rcutree.c 64.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53

54
#include "rcutree.h"
55 56 57
#include <trace/events/rcu.h>

#include "rcu.h"
58

59 60
/* Data structures. */

61
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62

63
#define RCU_STATE_INITIALIZER(structname) { \
64
	.level = { &structname##_state.node[0] }, \
65 66 67 68
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
69 70
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71
	}, \
72
	.fqs_state = RCU_GP_IDLE, \
73 74
	.gpnum = -300, \
	.completed = -300, \
75 76
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 78
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
79
	.name = #structname, \
80 81
}

82
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84

85
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87

88 89
static struct rcu_state *rcu_state;

90 91 92 93 94 95 96 97 98
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
99 100 101
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

116 117
#ifdef CONFIG_RCU_BOOST

118 119 120 121 122
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126
DEFINE_PER_CPU(char, rcu_cpu_has_work);
127

128 129
#endif /* #ifdef CONFIG_RCU_BOOST */

130
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 132
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133

134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

146 147 148 149 150 151 152 153 154 155
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

156
/*
157
 * Note a quiescent state.  Because we do not need to know
158
 * how many quiescent states passed, just if there was at least
159
 * one since the start of the grace period, this just sets a flag.
160
 * The caller must have disabled preemption.
161
 */
162
void rcu_sched_qs(int cpu)
163
{
164
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165

166
	rdp->passed_quiesce_gpnum = rdp->gpnum;
167
	barrier();
168
	if (rdp->passed_quiesce == 0)
169
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170
	rdp->passed_quiesce = 1;
171 172
}

173
void rcu_bh_qs(int cpu)
174
{
175
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176

177
	rdp->passed_quiesce_gpnum = rdp->gpnum;
178
	barrier();
179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182
}
183

184 185 186
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
187
 * The caller must have disabled preemption.
188 189 190
 */
void rcu_note_context_switch(int cpu)
{
191
	trace_rcu_utilization("Start context switch");
192 193
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
194
	trace_rcu_utilization("End context switch");
195
}
196
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197

198
#ifdef CONFIG_NO_HZ
199 200
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
201
	.dynticks = ATOMIC_INIT(1),
202
};
203 204
#endif /* #ifdef CONFIG_NO_HZ */

205
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
206 207 208
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

209 210 211 212
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

213
int rcu_cpu_stall_suppress __read_mostly;
214
module_param(rcu_cpu_stall_suppress, int, 0644);
215

216
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
217
static int rcu_pending(int cpu);
218 219

/*
220
 * Return the number of RCU-sched batches processed thus far for debug & stats.
221
 */
222
long rcu_batches_completed_sched(void)
223
{
224
	return rcu_sched_state.completed;
225
}
226
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
227 228 229 230 231 232 233 234 235 236

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

237 238 239 240 241 242 243 244 245
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

271 272 273 274 275 276 277 278 279
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
295
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
326
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
327 328 329 330
		rdp->offline_fqs++;
		return 1;
	}

P
Paul E. McKenney 已提交
331 332
	/* If preemptible RCU, no point in sending reschedule IPI. */
	if (rdp->preemptible)
333 334
		return 0;

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
363 364 365 366
	if (--rdtp->dynticks_nesting) {
		local_irq_restore(flags);
		return;
	}
367
	trace_rcu_dyntick("Start");
368 369 370 371 372
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	local_irq_restore(flags);
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
389 390 391 392 393 394 395 396 397
	if (rdtp->dynticks_nesting++) {
		local_irq_restore(flags);
		return;
	}
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
398
	trace_rcu_dyntick("End");
399 400 401 402 403 404 405 406 407 408 409 410 411 412
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

413 414
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
415
		return;
416 417 418 419 420 421
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
422 423 424 425 426 427 428 429 430 431 432 433 434
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

435 436
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
437
		return;
438 439 440 441 442
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
443 444 445 446 447 448 449 450 451 452
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
453
	rcu_exit_nohz();
454 455 456 457 458 459 460 461 462 463 464
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
465
	rcu_enter_nohz();
466 467 468 469 470 471 472
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
473
 * is in dynticks idle mode, which is an extended quiescent state.
474 475 476
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
477 478
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
	return 0;
479 480 481 482 483 484 485 486 487 488
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
489 490
	unsigned int curr;
	unsigned int snap;
491

