rcutree.c 54.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39 40 41 42 43 44 45 46 47 48
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50

51 52
#include "rcutree.h"

53 54
/* Data structures. */

55
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
56

57 58 59 60 61 62
#define RCU_STATE_INITIALIZER(name) { \
	.level = { &name.node[0] }, \
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
63 64
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65
	}, \
66
	.signaled = RCU_GP_IDLE, \
67 68 69
	.gpnum = -300, \
	.completed = -300, \
	.onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 71 72
	.orphan_cbs_list = NULL, \
	.orphan_cbs_tail = &name.orphan_cbs_list, \
	.orphan_qlen = 0, \
73 74 75 76 77
	.fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
}

78 79
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80

81 82
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83

84 85
static int rcu_scheduler_active __read_mostly;

86

87 88 89 90 91 92 93 94 95 96
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

97
/*
98
 * Note a quiescent state.  Because we do not need to know
99
 * how many quiescent states passed, just if there was at least
100
 * one since the start of the grace period, this just sets a flag.
101
 */
102
void rcu_sched_qs(int cpu)
103
{
104 105 106
	struct rcu_data *rdp;

	rdp = &per_cpu(rcu_sched_data, cpu);
107
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
108 109 110
	barrier();
	rdp->passed_quiesc = 1;
	rcu_preempt_note_context_switch(cpu);
111 112
}

113
void rcu_bh_qs(int cpu)
114
{
115 116 117
	struct rcu_data *rdp;

	rdp = &per_cpu(rcu_bh_data, cpu);
118
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
119 120
	barrier();
	rdp->passed_quiesc = 1;
121
}
122 123

#ifdef CONFIG_NO_HZ
124 125 126 127
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
	.dynticks = 1,
};
128 129 130 131 132 133
#endif /* #ifdef CONFIG_NO_HZ */

static int blimit = 10;		/* Maximum callbacks per softirq. */
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

134 135 136 137
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

138
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
139
static int rcu_pending(int cpu);
140 141

/*
142
 * Return the number of RCU-sched batches processed thus far for debug & stats.
143
 */
144
long rcu_batches_completed_sched(void)
145
{
146
	return rcu_sched_state.completed;
147
}
148
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
174
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
		rdp->offline_fqs++;
		return 1;
	}

209 210 211 212
	/* If preemptable RCU, no point in sending reschedule IPI. */
	if (rdp->preemptable)
		return 0;

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	rdtp->dynticks++;
	rdtp->dynticks_nesting--;
244
	WARN_ON_ONCE(rdtp->dynticks & 0x1);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	local_irq_restore(flags);
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	rdtp->dynticks++;
	rdtp->dynticks_nesting++;
263
	WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	local_irq_restore(flags);
	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (rdtp->dynticks & 0x1)
		return;
	rdtp->dynticks_nmi++;
282
	WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (rdtp->dynticks & 0x1)
		return;
	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
	rdtp->dynticks_nmi++;
301
	WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (rdtp->dynticks_nesting++)
		return;
	rdtp->dynticks++;
317
	WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (--rdtp->dynticks_nesting)
		return;
	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
	rdtp->dynticks++;
336
	WARN_ON_ONCE(rdtp->dynticks & 0x1);
337 338

	/* If the interrupt queued a callback, get out of dyntick mode. */
339
	if (__get_cpu_var(rcu_sched_data).nxtlist ||
340 341 342 343 344 345 346 347 348
	    __get_cpu_var(rcu_bh_data).nxtlist)
		set_need_resched();
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
349
 * is in dynticks idle mode, which is an extended quiescent state.
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	int ret;
	int snap;
	int snap_nmi;

	snap = rdp->dynticks->dynticks;
	snap_nmi = rdp->dynticks->dynticks_nmi;
	smp_mb();	/* Order sampling of snap with end of grace period. */
	rdp->dynticks_snap = snap;
	rdp->dynticks_nmi_snap = snap_nmi;
	ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
	if (ret)
		rdp->dynticks_fqs++;
	return ret;
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	long curr;
	long curr_nmi;
	long snap;
	long snap_nmi;

	curr = rdp->dynticks->dynticks;
	snap = rdp->dynticks_snap;
	curr_nmi = rdp->dynticks->dynticks_nmi;
	snap_nmi = rdp->dynticks_nmi_snap;
	smp_mb(); /* force ordering with cpu entering/leaving dynticks. */

