rcutree.c 73.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53

54
#include "rcutree.h"
55 56 57
#include <trace/events/rcu.h>

#include "rcu.h"
58

59 60
/* Data structures. */

61
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62

63
#define RCU_STATE_INITIALIZER(structname) { \
64
	.level = { &structname##_state.node[0] }, \
65 66 67 68
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
69 70
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71
	}, \
72
	.fqs_state = RCU_GP_IDLE, \
73 74
	.gpnum = -300, \
	.completed = -300, \
75 76
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 78
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
79
	.name = #structname, \
80 81
}

82
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84

85
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87

88 89
static struct rcu_state *rcu_state;

90 91 92 93 94 95 96 97 98
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
99 100 101
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

116 117
#ifdef CONFIG_RCU_BOOST

118 119 120 121 122
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126
DEFINE_PER_CPU(char, rcu_cpu_has_work);
127

128 129
#endif /* #ifdef CONFIG_RCU_BOOST */

130
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 132
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133

134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

146 147 148 149 150 151 152 153 154 155
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

156
/*
157
 * Note a quiescent state.  Because we do not need to know
158
 * how many quiescent states passed, just if there was at least
159
 * one since the start of the grace period, this just sets a flag.
160
 * The caller must have disabled preemption.
161
 */
162
void rcu_sched_qs(int cpu)
163
{
164
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165

166
	rdp->passed_quiesce_gpnum = rdp->gpnum;
167
	barrier();
168
	if (rdp->passed_quiesce == 0)
169
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170
	rdp->passed_quiesce = 1;
171 172
}

173
void rcu_bh_qs(int cpu)
174
{
175
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176

177
	rdp->passed_quiesce_gpnum = rdp->gpnum;
178
	barrier();
179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182
}
183

184 185 186
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
187
 * The caller must have disabled preemption.
188 189 190
 */
void rcu_note_context_switch(int cpu)
{
191
	trace_rcu_utilization("Start context switch");
192 193
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
194
	trace_rcu_utilization("End context switch");
195
}
196
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197

198
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199
	.dynticks_nesting = DYNTICK_TASK_NESTING,
200
	.dynticks = ATOMIC_INIT(1),
201
};
202

203
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
204 205 206
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

207 208 209 210
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

211 212 213
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

214
module_param(rcu_cpu_stall_suppress, int, 0644);
215
module_param(rcu_cpu_stall_timeout, int, 0644);
216

217
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
218
static int rcu_pending(int cpu);
219 220

/*
221
 * Return the number of RCU-sched batches processed thus far for debug & stats.
222
 */
223
long rcu_batches_completed_sched(void)
224
{
225
	return rcu_sched_state.completed;
226
}
227
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
228 229 230 231 232 233 234 235 236 237

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

238 239 240 241 242 243 244 245 246
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

272 273 274 275 276 277 278 279 280
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
296
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
325
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
326 327 328 329
		rdp->offline_fqs++;
		return 1;
	}

330 331 332 333 334
	/*
	 * The CPU is online, so send it a reschedule IPI.  This forces
	 * it through the scheduler, and (inefficiently) also handles cases
	 * where idle loops fail to inform RCU about the CPU being idle.
	 */
335 336 337 338 339 340 341 342
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

343 344 345 346 347 348 349
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
350
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
351
{
352
	trace_rcu_dyntick("Start", oldval, 0);
353
	if (!is_idle_task(current)) {
354 355
		struct task_struct *idle = idle_task(smp_processor_id());

356
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
357
		ftrace_dump(DUMP_ALL);
358 359 360
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
361
	}
362
	rcu_prepare_for_idle(smp_processor_id());
363 364 365 366 367
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
368 369 370 371 372 373 374 375 376 377 378

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
379
}
380 381

/**
382
 * rcu_idle_enter - inform RCU that current CPU is entering idle
383
 *
384
 * Enter idle mode, in other words, -leave- the mode in which RCU
385
 * read-side critical sections can occur.  (Though RCU read-side
386 387 388 389 390 391
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
392
 */
393
void rcu_idle_enter(void)
394 395
{
	unsigned long flags;
396
	long long oldval;
397 398 399 400
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
401
	oldval = rdtp->dynticks_nesting;
402
	rdtp->dynticks_nesting = 0;
403
	rcu_idle_enter_common(rdtp, oldval);
404 405 406
	local_irq_restore(flags);
}