492 493
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
494 495 496 497 498 499 500 501 502

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
503
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
504
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_SMP

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

533
int rcu_cpu_stall_suppress __read_mostly;
534

535 536 537 538 539 540 541 542 543 544 545
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
546
	int ndetected;
547 548 549 550
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
551
	raw_spin_lock_irqsave(&rnp->lock, flags);
552
	delta = jiffies - rsp->jiffies_stall;
553
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
554
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
555 556 557
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
558 559 560 561 562

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
563
	ndetected = rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
564
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
565

566 567 568 569 570
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
571 572
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
573
	rcu_for_each_leaf_node(rsp, rnp) {
574
		raw_spin_lock_irqsave(&rnp->lock, flags);
575
		ndetected += rcu_print_task_stall(rnp);
576
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
577
		if (rnp->qsmask == 0)
578
			continue;
579
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
580
			if (rnp->qsmask & (1UL << cpu)) {
581
				printk(" %d", rnp->grplo + cpu);
582 583
				ndetected++;
			}
584
	}
585
	printk("} (detected by %d, t=%ld jiffies)\n",
586
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
587 588 589
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
590
		dump_stack();
591

592 593 594 595
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

596 597 598 599 600 601 602 603
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

604 605 606 607 608
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
609 610
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
611 612
	if (!trigger_all_cpu_backtrace())
		dump_stack();
613

P
Paul E. McKenney 已提交
614
	raw_spin_lock_irqsave(&rnp->lock, flags);
615
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
616 617
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
618
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
619

620 621 622 623 624
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
625 626
	unsigned long j;
	unsigned long js;
627 628
	struct rcu_node *rnp;

629
	if (rcu_cpu_stall_suppress)
630
		return;
631 632
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
633
	rnp = rdp->mynode;
634
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
635 636 637 638

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

639 640
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
641

642
		/* They had a few time units to dump stack, so complain. */
643 644 645 646
		print_other_cpu_stall(rsp);
	}
}

647 648
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
649
	rcu_cpu_stall_suppress = 1;
650 651 652
	return NOTIFY_DONE;
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

669 670 671 672 673 674 675 676 677
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

678 679 680
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
681 682 683
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
684
 */
685 686 687
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
688 689 690 691 692
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
693
		rdp->gpnum = rnp->gpnum;
694
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
695 696
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
697
			rdp->passed_quiesce = 0;
698 699
		} else
			rdp->qs_pending = 0;
700 701 702
	}
}

703 704
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
705 706 707 708 709 710
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
711
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
712 713 714 715
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
716
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
758
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
759

760 761
		/*
		 * If we were in an extended quiescent state, we may have
762
		 * missed some grace periods that others CPUs handled on
763
		 * our behalf. Catch up with this state to avoid noting
764 765 766
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
767
		 */
768
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
769 770
			rdp->gpnum = rdp->completed;

771
		/*
772 773
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
774
		 */
775
		if ((rnp->qsmask & rdp->grpmask) == 0)
776
			rdp->qs_pending = 0;
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
794
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
795 796 797 798
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
799
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
826 827 828

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
829 830
}

831 832 833 834 835 836 837 838 839 840
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
841
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
842 843
	struct rcu_node *rnp = rcu_get_root(rsp);

844
	if (!rcu_scheduler_fully_active ||
845 846 847 848 849 850 851 852 853 854
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
855

856
	if (rsp->fqs_active) {
857
		/*
858 859
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
860
		 */
861 862
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
863 864 865 866 867
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
868
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
869 870
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
871 872 873 874 875
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
876
		rcu_preempt_check_blocked_tasks(rnp);
877
		rnp->qsmask = rnp->qsmaskinit;
878
		rnp->gpnum = rsp->gpnum;
879
		rnp->completed = rsp->completed;
880
		rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
881
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
882
		rcu_preempt_boost_start_gp(rnp);
883 884 885
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
886
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
887 888 889
		return;
	}

P
Paul E. McKenney 已提交
890
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
891 892 893


	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
894
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
895 896