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
	if ((curr != snap || (curr & 0x1) == 0) &&
	    (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_SMP

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_RCU_CPU_STALL_DETECTOR

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

	spin_lock_irqsave(&rnp->lock, flags);
	delta = jiffies - rsp->jiffies_stall;
444
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
445 446 447 448
		spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
449 450 451 452 453 454

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rcu_print_task_stall(rnp);
455 456 457 458 459
	spin_unlock_irqrestore(&rnp->lock, flags);

	/* OK, time to rat on our buddy... */

	printk(KERN_ERR "INFO: RCU detected CPU stalls:");
460
	rcu_for_each_leaf_node(rsp, rnp) {
461
		rcu_print_task_stall(rnp);
462
		if (rnp->qsmask == 0)
463
			continue;
464 465 466
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
			if (rnp->qsmask & (1UL << cpu))
				printk(" %d", rnp->grplo + cpu);
467 468 469
	}
	printk(" (detected by %d, t=%ld jiffies)\n",
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
470 471
	trigger_all_cpu_backtrace();

472 473 474 475 476 477 478 479 480 481
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
			smp_processor_id(), jiffies - rsp->gp_start);
482 483
	trigger_all_cpu_backtrace();

484 485 486 487 488
	spin_lock_irqsave(&rnp->lock, flags);
	if ((long)(jiffies - rsp->jiffies_stall) >= 0)
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
	spin_unlock_irqrestore(&rnp->lock, flags);
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
	long delta;
	struct rcu_node *rnp;

	delta = jiffies - rsp->jiffies_stall;
	rnp = rdp->mynode;
	if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

505
	} else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

		/* They had two time units to dump stack, so complain. */
		print_other_cpu_stall(rsp);
	}
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
527 528 529
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
530
 */
531 532 533 534 535 536 537 538 539
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
		rdp->qs_pending = 1;
		rdp->passed_quiesc = 0;
		rdp->gpnum = rnp->gpnum;
	}
}

540 541
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
542 543 544 545 546 547 548 549 550 551 552 553
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
	    !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
	spin_unlock_irqrestore(&rnp->lock, flags);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
	    !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
	spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
644 645 646

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
647 648
}

649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
	struct rcu_data *rdp = rsp->rda[smp_processor_id()];
	struct rcu_node *rnp = rcu_get_root(rsp);

662
	if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
		if (rnp->completed == rsp->completed) {
			spin_unlock_irqrestore(&rnp->lock, flags);
			return;
		}
		spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			spin_lock(&rnp->lock);	 /* irqs already disabled. */
			rnp->completed = rsp->completed;
			spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		local_irq_restore(flags);
680 681 682 683 684
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
685
	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
686 687 688 689 690 691
	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
692
		rcu_preempt_check_blocked_tasks(rnp);
693
		rnp->qsmask = rnp->qsmaskinit;
694
		rnp->gpnum = rsp->gpnum;
695
		rnp->completed = rsp->completed;
696
		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
697
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
698 699 700 701 702 703 704 705 706 707 708
		spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}

	spin_unlock(&rnp->lock);  /* leave irqs disabled. */


	/* Exclude any concurrent CPU-hotplug operations. */
	spin_lock(&rsp->onofflock);  /* irqs already disabled. */

