rcutree.c 79.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55

56
#include "rcutree.h"
57 58 59
#include <trace/events/rcu.h>

#include "rcu.h"
60

61 62
/* Data structures. */

63
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
64

65
#define RCU_STATE_INITIALIZER(structname) { \
66
	.level = { &structname##_state.node[0] }, \
67 68 69 70
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
71 72
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73
	}, \
74
	.fqs_state = RCU_GP_IDLE, \
75 76
	.gpnum = -300, \
	.completed = -300, \
77 78
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
79 80
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
81
	.name = #structname, \
82 83
}

84
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
85
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
86

87
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
88
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
89

90 91
static struct rcu_state *rcu_state;

92 93 94 95 96 97 98 99 100
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
101 102 103
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

118 119
#ifdef CONFIG_RCU_BOOST

120 121 122 123 124
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
125
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
126
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
127
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
128
DEFINE_PER_CPU(char, rcu_cpu_has_work);
129

130 131
#endif /* #ifdef CONFIG_RCU_BOOST */

132
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
133 134
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
135

136 137 138 139 140 141 142 143 144 145 146 147
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

148 149 150 151 152 153 154 155 156 157
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

158
/*
159
 * Note a quiescent state.  Because we do not need to know
160
 * how many quiescent states passed, just if there was at least
161
 * one since the start of the grace period, this just sets a flag.
162
 * The caller must have disabled preemption.
163
 */
164
void rcu_sched_qs(int cpu)
165
{
166
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
167

168
	rdp->passed_quiesce_gpnum = rdp->gpnum;
169
	barrier();
170
	if (rdp->passed_quiesce == 0)
171
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
172
	rdp->passed_quiesce = 1;
173 174
}

175
void rcu_bh_qs(int cpu)
176
{
177
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
178

179
	rdp->passed_quiesce_gpnum = rdp->gpnum;
180
	barrier();
181
	if (rdp->passed_quiesce == 0)
182
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
183
	rdp->passed_quiesce = 1;
184
}
185

186 187 188
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
189
 * The caller must have disabled preemption.
190 191 192
 */
void rcu_note_context_switch(int cpu)
{
193
	trace_rcu_utilization("Start context switch");
194 195
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
196
	trace_rcu_utilization("End context switch");
197
}
198
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
199

200
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
201
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
202
	.dynticks = ATOMIC_INIT(1),
203
};
204

205
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
206 207 208
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

209 210 211 212
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

213 214 215
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

216
module_param(rcu_cpu_stall_suppress, int, 0644);
217
module_param(rcu_cpu_stall_timeout, int, 0644);
218

219
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
220
static int rcu_pending(int cpu);
221 222

/*
223
 * Return the number of RCU-sched batches processed thus far for debug & stats.
224
 */
225
long rcu_batches_completed_sched(void)
226
{
227
	return rcu_sched_state.completed;
228
}
229
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
230 231 232 233 234 235 236 237 238 239

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

240 241 242 243 244 245 246 247 248
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

274 275 276 277 278 279 280 281 282
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
298
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
323 324 325 326 327
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
328
	 */
329 330
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
331
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
332 333 334 335 336 337
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

338 339 340 341 342 343 344
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
345
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
346
{
347
	trace_rcu_dyntick("Start", oldval, 0);
348
	if (!is_idle_task(current)) {
349 350
		struct task_struct *idle = idle_task(smp_processor_id());

351
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
352
		ftrace_dump(DUMP_ALL);
353 354 355
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
356
	}
357
	rcu_prepare_for_idle(smp_processor_id());
358 359 360 361 362
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
363 364 365 366 367 368 369 370 371 372 373

