600 601 602 603 604 605

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
606 607 608 609 610
	}
#endif
}

static void
611
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
612 613 614 615
{
	/*
	 * Update the fair clock.
	 */
616
	update_curr(cfs_rq);
617 618

	if (wakeup)
619
		enqueue_sleeper(cfs_rq, se);
620

621
	update_stats_enqueue(cfs_rq, se);
622 623 624 625
	__enqueue_entity(cfs_rq, se);
}

static void
626
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
627
{
628
	update_stats_dequeue(cfs_rq, se);
629 630 631 632 633 634 635
	if (sleep) {
		se->sleep_start_fair = cfs_rq->fair_clock;
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
636
				se->sleep_start = rq_of(cfs_rq)->clock;
637
			if (tsk->state & TASK_UNINTERRUPTIBLE)
638
				se->block_start = rq_of(cfs_rq)->clock;
639 640 641 642 643 644 645 646 647
		}
#endif
	}
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
648
static void
649 650 651 652
__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
			  struct sched_entity *curr, unsigned long granularity)
{
	s64 __delta = curr->fair_key - se->fair_key;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	unsigned long ideal_runtime, delta_exec;

	/*
	 * ideal_runtime is compared against sum_exec_runtime, which is
	 * walltime, hence do not scale.
	 */
	ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
			(unsigned long)sysctl_sched_min_granularity);

	/*
	 * If we executed more than what the latency constraint suggests,
	 * reduce the rescheduling granularity. This way the total latency
	 * of how much a task is not scheduled converges to
	 * sysctl_sched_latency:
	 */
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
		granularity = 0;
671 672 673 674 675

	/*
	 * Take scheduling granularity into account - do not
	 * preempt the current task unless the best task has
	 * a larger than sched_granularity fairness advantage:
676 677
	 *
	 * scale granularity as key space is in fair_clock.
678
	 */
679
	if (__delta > niced_granularity(curr, granularity))
680 681 682 683
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
684
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
685 686 687 688 689 690 691 692
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
	 * runqueue. (note, here we rely on pick_next_task() having
	 * done a put_prev_task_fair() shortly before this, which
	 * updated rq->fair_clock - used by update_stats_wait_end())
	 */
693
	update_stats_wait_end(cfs_rq, se);
694
	update_stats_curr_start(cfs_rq, se);
695
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
696 697 698 699 700 701 702 703 704 705 706
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
	if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
707
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
708 709
}

710
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
711 712 713
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

714
	set_next_entity(cfs_rq, se);
715 716 717 718

	return se;
}

719
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
720 721 722 723 724 725
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
726
		update_curr(cfs_rq);
727

728
	update_stats_curr_end(cfs_rq, prev);
729 730

	if (prev->on_rq)
731
		update_stats_wait_start(cfs_rq, prev);
732
	cfs_rq->curr = NULL;
733 734 735 736 737
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	struct sched_entity *next;
I
Ingo Molnar 已提交
738

739 740 741 742
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
743
	dequeue_entity(cfs_rq, curr, 0);
744
	enqueue_entity(cfs_rq, curr, 0);
745 746 747 748 749 750 751 752

	/*
	 * Reschedule if another task tops the current one.
	 */
	next = __pick_next_entity(cfs_rq);
	if (next == curr)
		return;

753 754
	__check_preempt_curr_fair(cfs_rq, next, curr,
			sched_granularity(cfs_rq));
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	/* A later patch will take group into account */
	return &cpu_rq(this_cpu)->cfs;
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
850
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
851 852 853 854 855 856 857 858
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
859
		enqueue_entity(cfs_rq, se, wakeup);
860 861 862 863 864 865 866 867
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
868
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
869 870 871 872 873 874
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
875
		dequeue_entity(cfs_rq, se, sleep);
876 877 878 879 880 881 882
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
883 884 885
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
886 887 888 889
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
890 891 892
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *rightmost, *se = &p->se;
	struct rb_node *parent;
893 894

	/*
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
		dequeue_entity(cfs_rq, &p->se, 0);
		enqueue_entity(cfs_rq, &p->se, 0);

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
913
	 */
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
	se->fair_key = rightmost->fair_key + 1;

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
939 940 941 942 943 944 945 946 947 948 949 950
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	unsigned long gran;

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
951
		update_rq_clock(rq);
952
		update_curr(cfs_rq);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
		resched_task(curr);
		return;
	}

	gran = sysctl_sched_wakeup_granularity;
	/*
	 * Batch tasks prefer throughput over latency:
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		gran = sysctl_sched_batch_wakeup_granularity;

	if (is_same_group(curr, p))
		__check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
}

968
static struct task_struct *pick_next_task_fair(struct rq *rq)
969 970 971 972 973 974 975 976
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
977
		se = pick_next_entity(cfs_rq);
978 979 980 981 982 983 984 985 986
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
987
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
988 989 990 991 992 993
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
994
		put_prev_entity(cfs_rq, se);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

1037
#ifdef CONFIG_FAIR_GROUP_SCHED
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
1051
#endif
1052

P
Peter Williams 已提交
1053
static unsigned long
1054
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1055 1056 1057
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1068
#ifdef CONFIG_FAIR_GROUP_SCHED
1069
		struct cfs_rq *this_cfs_rq;
1070
		long imbalance;
1071 1072 1073 1074
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

1075
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1076 1077 1078 1079 1080 1081 1082 1083
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

1084 1085
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
1086
# define maxload rem_load_move
1087
#endif
1088 1089 1090 1091 1092 1093
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
1094
				&load_moved, this_best_prio, &cfs_rq_iterator);
1095 1096 1097 1098 1099 1100 1101 1102 1103

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
1104
	return max_load_move - rem_load_move;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1128
static void task_new_fair(struct rq *rq, struct task_struct *p)
1129 1130
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1131
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1132 1133 1134

	sched_info_queued(p);

1135
	update_curr(cfs_rq);
1136
	update_stats_enqueue(cfs_rq, se);
1137 1138 1139 1140 1141
	/*
	 * Child runs first: we let it run before the parent
	 * until it reschedules once. We set up the key so that
	 * it will preempt the parent:
	 */
I
Ingo Molnar 已提交
1142
	se->fair_key = curr->fair_key -
1143
		niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
1144 1145 1146 1147
	/*
	 * The first wait is dominated by the child-runs-first logic,
	 * so do not credit it with that waiting time yet:
	 */
P
Peter Zijlstra 已提交
1148
	if (sched_feat(SKIP_INITIAL))
I
Ingo Molnar 已提交
1149
		se->wait_start_fair = 0;
1150 1151 1152 1153 1154

	/*
	 * The statistical average of wait_runtime is about
	 * -granularity/2, so initialize the task with that:
	 */
P
Peter Zijlstra 已提交
1155
	if (sched_feat(START_DEBIT))
I
Ingo Molnar 已提交
1156
		se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
1157 1158

	__enqueue_entity(cfs_rq, se);
1159
	resched_task(rq->curr);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
1170
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
1171

1172 1173
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
}
#else
static void set_curr_task_fair(struct rq *rq)
{
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

	.check_preempt_curr	= check_preempt_curr_fair,

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1202
static void print_cfs_stats(struct seq_file *m, int cpu)
1203 1204 1205
{
	struct cfs_rq *cfs_rq;

1206
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1207
		print_cfs_rq(m, cpu, cfs_rq);
1208 1209
}
#endif