rcutree.c 96.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55
#include <linux/random.h>
56

57
#include "rcutree.h"
58 59 60
#include <trace/events/rcu.h>

#include "rcu.h"
61

62 63
/* Data structures. */

64
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66

67
#define RCU_STATE_INITIALIZER(sname, cr) { \
68
	.level = { &sname##_state.node[0] }, \
69
	.call = cr, \
70
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
71 72
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
73
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 75
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
76
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78
	.name = #sname, \
79 80
}

81 82
struct rcu_state rcu_sched_state =
	RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84

85
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87

88
static struct rcu_state *rcu_state;
89
LIST_HEAD(rcu_struct_flavors);
90

91 92
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93
module_param(rcu_fanout_leaf, int, 0444);
94 95 96 97 98 99 100 101 102 103
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

104 105 106 107 108 109 110 111 112
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
113 114 115
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

116 117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

130 131
#ifdef CONFIG_RCU_BOOST

132 133 134 135 136
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139
DEFINE_PER_CPU(char, rcu_cpu_has_work);
140

141 142
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
143
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 145
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146

147 148 149 150 151 152 153 154 155 156 157 158
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

159 160 161 162 163 164 165 166 167 168
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

169
/*
170
 * Note a quiescent state.  Because we do not need to know
171
 * how many quiescent states passed, just if there was at least
172
 * one since the start of the grace period, this just sets a flag.
173
 * The caller must have disabled preemption.
174
 */
175
void rcu_sched_qs(int cpu)
176
{
177
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178

179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182 183
}

184
void rcu_bh_qs(int cpu)
185
{
186
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187

188
	if (rdp->passed_quiesce == 0)
189
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190
	rdp->passed_quiesce = 1;
191
}
192

193 194 195
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
196
 * The caller must have disabled preemption.
197 198 199
 */
void rcu_note_context_switch(int cpu)
{
200
	trace_rcu_utilization("Start context switch");
201
	rcu_sched_qs(cpu);
202
	rcu_preempt_note_context_switch(cpu);
203
	trace_rcu_utilization("End context switch");
204
}
205
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206

207
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209
	.dynticks = ATOMIC_INIT(1),
210
#if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE)
211 212
	.ignore_user_qs = true,
#endif
213
};
214

E
Eric Dumazet 已提交
215 216 217
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
218

E
Eric Dumazet 已提交
219 220 221
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
222

223 224 225
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

226
module_param(rcu_cpu_stall_suppress, int, 0644);
227
module_param(rcu_cpu_stall_timeout, int, 0644);
228

229 230 231 232 233 234
static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

235 236
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
static void force_quiescent_state(struct rcu_state *rsp);
237
static int rcu_pending(int cpu);
238 239

/*
240
 * Return the number of RCU-sched batches processed thus far for debug & stats.
241
 */
242
long rcu_batches_completed_sched(void)
243
{
244
	return rcu_sched_state.completed;
245
}
246
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
247 248 249 250 251 252 253 254 255 256

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

257 258 259 260 261
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
262
	force_quiescent_state(&rcu_bh_state);
263 264 265
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

291 292 293 294 295
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
296
	force_quiescent_state(&rcu_sched_state);
297 298 299
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

300 301 302 303 304 305
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
306 307
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
308 309 310 311 312 313 314 315
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
316 317 318 319 320
	struct rcu_head **ntp;

	ntp = rdp->nxttail[RCU_DONE_TAIL +
			   (ACCESS_ONCE(rsp->completed) != rdp->completed)];
	return rdp->nxttail[RCU_DONE_TAIL] && ntp && *ntp &&
321
	       !rcu_gp_in_progress(rsp);
322 323 324 325 326 327 328 329 330 331
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

332
/*
333
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
334 335 336 337 338
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
339 340
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
341
{
342
	trace_rcu_dyntick("Start", oldval, 0);
343
	if (!user && !is_idle_task(current)) {
344 345
		struct task_struct *idle = idle_task(smp_processor_id());

346
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
347
		ftrace_dump(DUMP_ORIG);
348 349 350
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
351
	}
352
	rcu_prepare_for_idle(smp_processor_id());
353 354 355 356 357
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
358 359

	/*
360
	 * It is illegal to enter an extended quiescent state while
361 362 363 364 365 366 367 368
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
369
}
370

371 372 373
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
374
 */
375
static void rcu_eqs_enter(bool user)
376
{
377
	long long oldval;
378 379 380
	struct rcu_dynticks *rdtp;

	rdtp = &__get_cpu_var(rcu_dynticks);
381
	oldval = rdtp->dynticks_nesting;
382 383 384 385 386
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
387
	rcu_eqs_enter_common(rdtp, oldval, user);
388
}
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
404 405 406
	unsigned long flags;

	local_irq_save(flags);
407
	rcu_eqs_enter(false);
408
	local_irq_restore(flags);
409
}
410
EXPORT_SYMBOL_GPL(rcu_idle_enter);
411

412
#ifdef CONFIG_RCU_USER_QS
413 414 415 416 417 418 419 420 421 422
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
423 424 425
	unsigned long flags;
	struct rcu_dynticks *rdtp;

426 427 428 429 430 431 432 433 434 435 436
	/*
	 * Some contexts may involve an exception occuring in an irq,
	 * leading to that nesting:
	 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
	 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
	 * helpers are enough to protect RCU uses inside the exception. So
	 * just return immediately if we detect we are in an IRQ.
	 */
	if (in_interrupt())
		return;

