rcutree.c 68.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39 40 41 42 43 44 45 46 47 48
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52

53 54
#include "rcutree.h"

55 56
/* Data structures. */

57
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
58

59 60
#define RCU_STATE_INITIALIZER(structname) { \
	.level = { &structname.node[0] }, \
61 62 63 64
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
65 66
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
67
	}, \
68
	.signaled = RCU_GP_IDLE, \
69 70
	.gpnum = -300, \
	.completed = -300, \
71 72
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 74
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
75
	.name = #structname, \
76 77
}

78 79
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80

81 82
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83

84 85
static struct rcu_state *rcu_state;

86 87 88
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

89 90 91 92 93 94 95 96 97
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
static DEFINE_PER_CPU(char, rcu_cpu_has_work);
static char rcu_kthreads_spawnable;

98
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
99
static void invoke_rcu_cpu_kthread(void);
100 101 102

#define RCU_KTHREAD_PRIO 1	/* RT priority for per-CPU kthreads. */

103 104 105 106 107 108 109 110 111 112
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

113
/*
114
 * Note a quiescent state.  Because we do not need to know
115
 * how many quiescent states passed, just if there was at least
116
 * one since the start of the grace period, this just sets a flag.
117
 */
118
void rcu_sched_qs(int cpu)
119
{
120
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
121

122
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
123 124
	barrier();
	rdp->passed_quiesc = 1;
125 126
}

127
void rcu_bh_qs(int cpu)
128
{
129
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
130

131
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
132 133
	barrier();
	rdp->passed_quiesc = 1;
134
}
135

136 137 138 139 140 141 142 143 144 145
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
 */
void rcu_note_context_switch(int cpu)
{
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
}

146
#ifdef CONFIG_NO_HZ
147 148
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
149
	.dynticks = ATOMIC_INIT(1),
150
};
151 152 153 154 155 156
#endif /* #ifdef CONFIG_NO_HZ */

static int blimit = 10;		/* Maximum callbacks per softirq. */
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

157 158 159 160
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

161
int rcu_cpu_stall_suppress __read_mostly;
162
module_param(rcu_cpu_stall_suppress, int, 0644);
163

164
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
165
static int rcu_pending(int cpu);
166 167

/*
168
 * Return the number of RCU-sched batches processed thus far for debug & stats.
169
 */
170
long rcu_batches_completed_sched(void)
171
{
172
	return rcu_sched_state.completed;
173
}
174
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
175 176 177 178 179 180 181 182 183 184

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
218
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
		rdp->offline_fqs++;
		return 1;
	}

253 254 255 256
	/* If preemptable RCU, no point in sending reschedule IPI. */
	if (rdp->preemptable)
		return 0;

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
285 286 287 288 289 290 291 292 293
	if (--rdtp->dynticks_nesting) {
		local_irq_restore(flags);
		return;
	}
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
294
	local_irq_restore(flags);
295 296 297 298 299 300 301

	/* If the interrupt queued a callback, get out of dyntick mode. */
	if (in_irq() &&
	    (__get_cpu_var(rcu_sched_data).nxtlist ||
	     __get_cpu_var(rcu_bh_data).nxtlist ||
	     rcu_preempt_needs_cpu(smp_processor_id())))
		set_need_resched();
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
317 318 319 320 321 322 323 324 325
	if (rdtp->dynticks_nesting++) {
		local_irq_restore(flags);
		return;
	}
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
326 327 328 329 330 331 332 333 334 335 336 337 338 339
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

340 341
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
342
		return;
343 344 345 346 347 348
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
349 350 351 352 353 354 355 356 357 358 359 360 361
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

362 363
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
364
		return;
365 366 367 368 369
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
370 371 372 373 374 375 376 377 378 379
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
380
	rcu_exit_nohz();
381 382 383 384 385 386 387 388 389 390 391
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
392
	rcu_enter_nohz();
393 394 395 396 397 398 399
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
400
 * is in dynticks idle mode, which is an extended quiescent state.
401 402 403
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
404 405
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
	return 0;
406 407 408 409 410 411 412 413 414 415
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
416 417
	unsigned long curr;
	unsigned long snap;
418

419 420
	curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned long)rdp->dynticks_snap;
421 422 423 424 425 426 427 428 429

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
430
	if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_SMP