407 408 409 410 411 412
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
413
 *
414 415 416 417 418 419 420 421
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
422
 */
423
void rcu_irq_exit(void)
424 425
{
	unsigned long flags;
426
	long long oldval;
427 428 429 430
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
431
	oldval = rdtp->dynticks_nesting;
432 433
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
434 435 436 437
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
438 439 440 441 442 443 444 445 446 447 448 449
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
450 451 452 453 454
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
455
	rcu_cleanup_after_idle(smp_processor_id());
456
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
457
	if (!is_idle_task(current)) {
458 459
		struct task_struct *idle = idle_task(smp_processor_id());

460 461
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
462
		ftrace_dump(DUMP_ALL);
463 464 465
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
466 467 468 469 470 471 472 473 474
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
475 476
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
 * allow for the possibility of usermode upcalls messing up our count
477 478 479 480 481 482 483 484 485 486 487 488 489
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	WARN_ON_ONCE(oldval != 0);
490
	rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
525 526 527 528
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
529 530 531 532 533 534 535 536 537 538 539 540 541 542
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

543 544
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
545
		return;
546 547 548 549 550 551
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
552 553 554 555 556 557 558 559 560 561 562 563 564
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

565 566
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
567
		return;
568 569 570 571 572
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
573 574
}

575 576
#ifdef CONFIG_PROVE_RCU

577
/**
578
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
579
 *
580
 * If the current CPU is in its idle loop and is neither in an interrupt
581
 * or NMI handler, return true.
582
 */
583
int rcu_is_cpu_idle(void)
584
{
585 586 587 588 589 590
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
591
}
592
EXPORT_SYMBOL(rcu_is_cpu_idle);
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
 * the check for rcu_scheduler_fully_active.
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
	ret = cpu_online(smp_processor_id()) ||
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

623 624
#endif /* #ifdef CONFIG_PROVE_RCU */

625
/**
626
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
627
 *
628 629 630
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
631
 */
632
int rcu_is_cpu_rrupt_from_idle(void)
633
{
634
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
635 636 637 638 639
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
640
 * is in dynticks idle mode, which is an extended quiescent state.
641 642 643
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
644
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
645
	return (rdp->dynticks_snap & 0x1) == 0;
646 647 648 649 650 651 652 653 654 655
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
656 657
	unsigned int curr;
	unsigned int snap;
658

659 660
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
661 662 663 664 665 666 667 668 669

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
670
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
671
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
672 673 674 675 676 677 678 679
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

698 699 700
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
701
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
702 703 704 705 706 707 708
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
709
	int ndetected;
710 711 712 713
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
714
	raw_spin_lock_irqsave(&rnp->lock, flags);
715
	delta = jiffies - rsp->jiffies_stall;
716
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
717
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
718 719
		return;
	}
720
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
721
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
722

723 724 725 726 727
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
728
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
729
	       rsp->name);
730
	print_cpu_stall_info_begin();
731
	rcu_for_each_leaf_node(rsp, rnp) {
732
		raw_spin_lock_irqsave(&rnp->lock, flags);
733
		ndetected += rcu_print_task_stall(rnp);
734
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
735
		if (rnp->qsmask == 0)
736
			continue;
737
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
738
			if (rnp->qsmask & (1UL << cpu)) {
739
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
740 741
				ndetected++;
			}
742
	}
743 744 745 746 747 748 749 750 751 752 753 754

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	ndetected = rcu_print_task_stall(rnp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
755
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
756 757 758
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
759
		dump_stack();
760

761 762 763 764
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

765 766 767 768 769 770 771 772
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

773 774 775 776 777
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
778 779 780 781 782
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
783 784
	if (!trigger_all_cpu_backtrace())
		dump_stack();
785

P
Paul E. McKenney 已提交
786
	raw_spin_lock_irqsave(&rnp->lock, flags);
787
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
788 789
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
790
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
791

792 793 794 795 796
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
797 798
	unsigned long j;
	unsigned long js;
799 800
	struct rcu_node *rnp;

801
	if (rcu_cpu_stall_suppress)
802
		return;
803 804
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
805
	rnp = rdp->mynode;
806
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
807 808 809 810

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

811 812
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
813

814
		/* They had a few time units to dump stack, so complain. */
815 816 817 818
		print_other_cpu_stall(rsp);
	}
}