437 438 439 440
	WARN_ON_ONCE(!current->mm);

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
441
	if (!rdtp->ignore_user_qs && !rdtp->in_user) {
442
		rdtp->in_user = true;
443
		rcu_eqs_enter(true);
444 445
	}
	local_irq_restore(flags);
446 447
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/**
 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
 * after the current irq returns.
 *
 * This is similar to rcu_user_enter() but in the context of a non-nesting
 * irq. After this call, RCU enters into idle mode when the interrupt
 * returns.
 */
void rcu_user_enter_after_irq(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	/* Ensure this irq is interrupting a non-idle RCU state.  */
	WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
	rdtp->dynticks_nesting = 1;
	local_irq_restore(flags);
}
468
#endif /* CONFIG_RCU_USER_QS */
469

470 471 472 473 474 475
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
476
 *
477 478 479 480 481 482 483 484
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
485
 */
486
void rcu_irq_exit(void)
487 488
{
	unsigned long flags;
489
	long long oldval;
490 491 492 493
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
494
	oldval = rdtp->dynticks_nesting;
495 496
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
497 498 499
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
500
		rcu_eqs_enter_common(rdtp, oldval, true);
501 502 503 504
	local_irq_restore(flags);
}

/*
505
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
506 507 508 509 510
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
511 512
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
513
{
514 515 516 517 518
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
519
	rcu_cleanup_after_idle(smp_processor_id());
520
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
521
	if (!user && !is_idle_task(current)) {
522 523
		struct task_struct *idle = idle_task(smp_processor_id());

524 525
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
526
		ftrace_dump(DUMP_ORIG);
527 528 529
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
530 531 532
	}
}

533 534 535
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
536
 */
537
static void rcu_eqs_exit(bool user)
538 539 540 541 542 543
{
	struct rcu_dynticks *rdtp;
	long long oldval;

	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
544 545 546 547 548
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
549
	rcu_eqs_exit_common(rdtp, oldval, user);
550
}
551 552 553 554 555 556 557 558 559 560 561 562 563 564

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
565 566 567
	unsigned long flags;

	local_irq_save(flags);
568
	rcu_eqs_exit(false);
569
	local_irq_restore(flags);
570
}
571
EXPORT_SYMBOL_GPL(rcu_idle_exit);
572

573
#ifdef CONFIG_RCU_USER_QS
574 575 576 577 578 579 580 581
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
582 583 584
	unsigned long flags;
	struct rcu_dynticks *rdtp;

585 586 587 588 589 590 591 592 593 594 595
	/*
	 * Some contexts may involve an exception occuring in an irq,
	 * leading to that nesting:
	 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
	 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
	 * helpers are enough to protect RCU uses inside the exception. So
	 * just return immediately if we detect we are in an IRQ.
	 */
	if (in_interrupt())
		return;

596 597 598 599
	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	if (rdtp->in_user) {
		rdtp->in_user = false;
600
		rcu_eqs_exit(true);
601 602
	}
	local_irq_restore(flags);
603 604
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/**
 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
 * idle mode after the current non-nesting irq returns.
 *
 * This is similar to rcu_user_exit() but in the context of an irq.
 * This is called when the irq has interrupted a userspace RCU idle mode
 * context. When the current non-nesting interrupt returns after this call,
 * the CPU won't restore the RCU idle mode.
 */
void rcu_user_exit_after_irq(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	/* Ensure we are interrupting an RCU idle mode. */
	WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
	rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
	local_irq_restore(flags);
}
626
#endif /* CONFIG_RCU_USER_QS */
627

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
658 659 660
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
661
		rcu_eqs_exit_common(rdtp, oldval, true);
662 663 664 665 666 667 668 669 670 671 672 673 674 675
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

676 677
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
678
		return;
679 680 681 682 683 684
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
685 686 687 688 689 690 691 692 693 694 695 696 697
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

698 699
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
700
		return;
701 702 703 704 705
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
706 707 708
}

/**
709
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
710
 *
711
 * If the current CPU is in its idle loop and is neither in an interrupt
712
 * or NMI handler, return true.
713
 */
714
int rcu_is_cpu_idle(void)
715
{
716 717 718 719 720 721
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
722
}
723
EXPORT_SYMBOL(rcu_is_cpu_idle);
724

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
#ifdef CONFIG_RCU_USER_QS
void rcu_user_hooks_switch(struct task_struct *prev,
			   struct task_struct *next)
{
	struct rcu_dynticks *rdtp;

	/* Interrupts are disabled in context switch */
	rdtp = &__get_cpu_var(rcu_dynticks);
	if (!rdtp->ignore_user_qs) {
		clear_tsk_thread_flag(prev, TIF_NOHZ);
		set_tsk_thread_flag(next, TIF_NOHZ);
	}
}
#endif /* #ifdef CONFIG_RCU_USER_QS */

740
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
741 742 743 744 745 746 747

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
748 749 750 751 752 753 754 755 756 757 758
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
759 760 761 762 763 764
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
765 766
	struct rcu_data *rdp;
	struct rcu_node *rnp;
767 768 769 770 771
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
772 773 774
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
775 776 777 778 779 780
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

781
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
782

783
/**
784
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
785
 *
786 787 788
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
789
 */
790
int rcu_is_cpu_rrupt_from_idle(void)
791
{
792
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
793 794 795 796 797
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
798
 * is in dynticks idle mode, which is an extended quiescent state.
799 800 801
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
802
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
803
	return (rdp->dynticks_snap & 0x1) == 0;
804 805 806 807 808 809
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
810
 * for this same CPU, or by virtue of having been offline.
811 812 813
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
814 815
	unsigned int curr;
	unsigned int snap;
816