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

459
int rcu_cpu_stall_suppress __read_mostly;
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
476
	raw_spin_lock_irqsave(&rnp->lock, flags);
477
	delta = jiffies - rsp->jiffies_stall;
478
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
479
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
480 481 482
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
483 484 485 486 487 488

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
489
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
490

491 492 493 494 495
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
496 497
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
498
	rcu_for_each_leaf_node(rsp, rnp) {
499
		raw_spin_lock_irqsave(&rnp->lock, flags);
500
		rcu_print_task_stall(rnp);
501
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
502
		if (rnp->qsmask == 0)
503
			continue;
504 505 506
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
			if (rnp->qsmask & (1UL << cpu))
				printk(" %d", rnp->grplo + cpu);
507
	}
508
	printk("} (detected by %d, t=%ld jiffies)\n",
509
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
510 511
	trigger_all_cpu_backtrace();

512 513 514 515
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

516 517 518 519 520 521 522 523
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

524 525 526 527 528
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
529 530
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
531 532
	trigger_all_cpu_backtrace();

P
Paul E. McKenney 已提交
533
	raw_spin_lock_irqsave(&rnp->lock, flags);
534
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
535 536
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
537
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
538

539 540 541 542 543 544 545 546
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
	long delta;
	struct rcu_node *rnp;

547
	if (rcu_cpu_stall_suppress)
548
		return;
549
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
550
	rnp = rdp->mynode;
551
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
552 553 554 555

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

556
	} else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
557 558 559 560 561 562

		/* They had two time units to dump stack, so complain. */
		print_other_cpu_stall(rsp);
	}
}

563 564
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
565
	rcu_cpu_stall_suppress = 1;
566 567 568
	return NOTIFY_DONE;
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

585 586 587 588 589 590 591 592 593
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

594 595 596
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
597 598 599
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
600
 */
601 602 603
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
604 605 606 607 608
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
609
		rdp->gpnum = rnp->gpnum;
610 611 612 613 614
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
			rdp->passed_quiesc = 0;
		} else
			rdp->qs_pending = 0;
615 616 617
	}
}

618 619
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
620 621 622 623 624 625
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
626
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
627 628 629 630
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
631
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
673

674 675
		/*
		 * If we were in an extended quiescent state, we may have
676
		 * missed some grace periods that others CPUs handled on
677
		 * our behalf. Catch up with this state to avoid noting
678 679 680
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
681
		 */
682
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
683 684
			rdp->gpnum = rdp->completed;

685
		/*
686 687
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
688
		 */
689
		if ((rnp->qsmask & rdp->grpmask) == 0)
690
			rdp->qs_pending = 0;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
708
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
709 710 711 712
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
713
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
740 741 742

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
743 744
}

745 746 747 748 749 750 751 752 753 754
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
755
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
756 757
	struct rcu_node *rnp = rcu_get_root(rsp);

758
	if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
759 760
		if (cpu_needs_another_gp(rsp, rdp))
			rsp->fqs_need_gp = 1;
761
		if (rnp->completed == rsp->completed) {
P
Paul E. McKenney 已提交
762
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
763 764
			return;
		}
P
Paul E. McKenney 已提交
765
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
766 767 768 769 770 771 772

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
773
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
774
			rnp->completed = rsp->completed;
P
Paul E. McKenney 已提交
775
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
776 777
		}
		local_irq_restore(flags);
778 779 780 781 782
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
783
	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
784 785 786 787 788 789
	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
790
		rcu_preempt_check_blocked_tasks(rnp);
791
		rnp->qsmask = rnp->qsmaskinit;
792
		rnp->gpnum = rsp->gpnum;
793
		rnp->completed = rsp->completed;
794
		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
795
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
796
		rcu_preempt_boost_start_gp(rnp);
P
Paul E. McKenney 已提交
797
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
798 799 800
		return;
	}

P
Paul E. McKenney 已提交
801
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
802 803 804


	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
805
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
806 807

	/*
808 809 810 811 812 813 814 815 816
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
817 818 819 820
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
821 822
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
823
	 */
824
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
825
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
826
		rcu_preempt_check_blocked_tasks(rnp);
827
		rnp->qsmask = rnp->qsmaskinit;
828
		rnp->gpnum = rsp->gpnum;
829 830 831
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
832
		rcu_preempt_boost_start_gp(rnp);
P
Paul E. McKenney 已提交
833
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
834 835
	}