819 820
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
821
	rcu_cpu_stall_suppress = 1;
822 823 824
	return NOTIFY_DONE;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

841 842 843 844 845 846 847 848 849
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

850 851 852
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
853 854 855
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
856
 */
857 858 859
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
860 861 862 863 864
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
865
		rdp->gpnum = rnp->gpnum;
866
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
867 868
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
869
			rdp->passed_quiesce = 0;
870 871
		} else
			rdp->qs_pending = 0;
872
		zero_cpu_stall_ticks(rdp);
873 874 875
	}
}

876 877
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
878 879 880 881 882 883
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
884
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
885 886 887 888
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
889
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
931
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
932

933 934
		/*
		 * If we were in an extended quiescent state, we may have
935
		 * missed some grace periods that others CPUs handled on
936
		 * our behalf. Catch up with this state to avoid noting
937 938 939
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
940
		 */
941
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
942 943
			rdp->gpnum = rdp->completed;

944
		/*
945 946
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
947
		 */
948
		if ((rnp->qsmask & rdp->grpmask) == 0)
949
			rdp->qs_pending = 0;
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
967
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
968 969 970 971
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
972
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
999 1000 1001

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1002 1003
}

1004 1005 1006 1007 1008
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1009 1010 1011 1012
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1013 1014 1015 1016 1017
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1018
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1019 1020
	struct rcu_node *rnp = rcu_get_root(rsp);

1021
	if (!rcu_scheduler_fully_active ||
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1032

1033
	if (rsp->fqs_active) {
1034
		/*
1035 1036
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
1037
		 */
1038 1039
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1040 1041 1042 1043 1044
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
1045
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1046 1047
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1048 1049
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);
P
Paul E. McKenney 已提交
1050
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1051 1052

	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
1053
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1054 1055

	/*
1056 1057 1058 1059 1060 1061 1062 1063 1064
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
1065 1066 1067 1068
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
1069 1070
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
1071
	 */
1072
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
1073
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1074
		rcu_preempt_check_blocked_tasks(rnp);
1075
		rnp->qsmask = rnp->qsmaskinit;
1076
		rnp->gpnum = rsp->gpnum;
1077 1078 1079
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1080
		rcu_preempt_boost_start_gp(rnp);
1081 1082 1083
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
1084
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1085 1086
	}

1087
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
1088
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1089
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
1090 1091
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1092 1093
}

1094
/*
P
Paul E. McKenney 已提交
1095 1096 1097 1098 1099
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1100
 */
P
Paul E. McKenney 已提交
1101
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1102
	__releases(rcu_get_root(rsp)->lock)
1103
{
1104
	unsigned long gp_duration;
1105 1106
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1107

1108
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1109 1110 1111 1112 1113 1114

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1115 1116 1117
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1152
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1153
	rsp->fqs_state = RCU_GP_IDLE;
1154 1155 1156
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1157
/*
P
Paul E. McKenney 已提交
1158 1159 1160 1161 1162 1163
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1164 1165
 */
static void
P
Paul E. McKenney 已提交
1166 1167
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1168 1169
	__releases(rnp->lock)
{
1170 1171
	struct rcu_node *rnp_c;

1172 1173 1174 1175 1176
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1177
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1178 1179 1180
			return;
		}
		rnp->qsmask &= ~mask;
1181 1182 1183 1184
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1185
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1186 1187

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1188
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1189 1190 1191 1192 1193 1194 1195 1196 1197
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1198
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1199
		rnp_c = rnp;
1200
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1201
		raw_spin_lock_irqsave(&rnp->lock, flags);
1202
		WARN_ON_ONCE(rnp_c->qsmask);
1203 1204 1205 1206
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1207
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1208
	 * to clean up and start the next grace period if one is needed.
1209
	 */
P
Paul E. McKenney 已提交
1210
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1211 1212 1213
}

/*
P
Paul E. McKenney 已提交
1214 1215 1216 1217 1218 1219 1220
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1221 1222
 */
static void
1223
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1224 1225 1226 1227 1228 1229
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1230
	raw_spin_lock_irqsave(&rnp->lock, flags);
1231
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1232 1233

		/*
1234 1235 1236 1237
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1238
		 */
1239
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1240
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1241 1242 1243 1244
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1245
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1246 1247 1248 1249 1250 1251 1252 1253 1254
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1255
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1283
	if (!rdp->passed_quiesce)
1284 1285
		return;