	/*
897 898 899 900 901 902 903 904 905
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
906 907 908 909
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
910 911
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
912
	 */
913
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
914
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
915
		rcu_preempt_check_blocked_tasks(rnp);
916
		rnp->qsmask = rnp->qsmaskinit;
917
		rnp->gpnum = rsp->gpnum;
918 919 920
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
921
		rcu_preempt_boost_start_gp(rnp);
922 923 924
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
925
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
926 927
	}

928
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
929
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
930
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
931 932
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
933 934
}

935
/*
P
Paul E. McKenney 已提交
936 937 938 939 940
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
941
 */
P
Paul E. McKenney 已提交
942
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
943
	__releases(rcu_get_root(rsp)->lock)
944
{
945
	unsigned long gp_duration;
946 947
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
948

949
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
950 951 952 953 954 955

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
956 957 958
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
993
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
994
	rsp->fqs_state = RCU_GP_IDLE;
995 996 997
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

998
/*
P
Paul E. McKenney 已提交
999 1000 1001 1002 1003 1004
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1005 1006
 */
static void
P
Paul E. McKenney 已提交
1007 1008
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1009 1010
	__releases(rnp->lock)
{
1011 1012
	struct rcu_node *rnp_c;

1013 1014 1015 1016 1017
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1018
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1019 1020 1021
			return;
		}
		rnp->qsmask &= ~mask;
1022 1023 1024 1025
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1026
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1027 1028

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1029
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1030 1031 1032 1033 1034 1035 1036 1037 1038
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1039
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1040
		rnp_c = rnp;
1041
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1042
		raw_spin_lock_irqsave(&rnp->lock, flags);
1043
		WARN_ON_ONCE(rnp_c->qsmask);
1044 1045 1046 1047
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1048
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1049
	 * to clean up and start the next grace period if one is needed.
1050
	 */
P
Paul E. McKenney 已提交
1051
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1052 1053 1054
}

/*
P
Paul E. McKenney 已提交
1055 1056 1057 1058 1059 1060 1061
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1062 1063
 */
static void
1064
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1065 1066 1067 1068 1069 1070
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1071
	raw_spin_lock_irqsave(&rnp->lock, flags);
1072
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1073 1074

		/*
1075 1076 1077 1078
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1079
		 */
1080
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1081
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1082 1083 1084 1085
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1086
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1087 1088 1089 1090 1091 1092 1093 1094 1095
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1096
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1124
	if (!rdp->passed_quiesce)
1125 1126
		return;

P
Paul E. McKenney 已提交
1127 1128 1129 1130
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1131
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1132 1133 1134 1135
}

#ifdef CONFIG_HOTPLUG_CPU

1136
/*
1137 1138 1139
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
 * Synchronization is not required because this function executes
 * in stop_machine() context.
1140
 */
1141
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1142 1143
{
	int i;
1144 1145
	/* current DYING CPU is cleared in the cpu_online_mask */
	int receive_cpu = cpumask_any(cpu_online_mask);
1146
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1147
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1148 1149 1150

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
1151 1152 1153 1154 1155 1156 1157

	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	receive_rdp->qlen += rdp->qlen;
	receive_rdp->n_cbs_adopted += rdp->qlen;
	rdp->n_cbs_orphaned += rdp->qlen;

1158 1159 1160 1161 1162 1163
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
}

1164 1165 1166
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
1167 1168
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1169 1170 1171 1172 1173
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
1174
	int need_report = 0;
1175
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1176
	struct rcu_node *rnp;
1177

1178
	rcu_stop_cpu_kthread(cpu);
1179 1180

	/* Exclude any attempts to start a new grace period. */
P
Paul E. McKenney 已提交
1181
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1182 1183

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1184
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1185 1186
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
P
Paul E. McKenney 已提交
1187
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1188 1189
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1190
			if (rnp != rdp->mynode)
P
Paul E. McKenney 已提交
1191
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1192 1193 1194 1195 1196
			else
				trace_rcu_grace_period(rsp->name,
						       rnp->gpnum + 1 -
						       !!(rnp->qsmask & mask),
						       "cpuofl");
1197 1198
			break;
		}
1199 1200 1201 1202 1203
		if (rnp == rdp->mynode) {
			trace_rcu_grace_period(rsp->name,
					       rnp->gpnum + 1 -
					       !!(rnp->qsmask & mask),
					       "cpuofl");
1204
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1205
		} else
P
Paul E. McKenney 已提交
1206
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1207 1208 1209 1210
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