836
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
837
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
838
	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
839 840
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
841 842
}

843
/*
P
Paul E. McKenney 已提交
844 845 846 847 848
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
849
 */
P
Paul E. McKenney 已提交
850
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
851
	__releases(rcu_get_root(rsp)->lock)
852
{
853
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
854 855 856 857 858 859

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
860
	rsp->completed = rsp->gpnum;
861
	rsp->signaled = RCU_GP_IDLE;
862 863 864
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

865
/*
P
Paul E. McKenney 已提交
866 867 868 869 870 871
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
872 873
 */
static void
P
Paul E. McKenney 已提交
874 875
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
876 877
	__releases(rnp->lock)
{
878 879
	struct rcu_node *rnp_c;

880 881 882 883 884
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
885
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
886 887 888
			return;
		}
		rnp->qsmask &= ~mask;
889
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
890 891

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
892
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
893 894 895 896 897 898 899 900 901
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
902
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
903
		rnp_c = rnp;
904
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
905
		raw_spin_lock_irqsave(&rnp->lock, flags);
906
		WARN_ON_ONCE(rnp_c->qsmask);
907 908 909 910
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
911
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
912
	 * to clean up and start the next grace period if one is needed.
913
	 */
P
Paul E. McKenney 已提交
914
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
915 916 917
}

/*
P
Paul E. McKenney 已提交
918 919 920 921 922 923 924
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
925 926
 */
static void
P
Paul E. McKenney 已提交
927
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
928 929 930 931 932 933
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
934
	raw_spin_lock_irqsave(&rnp->lock, flags);
935
	if (lastcomp != rnp->completed) {
936 937 938 939 940 941

		/*
		 * Someone beat us to it for this grace period, so leave.
		 * The race with GP start is resolved by the fact that we
		 * hold the leaf rcu_node lock, so that the per-CPU bits
		 * cannot yet be initialized -- so we would simply find our
P
Paul E. McKenney 已提交
942 943
		 * CPU's bit already cleared in rcu_report_qs_rnp() if this
		 * race occurred.
944 945
		 */
		rdp->passed_quiesc = 0;	/* try again later! */
P
Paul E. McKenney 已提交
946
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
947 948 949 950
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
951
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
952 953 954 955 956 957 958 959 960
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
961
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
	if (!rdp->passed_quiesc)
		return;

P
Paul E. McKenney 已提交
992 993 994 995 996
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
997 998 999 1000
}

#ifdef CONFIG_HOTPLUG_CPU

1001
/*
1002 1003 1004
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
 * Synchronization is not required because this function executes
 * in stop_machine() context.
1005
 */
1006
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1007 1008
{
	int i;
1009 1010
	/* current DYING CPU is cleared in the cpu_online_mask */
	int receive_cpu = cpumask_any(cpu_online_mask);
1011
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1012
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1013 1014 1015

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
1016 1017 1018 1019 1020 1021 1022

	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	receive_rdp->qlen += rdp->qlen;
	receive_rdp->n_cbs_adopted += rdp->qlen;
	rdp->n_cbs_orphaned += rdp->qlen;

1023 1024 1025 1026 1027 1028
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
}

1029 1030 1031
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
1032 1033
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1034 1035 1036 1037 1038
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
1039
	int need_report = 0;
1040
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1041
	struct rcu_node *rnp;
1042 1043 1044 1045 1046 1047 1048 1049
	struct task_struct *t;

	/* Stop the CPU's kthread. */
	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t != NULL) {
		per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
		kthread_stop(t);
	}
1050 1051

	/* Exclude any attempts to start a new grace period. */
P
Paul E. McKenney 已提交
1052
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1053 1054

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1055
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1056 1057
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
P
Paul E. McKenney 已提交
1058
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1059 1060
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1061
			if (rnp != rdp->mynode)
P
Paul E. McKenney 已提交
1062
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1063 1064
			break;
		}
1065
		if (rnp == rdp->mynode)
1066
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1067
		else
P
Paul E. McKenney 已提交
1068
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1069 1070 1071 1072
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