817 818
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
819 820 821 822 823 824 825 826 827

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
828
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
829
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
830 831 832 833
		rdp->dynticks_fqs++;
		return 1;
	}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
854 855
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

874 875 876
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
877
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
878 879
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
/*
 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 * for architectures that do not implement trigger_all_cpu_backtrace().
 * The NMI-triggered stack traces are more accurate because they are
 * printed by the target CPU.
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

903 904 905 906 907
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
908
	int ndetected = 0;
909
	struct rcu_node *rnp = rcu_get_root(rsp);
910
	long totqlen = 0;
911 912 913

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
914
	raw_spin_lock_irqsave(&rnp->lock, flags);
915
	delta = jiffies - rsp->jiffies_stall;
916
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
917
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
918 919
		return;
	}
920
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
921
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
922

923 924 925 926 927
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
928
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
929
	       rsp->name);
930
	print_cpu_stall_info_begin();
931
	rcu_for_each_leaf_node(rsp, rnp) {
932
		raw_spin_lock_irqsave(&rnp->lock, flags);
933
		ndetected += rcu_print_task_stall(rnp);
934 935 936 937 938 939 940 941
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
942
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
943
	}
944 945 946 947 948 949 950

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
951
	ndetected += rcu_print_task_stall(rnp);
952 953 954
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
955 956 957
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
958
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
959
	       rsp->gpnum, rsp->completed, totqlen);
960 961 962
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
963
		rcu_dump_cpu_stacks(rsp);
964

965
	/* Complain about tasks blocking the grace period. */
966 967 968

	rcu_print_detail_task_stall(rsp);

969
	force_quiescent_state(rsp);  /* Kick them all. */
970 971 972 973
}

static void print_cpu_stall(struct rcu_state *rsp)
{
974
	int cpu;
975 976
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
977
	long totqlen = 0;
978

979 980 981 982 983
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
984 985 986 987
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
988 989 990 991
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
992 993
	if (!trigger_all_cpu_backtrace())
		dump_stack();
994

P
Paul E. McKenney 已提交
995
	raw_spin_lock_irqsave(&rnp->lock, flags);
996
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
997 998
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
999
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1000

1001 1002 1003 1004 1005
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1006 1007
	unsigned long j;
	unsigned long js;
1008 1009
	struct rcu_node *rnp;

1010
	if (rcu_cpu_stall_suppress)
1011
		return;
1012 1013
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
1014
	rnp = rdp->mynode;
1015 1016
	if (rcu_gp_in_progress(rsp) &&
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
1017 1018 1019 1020

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1021 1022
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1023

1024
		/* They had a few time units to dump stack, so complain. */
1025 1026 1027 1028
		print_other_cpu_stall(rsp);
	}
}

1029 1030
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
1031
	rcu_cpu_stall_suppress = 1;
1032 1033 1034
	return NOTIFY_DONE;
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1046 1047 1048 1049
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

1061 1062 1063
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
1064 1065 1066
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
1067
 */
1068 1069 1070
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
1071 1072 1073 1074 1075
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
1076
		rdp->gpnum = rnp->gpnum;
1077
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1078 1079
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1080
		zero_cpu_stall_ticks(rdp);
1081 1082 1083
	}
}

1084 1085
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
1086 1087 1088 1089 1090 1091
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
1092
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1093 1094 1095 1096
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1097
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
P
Paul E. McKenney 已提交
1130
	init_nocb_callback_list(rdp);
1131 1132
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1152
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1153

1154 1155
		/*
		 * If we were in an extended quiescent state, we may have
1156
		 * missed some grace periods that others CPUs handled on
1157
		 * our behalf. Catch up with this state to avoid noting
1158 1159
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
1160 1161
		 * we will detect this later on.  Of course, any quiescent
		 * states we found for the old GP are now invalid.
1162
		 */
1163
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1164
			rdp->gpnum = rdp->completed;
1165 1166
			rdp->passed_quiesce = 0;
		}
1167

1168
		/*
1169 1170
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
1171
		 */
1172
		if ((rnp->qsmask & rdp->grpmask) == 0)
1173
			rdp->qs_pending = 0;
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1191
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1192 1193 1194 1195
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1196
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

1210 1211
	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1212 1213
}

1214
/*
1215
 * Initialize a new grace period.
1216
 */
1217
static int rcu_gp_init(struct rcu_state *rsp)
1218 1219
{
	struct rcu_data *rdp;
1220
	struct rcu_node *rnp = rcu_get_root(rsp);
1221

1222
	raw_spin_lock_irq(&rnp->lock);
1223
	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	if (rcu_gp_in_progress(rsp)) {
		/* Grace period already in progress, don't start another.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
	record_gp_stall_check_time(rsp);
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1238
	mutex_lock(&rsp->onoff_mutex);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1254 1255
		raw_spin_lock_irq(&rnp->lock);
		rdp = this_cpu_ptr(rsp->rda);
1256 1257 1258
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
		rnp->gpnum = rsp->gpnum;
1259
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1260 1261 1262 1263 1264 1265 1266 1267
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1268 1269 1270 1271
#ifdef CONFIG_PROVE_RCU_DELAY
		if ((random32() % (rcu_num_nodes * 8)) == 0)
			schedule_timeout_uninterruptible(2);
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1272 1273
		cond_resched();
	}
1274