	/*
709 710 711 712 713 714 715 716 717
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
718 719 720 721
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
722 723
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
724
	 */
725
	rcu_for_each_node_breadth_first(rsp, rnp) {
726
		spin_lock(&rnp->lock);		/* irqs already disabled. */
727
		rcu_preempt_check_blocked_tasks(rnp);
728
		rnp->qsmask = rnp->qsmaskinit;
729
		rnp->gpnum = rsp->gpnum;
730 731 732
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
733
		spin_unlock(&rnp->lock);	/* irqs remain disabled. */
734 735
	}

736 737
	rnp = rcu_get_root(rsp);
	spin_lock(&rnp->lock);			/* irqs already disabled. */
738
	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
739
	spin_unlock(&rnp->lock);		/* irqs remain disabled. */
740 741 742
	spin_unlock_irqrestore(&rsp->onofflock, flags);
}

743
/*
P
Paul E. McKenney 已提交
744 745 746 747 748
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
749
 */
P
Paul E. McKenney 已提交
750
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
751
	__releases(rcu_get_root(rsp)->lock)
752
{
753
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
754
	rsp->completed = rsp->gpnum;
755
	rsp->signaled = RCU_GP_IDLE;
756 757 758
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

759
/*
P
Paul E. McKenney 已提交
760 761 762 763 764 765
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
766 767
 */
static void
P
Paul E. McKenney 已提交
768 769
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
770 771
	__releases(rnp->lock)
{
772 773
	struct rcu_node *rnp_c;

774 775 776 777 778 779 780 781 782
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
			spin_unlock_irqrestore(&rnp->lock, flags);
			return;
		}
		rnp->qsmask &= ~mask;
783
		if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
784 785 786 787 788 789 790 791 792 793 794 795 796

			/* Other bits still set at this level, so done. */
			spin_unlock_irqrestore(&rnp->lock, flags);
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
		spin_unlock_irqrestore(&rnp->lock, flags);
797
		rnp_c = rnp;
798 799
		rnp = rnp->parent;
		spin_lock_irqsave(&rnp->lock, flags);
800
		WARN_ON_ONCE(rnp_c->qsmask);
801 802 803 804
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
805
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
806
	 * to clean up and start the next grace period if one is needed.
807
	 */
P
Paul E. McKenney 已提交
808
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
809 810 811
}

/*
P
Paul E. McKenney 已提交
812 813 814 815 816 817 818
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
819 820
 */
static void
P
Paul E. McKenney 已提交
821
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
822 823 824 825 826 827 828
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
	spin_lock_irqsave(&rnp->lock, flags);
829
	if (lastcomp != rnp->completed) {
830 831 832 833 834 835

		/*
		 * Someone beat us to it for this grace period, so leave.
		 * The race with GP start is resolved by the fact that we
		 * hold the leaf rcu_node lock, so that the per-CPU bits
		 * cannot yet be initialized -- so we would simply find our
P
Paul E. McKenney 已提交
836 837
		 * CPU's bit already cleared in rcu_report_qs_rnp() if this
		 * race occurred.
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
		 */
		rdp->passed_quiesc = 0;	/* try again later! */
		spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
		spin_unlock_irqrestore(&rnp->lock, flags);
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
855
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
	if (!rdp->passed_quiesc)
		return;

P
Paul E. McKenney 已提交
886 887 888 889 890
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
891 892 893 894
}

#ifdef CONFIG_HOTPLUG_CPU

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
/*
 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
 * specified flavor of RCU.  The callbacks will be adopted by the next
 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
 * comes first.  Because this is invoked from the CPU_DYING notifier,
 * irqs are already disabled.
 */
static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = rsp->rda[smp_processor_id()];

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
	spin_lock(&rsp->onofflock);  /* irqs already disabled. */
	*rsp->orphan_cbs_tail = rdp->nxtlist;
	rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rsp->orphan_qlen += rdp->qlen;
	rdp->qlen = 0;
	spin_unlock(&rsp->onofflock);  /* irqs remain disabled. */
}