1073 1074 1075
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
1076 1077
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
1078
	 */
P
Paul E. McKenney 已提交
1079
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1080
	rnp = rdp->mynode;
1081
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
1082
		rcu_report_unblock_qs_rnp(rnp, flags);
1083
	else
P
Paul E. McKenney 已提交
1084
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1085 1086
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp);
1087 1088 1089 1090 1091 1092 1093 1094 1095

	/*
	 * If there are no more online CPUs for this rcu_node structure,
	 * kill the rcu_node structure's kthread.  Otherwise, adjust its
	 * affinity.
	 */
	t = rnp->node_kthread_task;
	if (t != NULL &&
	    rnp->qsmaskinit == 0) {
1096
		raw_spin_lock_irqsave(&rnp->lock, flags);
1097
		rnp->node_kthread_task = NULL;
1098 1099 1100
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		kthread_stop(t);
		rcu_stop_boost_kthread(rnp);
1101
	} else
1102
		rcu_node_kthread_setaffinity(rnp, -1);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1113
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1114
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1115
	rcu_preempt_offline_cpu(cpu);
1116 1117 1118 1119
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1120
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1121 1122 1123
{
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1134
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
	int count;

	/* If no callbacks are ready, just return.*/
	if (!cpu_has_callbacks_ready_to_invoke(rdp))
		return;

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
1163
		debug_rcu_head_unqueue(list);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		list->func(list);
		list = next;
		if (++count >= rdp->blimit)
			break;
	}

	local_irq_save(flags);

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
1174
	rdp->n_cbs_invoked += count;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1189 1190 1191 1192 1193 1194 1195
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1196 1197 1198 1199
	local_irq_restore(flags);

	/* Re-raise the RCU softirq if there are callbacks remaining. */
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1200
		invoke_rcu_cpu_kthread();
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 * Also schedule the RCU softirq handler.
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
	if (user ||
1215 1216
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1217 1218 1219 1220 1221

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1222
		 * a quiescent state, so note it.
1223 1224
		 *
		 * No memory barrier is required here because both
1225 1226 1227
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1228 1229
		 */

1230 1231
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1232 1233 1234 1235 1236 1237 1238

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1239
		 * critical section, so note it.
1240 1241
		 */

1242
		rcu_bh_qs(cpu);
1243
	}
1244
	rcu_preempt_check_callbacks(cpu);
1245
	if (rcu_pending(cpu))
1246
		invoke_rcu_cpu_kthread();
1247 1248 1249 1250 1251 1252 1253
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1254 1255
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1256
 * The caller must have suppressed start of new grace periods.
1257
 */
1258
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1259 1260 1261 1262 1263
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1264
	struct rcu_node *rnp;
1265

1266
	rcu_for_each_leaf_node(rsp, rnp) {
1267
		mask = 0;
P
Paul E. McKenney 已提交
1268
		raw_spin_lock_irqsave(&rnp->lock, flags);
1269
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1270
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1271
			return;
1272
		}
1273
		if (rnp->qsmask == 0) {
1274
			rcu_initiate_boost(rnp);
P
Paul E. McKenney 已提交
1275
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1276 1277
			continue;
		}
1278
		cpu = rnp->grplo;
1279
		bit = 1;
1280
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1281 1282
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1283 1284
				mask |= bit;
		}
1285
		if (mask != 0) {
1286

P
Paul E. McKenney 已提交
1287 1288
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1289 1290
			continue;
		}
P
Paul E. McKenney 已提交
1291
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1292
	}
1293 1294 1295 1296 1297
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	if (rnp->qsmask == 0)
		rcu_initiate_boost(rnp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1309
	if (!rcu_gp_in_progress(rsp))
1310
		return;  /* No grace period in progress, nothing to force. */
P
Paul E. McKenney 已提交
1311
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1312 1313 1314
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
		return;	/* Someone else is already on the job. */
	}
1315
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1316
		goto unlock_fqs_ret; /* no emergency and done recently. */
1317
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1318
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1319
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1320
	if(!rcu_gp_in_progress(rsp)) {
1321
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1322
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1323
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1324
	}
1325
	rsp->fqs_active = 1;
1326
	switch (rsp->signaled) {
1327
	case RCU_GP_IDLE:
1328 1329
	case RCU_GP_INIT:

1330
		break; /* grace period idle or initializing, ignore. */
1331 1332 1333 1334 1335