1211 1212 1213
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
1214 1215
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
1216
	 */
P
Paul E. McKenney 已提交
1217
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1218
	rnp = rdp->mynode;
1219
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
1220
		rcu_report_unblock_qs_rnp(rnp, flags);
1221
	else
P
Paul E. McKenney 已提交
1222
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1223 1224
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp);
1225
	rcu_node_kthread_setaffinity(rnp, -1);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1236
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1237
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1238
	rcu_preempt_offline_cpu(cpu);
1239 1240 1241 1242
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1243
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1244 1245 1246
{
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1257
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1258 1259 1260
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1261
	int bl, count;
1262 1263

	/* If no callbacks are ready, just return.*/
1264
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1265 1266
		trace_rcu_batch_start(rsp->name, 0, 0);
		trace_rcu_batch_end(rsp->name, 0);
1267
		return;
1268
	}
1269 1270 1271 1272 1273 1274

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1275
	bl = rdp->blimit;
1276
	trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
1291
		debug_rcu_head_unqueue(list);
1292
		__rcu_reclaim(rsp->name, list);
1293
		list = next;
1294
		if (++count >= bl)
1295 1296 1297 1298
			break;
	}

	local_irq_save(flags);
1299
	trace_rcu_batch_end(rsp->name, count);
1300 1301 1302

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
1303
	rdp->n_cbs_invoked += count;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1318 1319 1320 1321 1322 1323 1324
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1325 1326
	local_irq_restore(flags);

1327
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1328
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1329
		invoke_rcu_core();
1330 1331 1332 1333 1334
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1335
 * Also schedule RCU core processing.
1336 1337 1338 1339 1340 1341 1342
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1343
	trace_rcu_utilization("Start scheduler-tick");
1344
	if (user ||
1345 1346
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1347 1348 1349 1350 1351

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1352
		 * a quiescent state, so note it.
1353 1354
		 *
		 * No memory barrier is required here because both
1355 1356 1357
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1358 1359
		 */

1360 1361
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1362 1363 1364 1365 1366 1367 1368

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1369
		 * critical section, so note it.
1370 1371
		 */

1372
		rcu_bh_qs(cpu);
1373
	}
1374
	rcu_preempt_check_callbacks(cpu);
1375
	if (rcu_pending(cpu))
1376
		invoke_rcu_core();
1377
	trace_rcu_utilization("End scheduler-tick");
1378 1379 1380 1381 1382 1383 1384
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1385 1386
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1387
 * The caller must have suppressed start of new grace periods.
1388
 */
1389
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1390 1391 1392 1393 1394
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1395
	struct rcu_node *rnp;
1396

1397
	rcu_for_each_leaf_node(rsp, rnp) {
1398
		mask = 0;
P
Paul E. McKenney 已提交
1399
		raw_spin_lock_irqsave(&rnp->lock, flags);
1400
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1401
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1402
			return;
1403
		}
1404
		if (rnp->qsmask == 0) {
1405
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1406 1407
			continue;
		}
1408
		cpu = rnp->grplo;
1409
		bit = 1;
1410
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1411 1412
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1413 1414
				mask |= bit;
		}
1415
		if (mask != 0) {
1416

P
Paul E. McKenney 已提交
1417 1418
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1419 1420
			continue;
		}
P
Paul E. McKenney 已提交
1421
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1422
	}
1423
	rnp = rcu_get_root(rsp);
1424 1425 1426 1427
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1439 1440 1441
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1442
		return;  /* No grace period in progress, nothing to force. */
1443
	}
P
Paul E. McKenney 已提交
1444
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1445
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1446
		trace_rcu_utilization("End fqs");
1447 1448
		return;	/* Someone else is already on the job. */
	}
1449
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1450
		goto unlock_fqs_ret; /* no emergency and done recently. */
1451
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1452
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1453
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1454
	if(!rcu_gp_in_progress(rsp)) {
1455
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1456
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1457
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1458
	}
1459
	rsp->fqs_active = 1;
1460
	switch (rsp->fqs_state) {
1461
	case RCU_GP_IDLE:
1462 1463
	case RCU_GP_INIT:

1464
		break; /* grace period idle or initializing, ignore. */
1465 1466 1467 1468 1469