/*
 * Adopt previously orphaned RCU callbacks.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

	spin_lock_irqsave(&rsp->onofflock, flags);
	rdp = rsp->rda[smp_processor_id()];
	if (rsp->orphan_cbs_list == NULL) {
		spin_unlock_irqrestore(&rsp->onofflock, flags);
		return;
	}
	*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
	rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
	rdp->qlen += rsp->orphan_qlen;
	rsp->orphan_cbs_list = NULL;
	rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
	rsp->orphan_qlen = 0;
	spin_unlock_irqrestore(&rsp->onofflock, flags);
}

943 944 945 946 947 948 949 950
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
951
	int need_report = 0;
952 953 954 955 956 957 958
	struct rcu_data *rdp = rsp->rda[cpu];
	struct rcu_node *rnp;

	/* Exclude any attempts to start a new grace period. */
	spin_lock_irqsave(&rsp->onofflock, flags);

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
959
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
960 961 962 963 964
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		spin_lock(&rnp->lock);		/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
965 966
			if (rnp != rdp->mynode)
				spin_unlock(&rnp->lock); /* irqs remain disabled. */
967 968
			break;
		}
969
		if (rnp == rdp->mynode)
970
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
971 972
		else
			spin_unlock(&rnp->lock); /* irqs remain disabled. */
973 974 975 976
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

977 978 979
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
980 981
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
982 983 984
	 */
	spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
985
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
986
		rcu_report_unblock_qs_rnp(rnp, flags);
987 988
	else
		spin_unlock_irqrestore(&rnp->lock, flags);
989 990
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp);
991

992
	rcu_adopt_orphan_cbs(rsp);
993 994 995 996 997 998 999 1000 1001 1002
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1003
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1004
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1005
	rcu_preempt_offline_cpu(cpu);
1006 1007 1008 1009
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1010 1011 1012 1013 1014 1015 1016 1017
static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
{
}

static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1028
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
	int count;

	/* If no callbacks are ready, just return.*/
	if (!cpu_has_callbacks_ready_to_invoke(rdp))
		return;

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
		list->func(list);
		list = next;
		if (++count >= rdp->blimit)
			break;
	}

	local_irq_save(flags);

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1081 1082 1083 1084 1085 1086 1087
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	local_irq_restore(flags);

	/* Re-raise the RCU softirq if there are callbacks remaining. */
	if (cpu_has_callbacks_ready_to_invoke(rdp))
		raise_softirq(RCU_SOFTIRQ);
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 * Also schedule the RCU softirq handler.
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1106 1107
	if (!rcu_pending(cpu))
		return; /* if nothing for RCU to do. */
1108
	if (user ||
1109 1110
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1111 1112 1113 1114 1115

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1116
		 * a quiescent state, so note it.
1117 1118
		 *
		 * No memory barrier is required here because both
1119 1120 1121
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1122 1123
		 */

1124 1125
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1126 1127 1128 1129 1130 1131 1132

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1133
		 * critical section, so note it.
1134 1135
		 */

1136
		rcu_bh_qs(cpu);
1137
	}
1138
	rcu_preempt_check_callbacks(cpu);
1139 1140 1141 1142 1143 1144 1145 1146 1147
	raise_softirq(RCU_SOFTIRQ);
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
 */
1148 1149
static void rcu_process_dyntick(struct rcu_state *rsp,
				int (*f)(struct rcu_data *))
1150 1151 1152 1153 1154
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1155
	struct rcu_node *rnp;
1156

1157
	rcu_for_each_leaf_node(rsp, rnp) {
1158
		mask = 0;
1159
		spin_lock_irqsave(&rnp->lock, flags);
1160
		if (rnp->completed != rsp->gpnum - 1) {
1161
			spin_unlock_irqrestore(&rnp->lock, flags);
1162
			return;
1163
		}
1164 1165
		if (rnp->qsmask == 0) {
			spin_unlock_irqrestore(&rnp->lock, flags);
1166 1167
			continue;
		}
1168
		cpu = rnp->grplo;
1169
		bit = 1;
1170 1171
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
			if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1172 1173
				mask |= bit;
		}
1174
		if (mask != 0 && rnp->completed == rsp->gpnum - 1) {
1175