1275
	mutex_unlock(&rsp->onoff_mutex);
1276 1277
	return 1;
}
1278

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * Do one round of quiescent-state forcing.
 */
int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
{
	int fqs_state = fqs_state_in;
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
		force_qs_rnp(rsp, dyntick_save_progress_counter);
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1305 1306 1307
/*
 * Clean up after the old grace period.
 */
1308
static void rcu_gp_cleanup(struct rcu_state *rsp)
1309 1310 1311 1312
{
	unsigned long gp_duration;
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1313

1314 1315 1316 1317
	raw_spin_lock_irq(&rnp->lock);
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1318

1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1327
	raw_spin_unlock_irq(&rnp->lock);
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1339
		raw_spin_lock_irq(&rnp->lock);
1340 1341 1342
		rnp->completed = rsp->gpnum;
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1343
	}
1344 1345
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1346 1347 1348 1349

	rsp->completed = rsp->gpnum; /* Declare grace period done. */
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
	rsp->fqs_state = RCU_GP_IDLE;
1350
	rdp = this_cpu_ptr(rsp->rda);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	if (cpu_needs_another_gp(rsp, rdp))
		rsp->gp_flags = 1;
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1361
	int fqs_state;
1362
	unsigned long j;
1363
	int ret;
1364 1365 1366 1367 1368 1369 1370
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1371 1372 1373 1374 1375
			wait_event_interruptible(rsp->gp_wq,
						 rsp->gp_flags &
						 RCU_GP_FLAG_INIT);
			if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
			    rcu_gp_init(rsp))
1376 1377 1378 1379
				break;
			cond_resched();
			flush_signals(current);
		}
1380

1381 1382
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1383 1384 1385 1386 1387
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1388
		for (;;) {
1389
			rsp->jiffies_force_qs = jiffies + j;
1390 1391 1392 1393
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
					(rsp->gp_flags & RCU_GP_FLAG_FQS) ||
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1394
					j);
1395
			/* If grace period done, leave loop. */
1396
			if (!ACCESS_ONCE(rnp->qsmask) &&
1397
			    !rcu_preempt_blocked_readers_cgp(rnp))
1398
				break;
1399 1400 1401 1402 1403 1404 1405 1406 1407
			/* If time for quiescent-state forcing, do it. */
			if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
			}
1408 1409 1410 1411 1412 1413 1414 1415
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1416
		}
1417 1418 1419

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1420 1421 1422
	}
}

1423 1424 1425 1426 1427
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1428 1429 1430 1431
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1432 1433 1434 1435 1436
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1437
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1438 1439
	struct rcu_node *rnp = rcu_get_root(rsp);

1440
	if (!rsp->gp_kthread ||
1441 1442
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
1443
		 * Either we have not yet spawned the grace-period
1444 1445
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1446
		 * Either way, don't start a new grace period.
1447 1448 1449 1450
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	/*
	 * Because there is no grace period in progress right now,
	 * any callbacks we have up to this point will be satisfied
	 * by the next grace period.  So promote all callbacks to be
	 * handled after the end of the next grace period.  If the
	 * CPU is not yet aware of the end of the previous grace period,
	 * we need to allow for the callback advancement that will
	 * occur when it does become aware.  Deadlock prevents us from
	 * making it aware at this point: We cannot acquire a leaf
	 * rcu_node ->lock while holding the root rcu_node ->lock.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	if (rdp->completed == rsp->completed)
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

1467
	rsp->gp_flags = RCU_GP_FLAG_INIT;
1468 1469 1470 1471 1472 1473 1474
	raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */

	/* Ensure that CPU is aware of completion of last grace period. */
	rcu_process_gp_end(rsp, rdp);
	local_irq_restore(flags);

	/* Wake up rcu_gp_kthread() to start the grace period. */
1475
	wake_up(&rsp->gp_wq);
1476 1477
}

1478
/*
P
Paul E. McKenney 已提交
1479 1480 1481 1482 1483
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1484
 */
P
Paul E. McKenney 已提交
1485
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1486
	__releases(rcu_get_root(rsp)->lock)
1487
{
1488
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1489 1490
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1491 1492
}

1493
/*
P
Paul E. McKenney 已提交
1494 1495 1496 1497 1498 1499
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1500 1501
 */
static void
P
Paul E. McKenney 已提交
1502 1503
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1504 1505
	__releases(rnp->lock)
{
1506 1507
	struct rcu_node *rnp_c;

1508 1509 1510 1511 1512
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1513
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1514 1515 1516
			return;
		}
		rnp->qsmask &= ~mask;
1517 1518 1519 1520
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1521
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1522 1523

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1524
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1525 1526 1527 1528 1529 1530 1531 1532 1533
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1534
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1535
		rnp_c = rnp;
1536
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1537
		raw_spin_lock_irqsave(&rnp->lock, flags);
1538
		WARN_ON_ONCE(rnp_c->qsmask);
1539 1540 1541 1542
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1543
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1544
	 * to clean up and start the next grace period if one is needed.
1545
	 */
P
Paul E. McKenney 已提交
1546
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1547 1548 1549
}

/*
P
Paul E. McKenney 已提交
1550 1551 1552 1553 1554 1555 1556
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1557 1558
 */
static void
1559
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1560 1561 1562 1563 1564 1565
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1566
	raw_spin_lock_irqsave(&rnp->lock, flags);
1567 1568
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1569 1570