P
Paul E. McKenney 已提交
1286 1287 1288 1289
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1290
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1291 1292 1293 1294
}

#ifdef CONFIG_HOTPLUG_CPU

1295
/*
1296
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1297 1298 1299 1300 1301 1302 1303 1304 1305
 * Also record a quiescent state for this CPU for the current grace period.
 * Synchronization and interrupt disabling are not required because
 * this function executes in stop_machine() context.  Therefore, cleanup
 * operations that might block must be done later from the CPU_DEAD
 * notifier.
 *
 * Note that the outgoing CPU's bit has already been cleared in the
 * cpu_online_mask.  This allows us to randomly pick a callback
 * destination from the bits set in that mask.
1306
 */
1307
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1308
{
1309
	unsigned long flags;
1310
	int i;
1311 1312
	unsigned long mask;
	int need_report;
1313
	int receive_cpu = cpumask_any(cpu_online_mask);
1314
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1315
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1316 1317
	struct rcu_node *rnp = rdp->mynode; /* For dying CPU. */

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	/* First, adjust the counts. */
	if (rdp->nxtlist != NULL) {
		receive_rdp->qlen_lazy += rdp->qlen_lazy;
		receive_rdp->qlen += rdp->qlen;
		rdp->qlen_lazy = 0;
		rdp->qlen = 0;
	}

	/*
	 * Next, move ready-to-invoke callbacks to be invoked on some
	 * other CPU.  These will not be required to pass through another
	 * grace period:  They are done, regardless of CPU.
	 */
	if (rdp->nxtlist != NULL &&
	    rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
		struct rcu_head *oldhead;
		struct rcu_head **oldtail;
		struct rcu_head **newtail;

		oldhead = rdp->nxtlist;
		oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
		rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
		*receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
		newtail = rdp->nxttail[RCU_DONE_TAIL];
		for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
			if (receive_rdp->nxttail[i] == oldtail)
				receive_rdp->nxttail[i] = newtail;
			if (rdp->nxttail[i] == newtail)
				rdp->nxttail[i] = &rdp->nxtlist;
		}
	}

	/*
	 * Finally, put the rest of the callbacks at the end of the list.
	 * The ones that made it partway through get to start over:  We
	 * cannot assume that grace periods are synchronized across CPUs.
	 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
	 * this does not seem compelling.  Not yet, anyway.)
	 */
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	if (rdp->nxtlist != NULL) {
		*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
		receive_rdp->nxttail[RCU_NEXT_TAIL] =
				rdp->nxttail[RCU_NEXT_TAIL];
		receive_rdp->n_cbs_adopted += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;

		rdp->nxtlist = NULL;
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			rdp->nxttail[i] = &rdp->nxtlist;
	}
1369

1370 1371 1372 1373 1374 1375
	/*
	 * Record a quiescent state for the dying CPU.  This is safe
	 * only because we have already cleared out the callbacks.
	 * (Otherwise, the RCU core might try to schedule the invocation
	 * of callbacks on this now-offline CPU, which would be bad.)
	 */
1376
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
	rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
	/* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */

	/*
	 * Remove the dying CPU from the bitmasks in the rcu_node
	 * hierarchy.  Because we are in stop_machine() context, we
	 * automatically exclude ->onofflock critical sections.
	 */
1388
	do {
1389
		raw_spin_lock_irqsave(&rnp->lock, flags);
1390 1391
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1392
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1393 1394
			break;
		}
1395
		if (rnp == rdp->mynode) {
1396
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1397 1398 1399 1400 1401 1402
			if (need_report & RCU_OFL_TASKS_NORM_GP)
				rcu_report_unblock_qs_rnp(rnp, flags);
			else
				raw_spin_unlock_irqrestore(&rnp->lock, flags);
			if (need_report & RCU_OFL_TASKS_EXP_GP)
				rcu_report_exp_rnp(rsp, rnp, true);
1403
		} else
1404
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1405 1406 1407 1408 1409 1410
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);
}

/*
1411 1412 1413 1414
 * The CPU has been completely removed, and some other CPU is reporting
 * this fact from process context.  Do the remainder of the cleanup.
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1415
 */
1416
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1417
{
1418 1419 1420 1421 1422
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1423 1424 1425 1426
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1427
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1428 1429 1430
{
}

1431
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1432 1433 1434 1435 1436 1437 1438 1439 1440
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1441
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1442 1443 1444
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1445
	int bl, count, count_lazy;
1446 1447