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1336 1337
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1338
		/* Record dyntick-idle state. */
1339
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1340
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1341
		if (rcu_gp_in_progress(rsp))
1342
			rsp->signaled = RCU_FORCE_QS;
1343
		break;
1344 1345 1346 1347

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1348
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1349
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1350 1351 1352

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1353
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1354
		break;
1355
	}
1356
	rsp->fqs_active = 0;
1357
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1358
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1359 1360 1361 1362
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
		return;
	}
P
Paul E. McKenney 已提交
1363
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1364
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1365
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
 * This does the RCU processing work from softirq context for the
 * specified rcu_state and rcu_data structures.  This may be called
 * only from the CPU to whom the rdp belongs.
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1387 1388
	WARN_ON_ONCE(rdp->beenonline == 0);

1389 1390 1391 1392
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1393
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1407
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1408 1409 1410 1411
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1412
	rcu_do_batch(rsp, rdp);
1413 1414 1415 1416 1417
}

/*
 * Do softirq processing for the current CPU.
 */
1418
static void rcu_process_callbacks(void)
1419
{
1420 1421
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1422
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1423
	rcu_preempt_process_callbacks();
1424 1425 1426

	/* If we are last CPU on way to dyntick-idle mode, accelerate it. */
	rcu_needs_cpu_flush();
1427 1428
}

1429 1430 1431 1432 1433 1434
/*
 * Wake up the current CPU's kthread.  This replaces raise_softirq()
 * in earlier versions of RCU.  Note that because we are running on
 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
 * cannot disappear out from under us.
 */
1435
static void invoke_rcu_cpu_kthread(void)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
{
	unsigned long flags;
	wait_queue_head_t *q;
	int cpu;

	local_irq_save(flags);
	cpu = smp_processor_id();
	per_cpu(rcu_cpu_has_work, cpu) = 1;
	if (per_cpu(rcu_cpu_kthread_task, cpu) == NULL) {
		local_irq_restore(flags);
		return;
	}
	q = &per_cpu(rcu_cpu_wq, cpu);
	wake_up(q);
	local_irq_restore(flags);
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
/*
 * Wake up the specified per-rcu_node-structure kthread.
 * The caller must hold ->lock.
 */
static void invoke_rcu_node_kthread(struct rcu_node *rnp)
{
	struct task_struct *t;

	t = rnp->node_kthread_task;
	if (t != NULL)
		wake_up_process(t);
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/*
 * Set the specified CPU's kthread to run RT or not, as specified by
 * the to_rt argument.  The CPU-hotplug locks are held, so the task
 * is not going away.
 */
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
	int policy;
	struct sched_param sp;
	struct task_struct *t;

	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t == NULL)
		return;
	if (to_rt) {
		policy = SCHED_FIFO;
		sp.sched_priority = RCU_KTHREAD_PRIO;
	} else {
		policy = SCHED_NORMAL;
		sp.sched_priority = 0;
	}
	sched_setscheduler_nocheck(t, policy, &sp);
}

1490 1491 1492
/*
 * Timer handler to initiate the waking up of per-CPU kthreads that
 * have yielded the CPU due to excess numbers of RCU callbacks.
1493 1494
 * We wake up the per-rcu_node kthread, which in turn will wake up
 * the booster kthread.
1495 1496 1497 1498
 */
static void rcu_cpu_kthread_timer(unsigned long arg)
{
	unsigned long flags;
1499
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1500 1501 1502 1503
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->wakemask |= rdp->grpmask;
1504
	invoke_rcu_node_kthread(rnp);
1505 1506 1507 1508 1509 1510 1511 1512 1513
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Drop to non-real-time priority and yield, but only after posting a
 * timer that will cause us to regain our real-time priority if we
 * remain preempted.  Either way, we restore our real-time priority
 * before returning.
 */
1514
static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1515 1516 1517 1518
{
	struct sched_param sp;
	struct timer_list yield_timer;

1519
	setup_timer_on_stack(&yield_timer, f, arg);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	mod_timer(&yield_timer, jiffies + 2);
	sp.sched_priority = 0;
	sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
	schedule();
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
	del_timer(&yield_timer);
}