P
Paul E. McKenney 已提交
1176 1177
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1178 1179
			continue;
		}
1180
		spin_unlock_irqrestore(&rnp->lock, flags);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1192
	u8 forcenow;
1193

1194
	if (!rcu_gp_in_progress(rsp))
1195 1196 1197 1198 1199 1200
		return;  /* No grace period in progress, nothing to force. */
	if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
		return;	/* Someone else is already on the job. */
	}
	if (relaxed &&
1201
	    (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1202
		goto unlock_fqs_ret; /* no emergency and done recently. */
1203
	rsp->n_force_qs++;
1204
	spin_lock(&rnp->lock);  /* irqs already disabled */
1205
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1206
	if(!rcu_gp_in_progress(rsp)) {
1207
		rsp->n_force_qs_ngp++;
1208
		spin_unlock(&rnp->lock);  /* irqs remain disabled */
1209
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1210
	}
1211
	rsp->fqs_active = 1;
1212
	switch (rsp->signaled) {
1213
	case RCU_GP_IDLE:
1214 1215
	case RCU_GP_INIT:

1216
		break; /* grace period idle or initializing, ignore. */
1217 1218 1219

	case RCU_SAVE_DYNTICK:

1220
		spin_unlock(&rnp->lock);  /* irqs remain disabled */
1221 1222 1223 1224
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

		/* Record dyntick-idle state. */
1225
		rcu_process_dyntick(rsp, dyntick_save_progress_counter);
1226
		spin_lock(&rnp->lock);  /* irqs already disabled */
1227
		if (!rcu_gp_in_progress(rsp))
1228
			break;
1229 1230 1231
		/* fall into next case. */

	case RCU_SAVE_COMPLETED:
1232 1233

		/* Update state, record completion counter. */
1234
		forcenow = 0;
1235
		if (rsp->gpnum - 1 == rsp->completed) {
1236
			forcenow = rsp->signaled == RCU_SAVE_COMPLETED;
1237 1238
			rsp->signaled = RCU_FORCE_QS;
		}
1239
		if (!forcenow)
1240 1241
			break;
		/* fall into next case. */
1242 1243 1244 1245

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
1246
		spin_unlock(&rnp->lock);  /* irqs remain disabled */
1247
		rcu_process_dyntick(rsp, rcu_implicit_dynticks_qs);
1248 1249 1250

		/* Leave state in case more forcing is required. */

1251
		spin_lock(&rnp->lock);  /* irqs already disabled */
1252
		break;
1253
	}
1254 1255
	rsp->fqs_active = 0;
	spin_unlock(&rnp->lock);  /* irqs remain disabled */
1256
unlock_fqs_ret:
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	spin_unlock_irqrestore(&rsp->fqslock, flags);
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
 * This does the RCU processing work from softirq context for the
 * specified rcu_state and rcu_data structures.  This may be called
 * only from the CPU to whom the rdp belongs.
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1279 1280
	WARN_ON_ONCE(rdp->beenonline == 0);

1281 1282 1283 1284
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1285
	if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
		spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1304
	rcu_do_batch(rsp, rdp);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
}

/*
 * Do softirq processing for the current CPU.
 */
static void rcu_process_callbacks(struct softirq_action *unused)
{
	/*
	 * Memory references from any prior RCU read-side critical sections
	 * executed by the interrupted code must be seen before any RCU
	 * grace-period manipulations below.
	 */
	smp_mb(); /* See above block comment. */

1319 1320
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1321
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1322
	rcu_preempt_process_callbacks();
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