	/* If no callbacks are ready, just return.*/
1448
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1449
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1450 1451 1452
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1453
		return;
1454
	}
1455 1456 1457 1458 1459 1460

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1461
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1462
	bl = rdp->blimit;
1463
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
1474
	count = count_lazy = 0;
1475 1476 1477
	while (list) {
		next = list->next;
		prefetch(next);
1478
		debug_rcu_head_unqueue(list);
1479 1480
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1481
		list = next;
1482 1483 1484 1485
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1486 1487 1488 1489
			break;
	}

	local_irq_save(flags);
1490 1491 1492
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1493 1494

	/* Update count, and requeue any remaining callbacks. */
1495
	rdp->qlen_lazy -= count_lazy;
1496
	rdp->qlen -= count;
1497
	rdp->n_cbs_invoked += count;
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1512 1513 1514 1515 1516 1517 1518
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1519 1520
	local_irq_restore(flags);

1521
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1522
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1523
		invoke_rcu_core();
1524 1525 1526 1527 1528
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1529
 * Also schedule RCU core processing.
1530
 *
1531
 * This function must be called from hardirq context.  It is normally
1532 1533 1534 1535 1536
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1537
	trace_rcu_utilization("Start scheduler-tick");
1538
	increment_cpu_stall_ticks();
1539
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1540 1541 1542 1543 1544

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1545
		 * a quiescent state, so note it.
1546 1547
		 *
		 * No memory barrier is required here because both
1548 1549 1550
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1551 1552
		 */

1553 1554
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1555 1556 1557 1558 1559 1560 1561

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1562
		 * critical section, so note it.
1563 1564
		 */

1565
		rcu_bh_qs(cpu);
1566
	}
1567
	rcu_preempt_check_callbacks(cpu);
1568
	if (rcu_pending(cpu))
1569
		invoke_rcu_core();
1570
	trace_rcu_utilization("End scheduler-tick");
1571 1572 1573 1574 1575
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1576 1577
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1578
 * The caller must have suppressed start of new grace periods.
1579
 */
1580
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1581 1582 1583 1584 1585
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1586
	struct rcu_node *rnp;
1587

1588
	rcu_for_each_leaf_node(rsp, rnp) {
1589
		mask = 0;
P
Paul E. McKenney 已提交
1590
		raw_spin_lock_irqsave(&rnp->lock, flags);
1591
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1592
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1593
			return;
1594
		}
1595
		if (rnp->qsmask == 0) {
1596
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1597 1598
			continue;
		}
1599
		cpu = rnp->grplo;
1600
		bit = 1;
1601
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1602 1603
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1604 1605
				mask |= bit;
		}
1606
		if (mask != 0) {
1607

P
Paul E. McKenney 已提交
1608 1609
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1610 1611
			continue;
		}
P
Paul E. McKenney 已提交
1612
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1613
	}
1614
	rnp = rcu_get_root(rsp);
1615 1616 1617 1618
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1630 1631 1632
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1633
		return;  /* No grace period in progress, nothing to force. */
1634
	}
P
Paul E. McKenney 已提交
1635
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1636
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1637
		trace_rcu_utilization("End fqs");
1638 1639
		return;	/* Someone else is already on the job. */
	}
1640
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1641
		goto unlock_fqs_ret; /* no emergency and done recently. */
1642
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1643
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1644
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1645
	if(!rcu_gp_in_progress(rsp)) {
1646
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1647
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1648
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1649
	}
1650
	rsp->fqs_active = 1;
1651
	switch (rsp->fqs_state) {
1652
	case RCU_GP_IDLE:
1653 1654
	case RCU_GP_INIT:

1655
		break; /* grace period idle or initializing, ignore. */
1656 1657 1658 1659 1660

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1661 1662
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1663
		/* Record dyntick-idle state. */
1664
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1665
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1666
		if (rcu_gp_in_progress(rsp))
1667
			rsp->fqs_state = RCU_FORCE_QS;
1668
		break;
1669 1670 1671 1672

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1673
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1674
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1675 1676 1677

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1678
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1679
		break;
1680
	}
1681
	rsp->fqs_active = 0;
1682
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1683
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1684 1685
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1686
		trace_rcu_utilization("End fqs");
1687 1688
		return;
	}
P
Paul E. McKenney 已提交
1689
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1690
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1691
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1692
	trace_rcu_utilization("End fqs");
1693 1694 1695
}