/*
 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
 * This can happen while the corresponding CPU is either coming online
 * or going offline.  We cannot wait until the CPU is fully online
 * before starting the kthread, because the various notifier functions
 * can wait for RCU grace periods.  So we park rcu_cpu_kthread() until
 * the corresponding CPU is online.
 *
 * Return 1 if the kthread needs to stop, 0 otherwise.
 *
 * Caller must disable bh.  This function can momentarily enable it.
 */
static int rcu_cpu_kthread_should_stop(int cpu)
{
	while (cpu_is_offline(cpu) ||
	       !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
	       smp_processor_id() != cpu) {
		if (kthread_should_stop())
			return 1;
		local_bh_enable();
		schedule_timeout_uninterruptible(1);
		if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
			set_cpus_allowed_ptr(current, cpumask_of(cpu));
		local_bh_disable();
	}
	return 0;
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
 * earlier RCU softirq.
 */
static int rcu_cpu_kthread(void *arg)
{
	int cpu = (int)(long)arg;
	unsigned long flags;
	int spincnt = 0;
	wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
	char work;
	char *workp = &per_cpu(rcu_cpu_has_work, cpu);

	for (;;) {
		wait_event_interruptible(*wqp,
					 *workp != 0 || kthread_should_stop());
		local_bh_disable();
		if (rcu_cpu_kthread_should_stop(cpu)) {
			local_bh_enable();
			break;
		}
		local_irq_save(flags);
		work = *workp;
		*workp = 0;
		local_irq_restore(flags);
		if (work)
			rcu_process_callbacks();
		local_bh_enable();
		if (*workp != 0)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
1590
			rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
			spincnt = 0;
		}
	}
	return 0;
}

/*
 * Spawn a per-CPU kthread, setting up affinity and priority.
 * Because the CPU hotplug lock is held, no other CPU will be attempting
 * to manipulate rcu_cpu_kthread_task.  There might be another CPU
 * attempting to access it during boot, but the locking in kthread_bind()
 * will enforce sufficient ordering.
 */
static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
{
	struct sched_param sp;
	struct task_struct *t;

	if (!rcu_kthreads_spawnable ||
	    per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
		return 0;
	t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
	if (IS_ERR(t))
		return PTR_ERR(t);
	kthread_bind(t, cpu);
	WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
	per_cpu(rcu_cpu_kthread_task, cpu) = t;
	wake_up_process(t);
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	return 0;
}

/*
 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
 * kthreads when needed.  We ignore requests to wake up kthreads
 * for offline CPUs, which is OK because force_quiescent_state()
 * takes care of this case.
 */
static int rcu_node_kthread(void *arg)
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp = (struct rcu_node *)arg;
	struct sched_param sp;
	struct task_struct *t;

	for (;;) {
		wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0 ||
						       kthread_should_stop());
		if (kthread_should_stop())
			break;
		raw_spin_lock_irqsave(&rnp->lock, flags);
		mask = rnp->wakemask;
		rnp->wakemask = 0;
1647
		rcu_initiate_boost(rnp);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
			if ((mask & 0x1) == 0)
				continue;
			preempt_disable();
			t = per_cpu(rcu_cpu_kthread_task, cpu);
			if (!cpu_online(cpu) || t == NULL) {
				preempt_enable();
				continue;
			}
			per_cpu(rcu_cpu_has_work, cpu) = 1;
			sp.sched_priority = RCU_KTHREAD_PRIO;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
			preempt_enable();
		}
	}
	return 0;
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1669 1670
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
1671 1672 1673 1674
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
1675
 */
1676
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1677 1678 1679 1680 1681
{
	cpumask_var_t cm;
	int cpu;
	unsigned long mask = rnp->qsmaskinit;

1682
	if (rnp->node_kthread_task == NULL || mask == 0)
1683 1684 1685 1686 1687
		return;
	if (!alloc_cpumask_var(&cm, GFP_KERNEL))
		return;
	cpumask_clear(cm);
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1688
		if ((mask & 0x1) && cpu != outgoingcpu)
1689
			cpumask_set_cpu(cpu, cm);
1690 1691 1692 1693 1694 1695
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
1696
	set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1697
	rcu_boost_kthread_setaffinity(rnp, cm);
1698 1699 1700 1701 1702
	free_cpumask_var(cm);
}