		/*
1571 1572 1573 1574
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1575
		 */
1576
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1577
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1578 1579 1580 1581
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1582
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1583 1584 1585 1586 1587 1588 1589 1590 1591
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1592
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1620
	if (!rdp->passed_quiesce)
1621 1622
		return;

P
Paul E. McKenney 已提交
1623 1624 1625 1626
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1627
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1628 1629 1630 1631
}

#ifdef CONFIG_HOTPLUG_CPU

1632
/*
1633 1634
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
1635
 * ->orphan_lock.
1636
 */
1637 1638 1639
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1640
{
P
Paul E. McKenney 已提交
1641 1642 1643 1644
	/* No-CBs CPUs do not have orphanable callbacks. */
	if (is_nocb_cpu(rdp->cpu))
		return;

1645 1646
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
1647 1648
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
1649
	 */
1650
	if (rdp->nxtlist != NULL) {
1651 1652 1653
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1654
		rdp->qlen_lazy = 0;
1655
		ACCESS_ONCE(rdp->qlen) = 0;
1656 1657 1658
	}

	/*
1659 1660 1661 1662 1663 1664 1665
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1666
	 */
1667 1668 1669 1670
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1671 1672 1673
	}

	/*
1674 1675 1676
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1677
	 */
1678
	if (rdp->nxtlist != NULL) {
1679 1680
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1681
	}
1682

1683
	/* Finally, initialize the rcu_data structure's list to empty.  */
1684
	init_callback_list(rdp);
1685 1686 1687 1688
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
1689
 * orphanage.  The caller must hold the ->orphan_lock.
1690 1691 1692 1693 1694 1695
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

P
Paul E. McKenney 已提交
1696 1697 1698 1699
	/* No-CBs CPUs are handled specially. */
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
		return;

1700 1701 1702 1703
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1704 1705
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1745 1746 1747
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1748 1749 1750
}

/*
1751
 * The CPU has been completely removed, and some other CPU is reporting
1752 1753
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
1754 1755
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1756
 */
1757
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1758
{
1759 1760 1761
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1762
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1763
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1764

1765
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
1766
	rcu_boost_kthread_setaffinity(rnp, -1);
1767

1768
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1769 1770

	/* Exclude any attempts to start a new grace period. */
1771
	mutex_lock(&rsp->onoff_mutex);
1772
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1773

1774 1775 1776 1777
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
1799
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1800 1801
	 * held leads to deadlock.
	 */
1802
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1803 1804 1805 1806 1807 1808 1809
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1810 1811 1812
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
1813 1814 1815
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1816
	mutex_unlock(&rsp->onoff_mutex);
1817 1818 1819 1820
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1821
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1822 1823 1824
{
}

1825
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1826 1827 1828 1829 1830 1831 1832 1833 1834
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1835
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1836 1837 1838
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
1839 1840
	long bl, count, count_lazy;
	int i;
1841 1842

	/* If no callbacks are ready, just return.*/
1843
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1844
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1845 1846 1847
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1848
		return;
1849
	}
1850 1851 1852 1853 1854 1855

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1856
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1857
	bl = rdp->blimit;
1858
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1859 1860 1861 1862
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1863 1864 1865
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1866 1867 1868
	local_irq_restore(flags);

	/* Invoke callbacks. */
1869
	count = count_lazy = 0;
1870 1871 1872
	while (list) {
		next = list->next;
		prefetch(next);
1873
		debug_rcu_head_unqueue(list);
1874 1875
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1876
		list = next;
1877 1878 1879 1880
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1881 1882 1883 1884
			break;
	}

	local_irq_save(flags);
1885 1886 1887
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1888 1889 1890 1891 1892

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1893 1894 1895
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1896 1897 1898
			else
				break;
	}
1899 1900
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
1901
	ACCESS_ONCE(rdp->qlen) -= count;
1902
	rdp->n_cbs_invoked += count;
1903 1904 1905 1906 1907

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1908 1909 1910 1911 1912 1913
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
1914
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1915

1916 1917
	local_irq_restore(flags);

1918
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1919
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1920
		invoke_rcu_core();
1921 1922 1923 1924 1925
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1926
 * Also schedule RCU core processing.
1927
 *
1928
 * This function must be called from hardirq context.  It is normally
1929 1930 1931 1932 1933
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1934
	trace_rcu_utilization("Start scheduler-tick");
1935
	increment_cpu_stall_ticks();
1936
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1937 1938 1939 1940 1941

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1942
		 * a quiescent state, so note it.
1943 1944
		 *
		 * No memory barrier is required here because both
1945 1946 1947
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1948 1949
		 */

1950 1951
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1952 1953 1954 1955 1956 1957 1958

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1959
		 * critical section, so note it.
1960 1961
		 */

1962
		rcu_bh_qs(cpu);
1963
	}
1964
	rcu_preempt_check_callbacks(cpu);
1965
	if (rcu_pending(cpu))
1966
		invoke_rcu_core();
1967
	trace_rcu_utilization("End scheduler-tick");
1968 1969 1970 1971 1972
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1973 1974
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1975
 * The caller must have suppressed start of new grace periods.
1976
 */
1977
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1978 1979 1980 1981 1982
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1983
	struct rcu_node *rnp;
1984