	/*
	 * Memory references from any later RCU read-side critical sections
	 * executed by the interrupted code must be seen after any RCU
	 * grace-period manipulations above.
	 */
	smp_mb(); /* See above block comment. */
}

static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
	rdp = rsp->rda[smp_processor_id()];
	rcu_process_gp_end(rsp, rdp);
	check_for_new_grace_period(rsp, rdp);

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;

	/* Start a new grace period if one not already started. */
1360
	if (!rcu_gp_in_progress(rsp)) {
1361 1362 1363 1364 1365 1366 1367
		unsigned long nestflag;
		struct rcu_node *rnp_root = rcu_get_root(rsp);

		spin_lock_irqsave(&rnp_root->lock, nestflag);
		rcu_start_gp(rsp, nestflag);  /* releases rnp_root->lock. */
	}

1368 1369 1370 1371 1372 1373 1374 1375
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
	if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1376
		rdp->blimit = LONG_MAX;
1377 1378 1379 1380 1381
		if (rsp->n_force_qs == rdp->n_force_qs_snap &&
		    *rdp->nxttail[RCU_DONE_TAIL] != head)
			force_quiescent_state(rsp, 0);
		rdp->n_force_qs_snap = rsp->n_force_qs;
		rdp->qlen_last_fqs_check = rdp->qlen;
1382
	} else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1383 1384 1385 1386 1387
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1388
 * Queue an RCU-sched callback for invocation after a grace period.
1389
 */
1390
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1391
{
1392
	__call_rcu(head, func, &rcu_sched_state);
1393
}
1394
EXPORT_SYMBOL_GPL(call_rcu_sched);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_sched(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_bh(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1467 1468 1469 1470 1471 1472 1473 1474 1475
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1476 1477
	struct rcu_node *rnp = rdp->mynode;

1478 1479 1480 1481 1482 1483
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1484 1485
	if (rdp->qs_pending) {
		rdp->n_rp_qs_pending++;
1486
		return 1;
1487
	}
1488 1489

	/* Does this CPU have callbacks ready to invoke? */
1490 1491
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1492
		return 1;
1493
	}
1494 1495

	/* Has RCU gone idle with this CPU needing another grace period? */
1496 1497
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1498
		return 1;
1499
	}
1500 1501

	/* Has another RCU grace period completed?  */
1502
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1503
		rdp->n_rp_gp_completed++;
1504
		return 1;
1505
	}
1506 1507

	/* Has a new RCU grace period started? */
1508
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1509
		rdp->n_rp_gp_started++;
1510
		return 1;
1511
	}
1512 1513

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1514
	if (rcu_gp_in_progress(rsp) &&
1515 1516
	    ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
		rdp->n_rp_need_fqs++;
1517
		return 1;
1518
	}
1519 1520

	/* nothing to do */
1521
	rdp->n_rp_need_nothing++;
1522 1523 1524 1525 1526 1527 1528 1529
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
1530
static int rcu_pending(int cpu)
1531
{
1532
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1533 1534
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 */
int rcu_needs_cpu(int cpu)
{
	/* RCU callbacks either ready or pending? */
1546
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
1547 1548
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
1549 1550
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
1596 1597
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
1598 1599 1600
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
1601
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
	 * early.
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
1614 1615
	preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
	rcu_adopt_orphan_cbs(rsp);
1616
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1617
	preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
1629
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
1630 1631 1632 1633 1634 1635 1636 1637
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
1638
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
1639 1640 1641
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

1642
/*
1643
 * Do boot-time initialization of a CPU's per-CPU RCU data.
1644
 */
1645 1646
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1647 1648 1649
{
	unsigned long flags;
	int i;
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	struct rcu_data *rdp = rsp->rda[cpu];
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
	spin_lock_irqsave(&rnp->lock, flags);
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
	spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1672
 */
1673
static void __cpuinit
1674
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = rsp->rda[cpu];
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
	spin_lock_irqsave(&rnp->lock, flags);
	rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
	rdp->beenonline = 1;	 /* We have now been online. */
1686
	rdp->preemptable = preemptable;
1687 1688
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	rdp->blimit = blimit;
	spin_unlock(&rnp->lock);		/* irqs remain disabled. */