/*
 * Spawn a per-rcu_node kthread, setting priority and affinity.
1703 1704 1705
 * Called during boot before online/offline can happen, or, if
 * during runtime, with the main CPU-hotplug locks held.  So only
 * one of these can be executing at a time.
1706 1707 1708 1709
 */
static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
						struct rcu_node *rnp)
{
1710
	unsigned long flags;
1711 1712 1713 1714 1715
	int rnp_index = rnp - &rsp->node[0];
	struct sched_param sp;
	struct task_struct *t;

	if (!rcu_kthreads_spawnable ||
1716
	    rnp->qsmaskinit == 0)
1717
		return 0;
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	if (rnp->node_kthread_task == NULL) {
		t = kthread_create(rcu_node_kthread, (void *)rnp,
				   "rcun%d", rnp_index);
		if (IS_ERR(t))
			return PTR_ERR(t);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rnp->node_kthread_task = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		wake_up_process(t);
		sp.sched_priority = 99;
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	}
	return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
}

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	int cpu;
	struct rcu_node *rnp;

	rcu_kthreads_spawnable = 1;
	for_each_possible_cpu(cpu) {
		init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
		per_cpu(rcu_cpu_has_work, cpu) = 0;
		if (cpu_online(cpu))
			(void)rcu_spawn_one_cpu_kthread(cpu);
	}
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	rnp = rcu_get_root(rcu_state);
	init_waitqueue_head(&rnp->node_wq);
	rcu_init_boost_waitqueue(rnp);
	(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	if (NUM_RCU_NODES > 1)
		rcu_for_each_leaf_node(rcu_state, rnp) {
			init_waitqueue_head(&rnp->node_wq);
			rcu_init_boost_waitqueue(rnp);
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
		}
1758 1759 1760 1761
	return 0;
}
early_initcall(rcu_spawn_kthreads);

1762 1763 1764 1765 1766 1767 1768
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

1769
	debug_rcu_head_queue(head);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1782
	rdp = this_cpu_ptr(rsp->rda);
1783 1784 1785 1786 1787

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;

1788 1789 1790 1791 1792 1793 1794 1795
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
	if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1817
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1818 1819 1820 1821 1822
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1823
 * Queue an RCU-sched callback for invocation after a grace period.
1824
 */
1825
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1826
{
1827
	__call_rcu(head, func, &rcu_sched_state);
1828
}
1829
EXPORT_SYMBOL_GPL(call_rcu_sched);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1870
	init_rcu_head_on_stack(&rcu.head);
1871 1872 1873 1874 1875
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_sched(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1876
	destroy_rcu_head_on_stack(&rcu.head);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1896
	init_rcu_head_on_stack(&rcu.head);
1897 1898 1899 1900 1901
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_bh(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1902
	destroy_rcu_head_on_stack(&rcu.head);
1903 1904 1905
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1906 1907 1908 1909 1910 1911 1912 1913 1914
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1915 1916
	struct rcu_node *rnp = rdp->mynode;

1917 1918 1919 1920 1921 1922
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1923
	if (rdp->qs_pending && !rdp->passed_quiesc) {
1924 1925 1926 1927 1928 1929

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1930
		rdp->n_rp_qs_pending++;
1931 1932 1933 1934
		if (!rdp->preemptable &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1935 1936
	} else if (rdp->qs_pending && rdp->passed_quiesc) {
		rdp->n_rp_report_qs++;
1937
		return 1;
1938
	}
1939 1940

	/* Does this CPU have callbacks ready to invoke? */
1941 1942
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1943
		return 1;
1944
	}
1945 1946

	/* Has RCU gone idle with this CPU needing another grace period? */
1947 1948
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1949
		return 1;
1950
	}
1951 1952

	/* Has another RCU grace period completed?  */
1953
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1954
		rdp->n_rp_gp_completed++;
1955
		return 1;
1956
	}
1957 1958

	/* Has a new RCU grace period started? */
1959
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1960
		rdp->n_rp_gp_started++;
1961
		return 1;
1962
	}
1963 1964

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1965
	if (rcu_gp_in_progress(rsp) &&
1966
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1967
		rdp->n_rp_need_fqs++;
1968
		return 1;
1969
	}
1970 1971