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1470 1471
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1472
		/* Record dyntick-idle state. */
1473
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1474
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1475
		if (rcu_gp_in_progress(rsp))
1476
			rsp->fqs_state = RCU_FORCE_QS;
1477
		break;
1478 1479 1480 1481

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1482
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1483
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1484 1485 1486

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1487
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1488
		break;
1489
	}
1490
	rsp->fqs_active = 0;
1491
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1492
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1493 1494
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1495
		trace_rcu_utilization("End fqs");
1496 1497
		return;
	}
P
Paul E. McKenney 已提交
1498
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1499
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1500
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1501
	trace_rcu_utilization("End fqs");
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
1514 1515 1516
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1517 1518 1519 1520 1521 1522
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1523 1524
	WARN_ON_ONCE(rdp->beenonline == 0);

1525 1526 1527 1528
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1529
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1543
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1544 1545 1546 1547
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1548
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1549
		invoke_rcu_callbacks(rsp, rdp);
1550 1551
}

1552
/*
1553
 * Do RCU core processing for the current CPU.
1554
 */
1555
static void rcu_process_callbacks(struct softirq_action *unused)
1556
{
1557
	trace_rcu_utilization("Start RCU core");
1558 1559
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1560
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1561
	rcu_preempt_process_callbacks();
1562
	trace_rcu_utilization("End RCU core");
1563 1564
}

1565
/*
1566 1567 1568 1569 1570
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1571
 */
1572
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1573
{
1574 1575
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1576 1577
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1578 1579
		return;
	}
1580
	invoke_rcu_callbacks_kthread();
1581 1582
}

1583
static void invoke_rcu_core(void)
1584 1585 1586 1587
{
	raise_softirq(RCU_SOFTIRQ);
}

1588 1589 1590 1591 1592 1593 1594
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

1595
	debug_rcu_head_queue(head);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1608
	rdp = this_cpu_ptr(rsp->rda);
1609 1610 1611 1612

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1613 1614
	rdp->qlen++;

1615 1616 1617 1618 1619 1620
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
					 rdp->qlen);
	else
		trace_rcu_callback(rsp->name, head, rdp->qlen);

1621 1622 1623 1624 1625
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1626

1627 1628 1629 1630 1631 1632 1633
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1634
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1656
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1657 1658 1659 1660 1661
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1662
 * Queue an RCU-sched callback for invocation after a grace period.
1663
 */
1664
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1665
{
1666
	__call_rcu(head, func, &rcu_sched_state);
1667
}
1668
EXPORT_SYMBOL_GPL(call_rcu_sched);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	if (rcu_blocking_is_gp())
		return;
1706
	wait_rcu_gp(call_rcu_sched);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	if (rcu_blocking_is_gp())
		return;
1723
	wait_rcu_gp(call_rcu_bh);
1724 1725 1726
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1727 1728 1729 1730 1731 1732 1733 1734 1735
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1736 1737
	struct rcu_node *rnp = rdp->mynode;

1738 1739 1740 1741 1742 1743
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1744 1745
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
1746 1747 1748 1749 1750 1751

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1752
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
1753
		if (!rdp->preemptible &&
1754 1755 1756
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1757
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
1758
		rdp->n_rp_report_qs++;
1759
		return 1;
1760
	}
1761 1762

	/* Does this CPU have callbacks ready to invoke? */
1763 1764
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1765
		return 1;
1766
	}
1767 1768

	/* Has RCU gone idle with this CPU needing another grace period? */
1769 1770
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1771
		return 1;
1772
	}
1773 1774

	/* Has another RCU grace period completed?  */
1775
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1776
		rdp->n_rp_gp_completed++;
1777
		return 1;
1778
	}
1779 1780

	/* Has a new RCU grace period started? */
1781
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1782
		rdp->n_rp_gp_started++;
1783
		return 1;
1784
	}
1785 1786

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1787
	if (rcu_gp_in_progress(rsp) &&
1788
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1789
		rdp->n_rp_need_fqs++;
1790
		return 1;
1791
	}
1792 1793