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
	spin_lock(&rsp->onofflock);		/* irqs already disabled. */

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
		spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
1708 1709 1710 1711 1712
		if (rnp == rdp->mynode) {
			rdp->gpnum = rnp->completed; /* if GP in progress... */
			rdp->completed = rnp->completed;
			rdp->passed_quiesc_completed = rnp->completed - 1;
		}
1713 1714 1715 1716
		spin_unlock(&rnp->lock); /* irqs already disabled. */
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

1717
	spin_unlock_irqrestore(&rsp->onofflock, flags);
1718 1719 1720 1721
}

static void __cpuinit rcu_online_cpu(int cpu)
{
1722 1723 1724
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
1725 1726 1727
}

/*
1728
 * Handle CPU online/offline notification events.
1729
 */
1730 1731
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
1732 1733 1734 1735 1736 1737 1738 1739
{
	long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		rcu_online_cpu(cpu);
		break;
1740 1741 1742
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
1743
		 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1744
		 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1745 1746 1747 1748 1749 1750
		 * returns, all online cpus have queued rcu_barrier_func().
		 * The dying CPU clears its cpu_online_mask bit and
		 * moves all of its RCU callbacks to ->orphan_cbs_list
		 * in the context of stop_machine(), so subsequent calls
		 * to _rcu_barrier() will adopt these callbacks and only
		 * then queue rcu_barrier_func() on all remaining CPUs.
1751
		 */
1752 1753 1754
		rcu_send_cbs_to_orphanage(&rcu_bh_state);
		rcu_send_cbs_to_orphanage(&rcu_sched_state);
		rcu_preempt_send_cbs_to_orphanage();
1755
		break;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
static void __init rcu_init_one(struct rcu_state *rsp)
{
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1818
			spin_lock_init(&rnp->lock);
1819
			lockdep_set_class(&rnp->lock, &rcu_node_class[i]);
1820
			rnp->gpnum = 0;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
1838 1839
			INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
			INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1840 1841
			INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
			INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1842 1843 1844 1845 1846
		}
	}
}

/*
1847 1848 1849
 * Helper macro for __rcu_init() and __rcu_init_preempt().  To be used
 * nowhere else!  Assigns leaf node pointers into each CPU's rcu_data
 * structure.
1850
 */
1851
#define RCU_INIT_FLAVOR(rsp, rcu_data) \
1852
do { \
1853 1854 1855 1856
	int i; \
	int j; \
	struct rcu_node *rnp; \
	\
1857
	rcu_init_one(rsp); \
1858 1859 1860 1861 1862 1863 1864
	rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
	j = 0; \
	for_each_possible_cpu(i) { \
		if (i > rnp[j].grphi) \
			j++; \
		per_cpu(rcu_data, i).mynode = &rnp[j]; \
		(rsp)->rda[i] = &per_cpu(rcu_data, i); \
1865
		rcu_boot_init_percpu_data(i, rsp); \
1866 1867 1868
	} \
} while (0)

1869
void __init rcu_init(void)
1870
{
1871 1872
	int i;

1873
	rcu_bootup_announce();
1874 1875 1876
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
	printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1877 1878 1879
#if NUM_RCU_LVL_4 != 0
	printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
#endif /* #if NUM_RCU_LVL_4 != 0 */
1880 1881
	RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
	RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1882
	__rcu_init_preempt();
1883
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1884 1885 1886 1887 1888 1889 1890 1891 1892

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
	for_each_online_cpu(i)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i);
1893 1894
}

1895
#include "rcutree_plugin.h"