1985
	rcu_for_each_leaf_node(rsp, rnp) {
1986
		cond_resched();
1987
		mask = 0;
P
Paul E. McKenney 已提交
1988
		raw_spin_lock_irqsave(&rnp->lock, flags);
1989
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1990
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1991
			return;
1992
		}
1993
		if (rnp->qsmask == 0) {
1994
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1995 1996
			continue;
		}
1997
		cpu = rnp->grplo;
1998
		bit = 1;
1999
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2000 2001
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
2002 2003
				mask |= bit;
		}
2004
		if (mask != 0) {
2005

P
Paul E. McKenney 已提交
2006 2007
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2008 2009
			continue;
		}
P
Paul E. McKenney 已提交
2010
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2011
	}
2012
	rnp = rcu_get_root(rsp);
2013 2014 2015 2016
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2017 2018 2019 2020 2021 2022
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2023
static void force_quiescent_state(struct rcu_state *rsp)
2024 2025
{
	unsigned long flags;
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
			rsp->n_force_qs_lh++;
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2044

2045 2046 2047 2048 2049 2050
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		rsp->n_force_qs_lh++;
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2051
		return;  /* Someone beat us to it. */
2052
	}
2053
	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2054
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2055
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2056 2057 2058
}

/*
2059 2060 2061
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2062 2063
 */
static void
2064
__rcu_process_callbacks(struct rcu_state *rsp)
2065 2066
{
	unsigned long flags;
2067
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2068

2069 2070
	WARN_ON_ONCE(rdp->beenonline == 0);

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
2082
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
2083 2084 2085 2086
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
2087
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2088
		invoke_rcu_callbacks(rsp, rdp);
2089 2090
}

2091
/*
2092
 * Do RCU core processing for the current CPU.
2093
 */
2094
static void rcu_process_callbacks(struct softirq_action *unused)
2095
{
2096 2097
	struct rcu_state *rsp;

2098 2099
	if (cpu_is_offline(smp_processor_id()))
		return;
2100
	trace_rcu_utilization("Start RCU core");
2101 2102
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2103
	trace_rcu_utilization("End RCU core");
2104 2105
}

2106
/*
2107 2108 2109 2110 2111
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2112
 */
2113
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2114
{
2115 2116
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2117 2118
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2119 2120
		return;
	}
2121
	invoke_rcu_callbacks_kthread();
2122 2123
}

2124
static void invoke_rcu_core(void)
2125 2126 2127 2128
{
	raise_softirq(RCU_SOFTIRQ);
}

2129 2130 2131 2132 2133
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2134
{
2135 2136 2137 2138
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2139
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2140 2141
		invoke_rcu_core();

2142
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2143
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2144
		return;
2145

2146 2147 2148 2149 2150 2151 2152
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2153
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2171
				force_quiescent_state(rsp);
2172 2173 2174
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2175
	}
2176 2177
}

P
Paul E. McKenney 已提交
2178 2179 2180 2181 2182 2183
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2184 2185
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2186
	   struct rcu_state *rsp, int cpu, bool lazy)
2187 2188 2189 2190
{
	unsigned long flags;
	struct rcu_data *rdp;

2191
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2192
	debug_rcu_head_queue(head);
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2203
	rdp = this_cpu_ptr(rsp->rda);
2204 2205

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2206 2207 2208 2209 2210 2211 2212
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
		offline = !__call_rcu_nocb(rdp, head, lazy);
		WARN_ON_ONCE(offline);
2213 2214 2215 2216
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2217
	ACCESS_ONCE(rdp->qlen)++;
2218 2219
	if (lazy)
		rdp->qlen_lazy++;
2220 2221
	else
		rcu_idle_count_callbacks_posted();
2222 2223 2224
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2225

2226 2227
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2228
					 rdp->qlen_lazy, rdp->qlen);
2229
	else
2230
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2231

2232 2233
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2234 2235 2236 2237
	local_irq_restore(flags);
}

/*
2238
 * Queue an RCU-sched callback for invocation after a grace period.
2239
 */
2240
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2241
{
P
Paul E. McKenney 已提交
2242
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2243
}
2244
EXPORT_SYMBOL_GPL(call_rcu_sched);
2245 2246

/*
2247
 * Queue an RCU callback for invocation after a quicker grace period.
2248 2249 2250
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2251
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2252 2253 2254
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2266 2267
	int ret;

2268
	might_sleep();  /* Check for RCU read-side critical section. */
2269 2270 2271 2272
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2273 2274
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2309 2310 2311 2312 2313 2314 2315 2316 2317
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2318 2319 2320 2321
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2322 2323
	if (rcu_blocking_is_gp())
		return;
2324 2325 2326 2327
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2339 2340 2341
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2342 2343 2344
 */
void synchronize_rcu_bh(void)
{
2345 2346 2347 2348
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2349 2350
	if (rcu_blocking_is_gp())
		return;
2351 2352 2353 2354
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2355 2356 2357
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2385
 *
2386 2387 2388 2389
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2414 2415
	long firstsnap, s, snap;
	int trycount = 0;
2416
	struct rcu_state *rsp = &rcu_sched_state;
2417

2418 2419 2420 2421 2422 2423 2424 2425
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2426 2427
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2428 2429
			 ULONG_MAX / 8)) {
		synchronize_sched();
2430
		atomic_long_inc(&rsp->expedited_wrap);
2431 2432
		return;
	}
2433

2434 2435 2436 2437
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2438
	snap = atomic_long_inc_return(&rsp->expedited_start);
2439
	firstsnap = snap;
2440
	get_online_cpus();
2441
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2442 2443 2444 2445 2446 2447 2448 2449 2450

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
2451
		atomic_long_inc(&rsp->expedited_tryfail);
2452