	/* nothing to do */
1972
	rdp->n_rp_need_nothing++;
1973 1974 1975 1976 1977 1978 1979 1980
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
1981
static int rcu_pending(int cpu)
1982
{
1983
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1984 1985
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
1986 1987 1988 1989 1990
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
1991
 * 1 if so.
1992
 */
1993
static int rcu_needs_cpu_quick_check(int cpu)
1994 1995
{
	/* RCU callbacks either ready or pending? */
1996
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
1997 1998
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
1999 2000
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2031 2032
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
2033 2034 2035
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
2036
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2037 2038 2039 2040 2041 2042 2043 2044 2045
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
2046 2047 2048
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2063
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2064 2065 2066 2067 2068 2069 2070 2071
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2072
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2073 2074 2075
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2076
/*
2077
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2078
 */
2079 2080
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2081 2082 2083
{
	unsigned long flags;
	int i;
2084
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2085 2086 2087
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2088
	raw_spin_lock_irqsave(&rnp->lock, flags);
2089 2090 2091 2092 2093 2094 2095 2096 2097
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
P
Paul E. McKenney 已提交
2098
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2099 2100 2101 2102 2103 2104 2105
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2106
 */
2107
static void __cpuinit
2108
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
2109 2110 2111
{
	unsigned long flags;
	unsigned long mask;
2112
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2113 2114 2115
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2116
	raw_spin_lock_irqsave(&rnp->lock, flags);
2117 2118 2119
	rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
	rdp->beenonline = 1;	 /* We have now been online. */
2120
	rdp->preemptable = preemptable;
2121 2122
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2123
	rdp->blimit = blimit;
P
Paul E. McKenney 已提交
2124
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2125 2126 2127 2128 2129 2130 2131

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2132
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2133 2134 2135 2136 2137 2138

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2139
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2140 2141
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2142 2143 2144 2145 2146
		if (rnp == rdp->mynode) {
			rdp->gpnum = rnp->completed; /* if GP in progress... */
			rdp->completed = rnp->completed;
			rdp->passed_quiesc_completed = rnp->completed - 1;
		}
P
Paul E. McKenney 已提交
2147
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2148 2149 2150
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2151
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2152 2153 2154 2155
}

static void __cpuinit rcu_online_cpu(int cpu)
{
2156 2157 2158
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2159 2160
}

2161 2162
static void __cpuinit rcu_online_kthreads(int cpu)
{
2163
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2164 2165 2166 2167 2168 2169
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
	if (rcu_kthreads_spawnable) {
		(void)rcu_spawn_one_cpu_kthread(cpu);
		if (rnp->node_kthread_task == NULL)
2170
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2171 2172 2173
	}
}

2174
/*
2175
 * Handle CPU online/offline notification events.
2176
 */
2177 2178
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2179 2180
{
	long cpu = (long)hcpu;
2181
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2182
	struct rcu_node *rnp = rdp->mynode;
2183 2184 2185 2186 2187

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		rcu_online_cpu(cpu);
2188 2189 2190
		rcu_online_kthreads(cpu);
		break;
	case CPU_ONLINE:
2191 2192
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2193
		rcu_cpu_kthread_setrt(cpu, 1);
2194 2195 2196
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2197
		rcu_cpu_kthread_setrt(cpu, 0);
2198
		break;
2199 2200 2201
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2202 2203 2204
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2205
		 */
2206 2207 2208
		rcu_send_cbs_to_online(&rcu_bh_state);
		rcu_send_cbs_to_online(&rcu_sched_state);
		rcu_preempt_send_cbs_to_online();
2209
		break;
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2237 2238 2239 2240 2241 2242 2243 2244 2245
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2246
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2247
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2248
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2269 2270
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2271
{
2272 2273 2274 2275
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2276 2277 2278 2279 2280
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2281 2282
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2295
			raw_spin_lock_init(&rnp->lock);
2296 2297
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2298
			rnp->gpnum = 0;
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2316
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2317 2318
		}
	}
2319

2320
	rsp->rda = rda;
2321 2322
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2323
		while (i > rnp->grphi)
2324
			rnp++;
2325
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2326 2327
		rcu_boot_init_percpu_data(i, rsp);
	}
2328 2329
}

2330
void __init rcu_init(void)
2331
{
P
Paul E. McKenney 已提交
2332
	int cpu;
2333

2334
	rcu_bootup_announce();
2335 2336
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2337
	__rcu_init_preempt();
2338 2339 2340 2341 2342 2343 2344

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2345 2346
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2347
	check_cpu_stall_init();
2348 2349
}

2350
#include "rcutree_plugin.h"