/*
1696 1697 1698
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1699 1700 1701 1702 1703 1704
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1705 1706
	WARN_ON_ONCE(rdp->beenonline == 0);

1707 1708 1709 1710
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1711
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1725
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1726 1727 1728 1729
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1730
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1731
		invoke_rcu_callbacks(rsp, rdp);
1732 1733
}

1734
/*
1735
 * Do RCU core processing for the current CPU.
1736
 */
1737
static void rcu_process_callbacks(struct softirq_action *unused)
1738
{
1739
	trace_rcu_utilization("Start RCU core");
1740 1741
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1742
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1743
	rcu_preempt_process_callbacks();
1744
	trace_rcu_utilization("End RCU core");
1745 1746
}

1747
/*
1748 1749 1750 1751 1752
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1753
 */
1754
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1755
{
1756 1757
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1758 1759
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1760 1761
		return;
	}
1762
	invoke_rcu_callbacks_kthread();
1763 1764
}

1765
static void invoke_rcu_core(void)
1766 1767 1768 1769
{
	raise_softirq(RCU_SOFTIRQ);
}

1770 1771
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1772
	   struct rcu_state *rsp, bool lazy)
1773 1774 1775 1776
{
	unsigned long flags;
	struct rcu_data *rdp;

1777
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1778
	debug_rcu_head_queue(head);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1791
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1792
	rdp = this_cpu_ptr(rsp->rda);
1793 1794 1795 1796

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1797
	rdp->qlen++;
1798 1799
	if (lazy)
		rdp->qlen_lazy++;
1800

1801 1802
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1803
					 rdp->qlen_lazy, rdp->qlen);
1804
	else
1805
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1806

1807 1808 1809 1810 1811
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1812

1813 1814 1815 1816 1817 1818 1819
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1820
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1842
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1843 1844 1845 1846 1847
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1848
 * Queue an RCU-sched callback for invocation after a grace period.
1849
 */
1850
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1851
{
1852
	__call_rcu(head, func, &rcu_sched_state, 0);
1853
}
1854
EXPORT_SYMBOL_GPL(call_rcu_sched);
1855 1856

/*
1857
 * Queue an RCU callback for invocation after a quicker grace period.
1858 1859 1860
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
1861
	__call_rcu(head, func, &rcu_bh_state, 0);
1862 1863 1864
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
1890 1891 1892 1893
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
1894 1895
	if (rcu_blocking_is_gp())
		return;
1896
	wait_rcu_gp(call_rcu_sched);
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
1911 1912 1913 1914
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1915 1916
	if (rcu_blocking_is_gp())
		return;
1917
	wait_rcu_gp(call_rcu_bh);
1918 1919 1920
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1921 1922 1923 1924 1925 1926 1927 1928 1929
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1930 1931
	struct rcu_node *rnp = rdp->mynode;

1932 1933 1934 1935 1936 1937
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1938 1939
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
1940 1941 1942 1943 1944 1945

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1946
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
1947
		if (!rdp->preemptible &&
1948 1949 1950
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1951
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
1952
		rdp->n_rp_report_qs++;
1953
		return 1;
1954
	}
1955 1956

	/* Does this CPU have callbacks ready to invoke? */
1957 1958
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1959
		return 1;
1960
	}
1961 1962

	/* Has RCU gone idle with this CPU needing another grace period? */
1963 1964
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1965
		return 1;
1966
	}
1967 1968

	/* Has another RCU grace period completed?  */
1969
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1970
		rdp->n_rp_gp_completed++;
1971
		return 1;
1972
	}
1973 1974

	/* Has a new RCU grace period started? */
1975
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1976
		rdp->n_rp_gp_started++;
1977
		return 1;
1978
	}
1979 1980

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1981
	if (rcu_gp_in_progress(rsp) &&
1982
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1983
		rdp->n_rp_need_fqs++;
1984
		return 1;
1985
	}
1986 1987