2453
		/* Check to see if someone else did our work for us. */
2454
		s = atomic_long_read(&rsp->expedited_done);
2455
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2456 2457 2458
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone1);
2459 2460
			return;
		}
2461 2462

		/* No joy, try again later.  Or just synchronize_sched(). */
2463
		if (trycount++ < 10) {
2464
			udelay(trycount * num_online_cpus());
2465
		} else {
2466
			wait_rcu_gp(call_rcu_sched);
2467
			atomic_long_inc(&rsp->expedited_normal);
2468 2469 2470
			return;
		}

2471
		/* Recheck to see if someone else did our work for us. */
2472
		s = atomic_long_read(&rsp->expedited_done);
2473
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2474 2475 2476
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone2);
2477 2478 2479 2480 2481
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
2482 2483 2484 2485
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
2486 2487
		 */
		get_online_cpus();
2488
		snap = atomic_long_read(&rsp->expedited_start);
2489 2490
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
2491
	atomic_long_inc(&rsp->expedited_stoppedcpus);
2492 2493 2494 2495 2496

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
2497
	 * than we did already did their update.
2498 2499
	 */
	do {
2500
		atomic_long_inc(&rsp->expedited_done_tries);
2501
		s = atomic_long_read(&rsp->expedited_done);
2502
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2503 2504 2505
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_done_lost);
2506 2507
			break;
		}
2508
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2509
	atomic_long_inc(&rsp->expedited_done_exit);
2510 2511 2512 2513 2514

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2515 2516 2517 2518 2519 2520 2521 2522 2523
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2524 2525
	struct rcu_node *rnp = rdp->mynode;

2526 2527 2528 2529 2530 2531
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2532 2533
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2534
		rdp->n_rp_qs_pending++;
2535
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2536
		rdp->n_rp_report_qs++;
2537
		return 1;
2538
	}
2539 2540

	/* Does this CPU have callbacks ready to invoke? */
2541 2542
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2543
		return 1;
2544
	}
2545 2546

	/* Has RCU gone idle with this CPU needing another grace period? */
2547 2548
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2549
		return 1;
2550
	}
2551 2552

	/* Has another RCU grace period completed?  */
2553
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2554
		rdp->n_rp_gp_completed++;
2555
		return 1;
2556
	}
2557 2558

	/* Has a new RCU grace period started? */
2559
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2560
		rdp->n_rp_gp_started++;
2561
		return 1;
2562
	}
2563 2564

	/* nothing to do */
2565
	rdp->n_rp_need_nothing++;
2566 2567 2568 2569 2570 2571 2572 2573
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2574
static int rcu_pending(int cpu)
2575
{
2576 2577 2578 2579 2580 2581
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2582 2583 2584 2585 2586
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2587
 * 1 if so.
2588
 */
2589
static int rcu_cpu_has_callbacks(int cpu)
2590
{
2591 2592
	struct rcu_state *rsp;

2593
	/* RCU callbacks either ready or pending? */
2594 2595 2596 2597
	for_each_rcu_flavor(rsp)
		if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
			return 1;
	return 0;
2598 2599
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2611 2612 2613 2614
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2615
static void rcu_barrier_callback(struct rcu_head *rhp)
2616
{
2617 2618 2619
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2620 2621
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2622
		complete(&rsp->barrier_completion);
2623 2624 2625
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2626 2627 2628 2629 2630 2631 2632
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2633
	struct rcu_state *rsp = type;
2634
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2635

2636
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2637
	atomic_inc(&rsp->barrier_cpu_count);
2638
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2639 2640 2641 2642 2643 2644
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2645
static void _rcu_barrier(struct rcu_state *rsp)
2646
{
2647 2648
	int cpu;
	struct rcu_data *rdp;
2649 2650
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2651

2652
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2653

2654
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2655
	mutex_lock(&rsp->barrier_mutex);
2656

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2670
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2671
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2672
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2685
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2686
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2687

2688
	/*
2689 2690
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
2691 2692
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
2693
	 */
2694
	init_completion(&rsp->barrier_completion);
2695
	atomic_set(&rsp->barrier_cpu_count, 1);
2696
	get_online_cpus();
2697 2698

	/*
2699 2700 2701
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
2702
	 */
P
Paul E. McKenney 已提交
2703 2704 2705
	for_each_possible_cpu(cpu) {
		if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
			continue;
2706
		rdp = per_cpu_ptr(rsp->rda, cpu);
P
Paul E. McKenney 已提交
2707 2708 2709 2710 2711 2712 2713
		if (is_nocb_cpu(cpu)) {
			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
					   rsp->n_barrier_done);
			atomic_inc(&rsp->barrier_cpu_count);
			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
				   rsp, cpu, 0);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2714 2715
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2716
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2717
		} else {
2718 2719
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2720 2721
		}
	}
2722
	put_online_cpus();
2723 2724 2725 2726 2727

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2728
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2729
		complete(&rsp->barrier_completion);
2730

2731 2732 2733 2734
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2735
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2736 2737
	smp_mb(); /* Keep increment before caller's subsequent code. */

2738
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2739
	wait_for_completion(&rsp->barrier_completion);
2740 2741