	/* nothing to do */
1794
	rdp->n_rp_need_nothing++;
1795 1796 1797 1798 1799 1800 1801 1802
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
1803
static int rcu_pending(int cpu)
1804
{
1805
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1806 1807
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
1808 1809 1810 1811 1812
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
1813
 * 1 if so.
1814
 */
1815
static int rcu_needs_cpu_quick_check(int cpu)
1816 1817
{
	/* RCU callbacks either ready or pending? */
1818
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
1819 1820
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
1821 1822
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
1853 1854
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
1855 1856 1857
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
1858
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
1859 1860 1861 1862 1863 1864 1865 1866 1867
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
1868 1869 1870
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
1885
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
1886 1887 1888 1889 1890 1891 1892 1893
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
1894
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
1895 1896 1897
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

1898
/*
1899
 * Do boot-time initialization of a CPU's per-CPU RCU data.
1900
 */
1901 1902
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1903 1904 1905
{
	unsigned long flags;
	int i;
1906
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1907 1908 1909
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
1910
	raw_spin_lock_irqsave(&rnp->lock, flags);
1911 1912 1913 1914 1915 1916 1917 1918 1919
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
1920
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
1921
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1922 1923 1924 1925 1926 1927 1928
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1929
 */
1930
static void __cpuinit
P
Paul E. McKenney 已提交
1931
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1932 1933 1934
{
	unsigned long flags;
	unsigned long mask;
1935
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1936 1937 1938
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
1939
	raw_spin_lock_irqsave(&rnp->lock, flags);
1940
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
1941
	rdp->preemptible = preemptible;
1942 1943
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
1944
	rdp->blimit = blimit;
P
Paul E. McKenney 已提交
1945
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
1946 1947 1948 1949 1950 1951 1952

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
1953
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
1954 1955 1956 1957 1958 1959

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
1960
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1961 1962
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
1963
		if (rnp == rdp->mynode) {
1964 1965 1966 1967 1968 1969
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
1970
			rdp->completed = rnp->completed;
1971 1972
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
1973
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
1974
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
1975
		}
P
Paul E. McKenney 已提交
1976
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1977 1978 1979
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
1980
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1981 1982
}

P
Peter Zijlstra 已提交
1983
static void __cpuinit rcu_prepare_cpu(int cpu)
1984
{
1985 1986 1987
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
1988 1989 1990
}

/*
1991
 * Handle CPU online/offline notification events.
1992
 */
1993 1994
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
1995 1996
{
	long cpu = (long)hcpu;
1997
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1998
	struct rcu_node *rnp = rdp->mynode;
1999

2000
	trace_rcu_utilization("Start CPU hotplug");
2001 2002 2003
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2004 2005
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2006 2007
		break;
	case CPU_ONLINE:
2008 2009
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2010
		rcu_cpu_kthread_setrt(cpu, 1);
2011 2012 2013
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2014
		rcu_cpu_kthread_setrt(cpu, 0);
2015
		break;
2016 2017 2018
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2019 2020 2021
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2022
		 */
2023 2024 2025
		rcu_send_cbs_to_online(&rcu_bh_state);
		rcu_send_cbs_to_online(&rcu_sched_state);
		rcu_preempt_send_cbs_to_online();
2026
		break;
2027 2028 2029 2030 2031 2032 2033 2034 2035
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
2036
	trace_rcu_utilization("End CPU hotplug");
2037 2038 2039
	return NOTIFY_OK;
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2055 2056 2057 2058 2059 2060 2061 2062 2063
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2064
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2065
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2066
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2087 2088
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2089
{
2090 2091 2092 2093
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2094 2095 2096 2097 2098
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2099 2100
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2113
			raw_spin_lock_init(&rnp->lock);
2114 2115
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2116
			rnp->gpnum = 0;
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2134
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2135 2136
		}
	}
2137

2138
	rsp->rda = rda;
2139 2140
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2141
		while (i > rnp->grphi)
2142
			rnp++;
2143
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2144 2145
		rcu_boot_init_percpu_data(i, rsp);
	}
2146 2147
}

2148
void __init rcu_init(void)
2149
{
P
Paul E. McKenney 已提交
2150
	int cpu;
2151

2152
	rcu_bootup_announce();
2153 2154
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2155
	__rcu_init_preempt();
2156
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2157 2158 2159 2160 2161 2162 2163

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2164 2165
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2166
	check_cpu_stall_init();
2167 2168
}

2169
#include "rcutree_plugin.h"