	/* nothing to do */
1988
	rdp->n_rp_need_nothing++;
1989 1990 1991 1992 1993 1994 1995 1996
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
1997
static int rcu_pending(int cpu)
1998
{
1999
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2000 2001
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
2002 2003 2004 2005 2006
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2007
 * 1 if so.
2008
 */
2009
static int rcu_cpu_has_callbacks(int cpu)
2010 2011
{
	/* RCU callbacks either ready or pending? */
2012
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2013
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
2014
	       rcu_preempt_cpu_has_callbacks(cpu);
2015 2016
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2047 2048
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
2049 2050 2051
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
2052
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2053 2054 2055 2056 2057 2058 2059 2060 2061
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
2062 2063 2064
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2079
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2080 2081 2082 2083 2084 2085 2086 2087
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2088
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2089 2090 2091
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2092
/*
2093
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2094
 */
2095 2096
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2097 2098 2099
{
	unsigned long flags;
	int i;
2100
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2101 2102 2103
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2104
	raw_spin_lock_irqsave(&rnp->lock, flags);
2105 2106 2107 2108
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
2109
	rdp->qlen_lazy = 0;
2110 2111
	rdp->qlen = 0;
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2112
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2113
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2114
	rdp->cpu = cpu;
2115
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2116
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2117 2118 2119 2120 2121 2122 2123
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2124
 */
2125
static void __cpuinit
P
Paul E. McKenney 已提交
2126
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2127 2128 2129
{
	unsigned long flags;
	unsigned long mask;
2130
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2131 2132 2133
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2134
	raw_spin_lock_irqsave(&rnp->lock, flags);
2135
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2136
	rdp->preemptible = preemptible;
2137 2138
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2139
	rdp->blimit = blimit;
2140 2141 2142
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2143
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2144
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2145 2146 2147 2148 2149 2150 2151

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2152
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2153 2154 2155 2156 2157 2158

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2159
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2160 2161
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2162
		if (rnp == rdp->mynode) {
2163 2164 2165 2166 2167 2168
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2169
			rdp->completed = rnp->completed;
2170 2171
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2172
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2173
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2174
		}
P
Paul E. McKenney 已提交
2175
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2176 2177 2178
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2179
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2180 2181
}

P
Peter Zijlstra 已提交
2182
static void __cpuinit rcu_prepare_cpu(int cpu)
2183
{
2184 2185 2186
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2187 2188 2189
}

/*
2190
 * Handle CPU online/offline notification events.
2191
 */
2192 2193
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2194 2195
{
	long cpu = (long)hcpu;
2196
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2197
	struct rcu_node *rnp = rdp->mynode;
2198

2199
	trace_rcu_utilization("Start CPU hotplug");
2200 2201 2202
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2203 2204
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2205 2206
		break;
	case CPU_ONLINE:
2207 2208
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2209
		rcu_cpu_kthread_setrt(cpu, 1);
2210 2211 2212
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2213
		rcu_cpu_kthread_setrt(cpu, 0);
2214
		break;
2215 2216 2217
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2218 2219 2220
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2221
		 */
2222 2223 2224
		rcu_cleanup_dying_cpu(&rcu_bh_state);
		rcu_cleanup_dying_cpu(&rcu_sched_state);
		rcu_preempt_cleanup_dying_cpu();
2225
		rcu_cleanup_after_idle(cpu);
2226
		break;
2227 2228 2229 2230
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2231 2232 2233
		rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
		rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
		rcu_preempt_cleanup_dead_cpu(cpu);
2234 2235 2236 2237
		break;
	default:
		break;
	}
2238
	trace_rcu_utilization("End CPU hotplug");
2239 2240 2241
	return NOTIFY_OK;
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2257 2258 2259 2260 2261 2262 2263 2264 2265
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2266
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2267
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2268
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2289 2290
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2291
{
2292 2293 2294 2295
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2296 2297 2298 2299 2300
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2301 2302
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2315
			raw_spin_lock_init(&rnp->lock);
2316 2317
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2318
			rnp->gpnum = 0;
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2336
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2337 2338
		}
	}
2339

2340
	rsp->rda = rda;
2341 2342
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2343
		while (i > rnp->grphi)
2344
			rnp++;
2345
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2346 2347
		rcu_boot_init_percpu_data(i, rsp);
	}
2348 2349
}

2350
void __init rcu_init(void)
2351
{
P
Paul E. McKenney 已提交
2352
	int cpu;
2353

2354
	rcu_bootup_announce();
2355 2356
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2357
	__rcu_init_preempt();
2358
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2359 2360 2361 2362 2363 2364 2365

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2366 2367
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2368
	check_cpu_stall_init();
2369 2370
}

2371
#include "rcutree_plugin.h"