	/* Other rcu_barrier() invocations can now safely proceed. */
2742
	mutex_unlock(&rsp->barrier_mutex);
2743 2744 2745 2746 2747 2748 2749
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2750
	_rcu_barrier(&rcu_bh_state);
2751 2752 2753 2754 2755 2756 2757 2758
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2759
	_rcu_barrier(&rcu_sched_state);
2760 2761 2762
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2763
/*
2764
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2765
 */
2766 2767
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2768 2769
{
	unsigned long flags;
2770
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2771 2772 2773
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2774
	raw_spin_lock_irqsave(&rnp->lock, flags);
2775
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2776
	init_callback_list(rdp);
2777
	rdp->qlen_lazy = 0;
2778
	ACCESS_ONCE(rdp->qlen) = 0;
2779
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2780
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2781
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2782 2783 2784
#ifdef CONFIG_RCU_USER_QS
	WARN_ON_ONCE(rdp->dynticks->in_user);
#endif
2785
	rdp->cpu = cpu;
2786
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2787
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
2788
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2789 2790 2791 2792 2793 2794 2795
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2796
 */
2797
static void __cpuinit
P
Paul E. McKenney 已提交
2798
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2799 2800 2801
{
	unsigned long flags;
	unsigned long mask;
2802
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2803 2804
	struct rcu_node *rnp = rcu_get_root(rsp);

2805 2806 2807
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

2808
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2809
	raw_spin_lock_irqsave(&rnp->lock, flags);
2810
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2811
	rdp->preemptible = preemptible;
2812 2813
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2814
	rdp->blimit = blimit;
2815
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
2816
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2817 2818
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2819
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2820
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2821 2822 2823 2824 2825 2826

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2827
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2828 2829
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2830
		if (rnp == rdp->mynode) {
2831 2832 2833 2834 2835 2836
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2837
			rdp->completed = rnp->completed;
2838 2839
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2840
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2841
		}
P
Paul E. McKenney 已提交
2842
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2843 2844
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
2845
	local_irq_restore(flags);
2846

2847
	mutex_unlock(&rsp->onoff_mutex);
2848 2849
}

P
Peter Zijlstra 已提交
2850
static void __cpuinit rcu_prepare_cpu(int cpu)
2851
{
2852 2853 2854 2855 2856
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
2857 2858 2859
}

/*
2860
 * Handle CPU online/offline notification events.
2861
 */
2862 2863
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2864 2865
{
	long cpu = (long)hcpu;
2866
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2867
	struct rcu_node *rnp = rdp->mynode;
2868
	struct rcu_state *rsp;
P
Paul E. McKenney 已提交
2869
	int ret = NOTIFY_OK;
2870

2871
	trace_rcu_utilization("Start CPU hotplug");
2872 2873 2874
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2875 2876
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2877 2878
		break;
	case CPU_ONLINE:
2879
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
2880
		rcu_boost_kthread_setaffinity(rnp, -1);
2881 2882
		break;
	case CPU_DOWN_PREPARE:
P
Paul E. McKenney 已提交
2883 2884 2885 2886
		if (nocb_cpu_expendable(cpu))
			rcu_boost_kthread_setaffinity(rnp, cpu);
		else
			ret = NOTIFY_BAD;
2887
		break;
2888 2889 2890
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2891 2892 2893
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2894
		 */
2895 2896
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
2897
		rcu_cleanup_after_idle(cpu);
2898
		break;
2899 2900 2901 2902
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2903 2904
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
2905 2906 2907 2908
		break;
	default:
		break;
	}
2909
	trace_rcu_utilization("End CPU hotplug");
P
Paul E. McKenney 已提交
2910
	return ret;
2911 2912
}

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
		t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
2930
		rcu_spawn_nocb_kthreads(rsp);
2931 2932 2933 2934 2935
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2951 2952 2953 2954 2955 2956 2957 2958 2959
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2960
	for (i = rcu_num_lvls - 1; i > 0; i--)
2961
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2962
	rsp->levelspread[0] = rcu_fanout_leaf;
2963 2964 2965 2966 2967 2968 2969 2970
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

2971
	cprv = nr_cpu_ids;
2972
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2983 2984
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2985
{
2986 2987 2988 2989 2990 2991 2992 2993
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
2994 2995 2996 2997 2998
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2999 3000
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3001 3002
	/* Initialize the level-tracking arrays. */

3003 3004 3005
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3006 3007 3008 3009 3010
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

3011
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3012 3013 3014
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3015
			raw_spin_lock_init(&rnp->lock);
3016 3017
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3018 3019 3020
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3021 3022
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3040
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3041 3042
		}
	}
3043

3044
	rsp->rda = rda;
3045
	init_waitqueue_head(&rsp->gp_wq);
3046
	rnp = rsp->level[rcu_num_lvls - 1];
3047
	for_each_possible_cpu(i) {
3048
		while (i > rnp->grphi)
3049
			rnp++;
3050
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3051 3052
		rcu_boot_init_percpu_data(i, rsp);
	}
3053
	list_add(&rsp->flavors, &rcu_struct_flavors);
3054 3055
}

3056 3057 3058 3059 3060 3061 3062 3063 3064
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
3065
	int n = nr_cpu_ids;
3066 3067 3068
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
3069 3070
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3117
void __init rcu_init(void)
3118
{
P
Paul E. McKenney 已提交
3119
	int cpu;
3120

3121
	rcu_bootup_announce();
3122
	rcu_init_geometry();
3123 3124
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3125
	__rcu_init_preempt();
P
Paul E. McKenney 已提交
3126
	rcu_init_nocb();
3127
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3128 3129 3130 3131 3132 3133 3134

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
3135 3136
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3137
	check_cpu_stall_init();
3138 3139
}

3140
#include "rcutree_plugin.h"