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
374
}
375 376

/**
377
 * rcu_idle_enter - inform RCU that current CPU is entering idle
378
 *
379
 * Enter idle mode, in other words, -leave- the mode in which RCU
380
 * read-side critical sections can occur.  (Though RCU read-side
381 382 383 384 385 386
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
387
 */
388
void rcu_idle_enter(void)
389 390
{
	unsigned long flags;
391
	long long oldval;
392 393 394 395
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
396
	oldval = rdtp->dynticks_nesting;
397 398 399 400 401
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
402
	rcu_idle_enter_common(rdtp, oldval);
403 404
	local_irq_restore(flags);
}
405
EXPORT_SYMBOL_GPL(rcu_idle_enter);
406

407 408 409 410 411 412
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
413
 *
414 415 416 417 418 419 420 421
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
422
 */
423
void rcu_irq_exit(void)
424 425
{
	unsigned long flags;
426
	long long oldval;
427 428 429 430
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
431
	oldval = rdtp->dynticks_nesting;
432 433
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
434 435 436 437
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
438 439 440 441 442 443 444 445 446 447 448 449
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
450 451 452 453 454
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
455
	rcu_cleanup_after_idle(smp_processor_id());
456
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
457
	if (!is_idle_task(current)) {
458 459
		struct task_struct *idle = idle_task(smp_processor_id());

460 461
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
462
		ftrace_dump(DUMP_ALL);
463 464 465
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
466 467 468 469 470 471 472 473 474
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
475
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
476
 * allow for the possibility of usermode upcalls messing up our count
477 478 479 480 481 482 483 484 485 486 487 488
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
489 490 491 492 493
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
494 495 496
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
497
EXPORT_SYMBOL_GPL(rcu_idle_exit);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
529 530 531 532
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
533 534 535 536 537 538 539 540 541 542 543 544 545 546
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

547 548
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
549
		return;
550 551 552 553 554 555
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
556 557 558 559 560 561 562 563 564 565 566 567 568
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

569 570
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
571
		return;
572 573 574 575 576
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
577 578
}

579 580
#ifdef CONFIG_PROVE_RCU

581
/**
582
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
583
 *
584
 * If the current CPU is in its idle loop and is neither in an interrupt
585
 * or NMI handler, return true.
586
 */
587
int rcu_is_cpu_idle(void)
588
{
589 590 591 592 593 594
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
595
}
596
EXPORT_SYMBOL(rcu_is_cpu_idle);
597

598 599 600 601 602 603 604 605
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
606 607 608 609 610 611 612 613 614 615 616
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
617 618 619 620 621 622
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
623 624
	struct rcu_data *rdp;
	struct rcu_node *rnp;
625 626 627 628 629
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
630 631 632
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
633 634 635 636 637 638 639 640
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

641 642
#endif /* #ifdef CONFIG_PROVE_RCU */

643
/**
644
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
645
 *
646 647 648
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
649
 */
650
int rcu_is_cpu_rrupt_from_idle(void)
651
{
652
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
653 654 655 656 657
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
658
 * is in dynticks idle mode, which is an extended quiescent state.
659 660 661
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
662
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
663
	return (rdp->dynticks_snap & 0x1) == 0;
664 665 666 667 668 669 670 671 672 673
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
674 675
	unsigned int curr;
	unsigned int snap;
676

677 678
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
679 680 681 682 683 684 685 686 687

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
688
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
689
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
690 691 692 693 694 695 696 697
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

716 717 718
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
719
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
720 721 722 723 724 725 726
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
727
	int ndetected;
728 729 730 731
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
732
	raw_spin_lock_irqsave(&rnp->lock, flags);
733
	delta = jiffies - rsp->jiffies_stall;
734
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
735
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
736 737
		return;
	}
738
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
739
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
740

741 742 743 744 745
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
746
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
747
	       rsp->name);
748
	print_cpu_stall_info_begin();
749
	rcu_for_each_leaf_node(rsp, rnp) {
750
		raw_spin_lock_irqsave(&rnp->lock, flags);
751
		ndetected += rcu_print_task_stall(rnp);
752
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
753
		if (rnp->qsmask == 0)
754
			continue;
755
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
756
			if (rnp->qsmask & (1UL << cpu)) {
757
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
758 759
				ndetected++;
			}
760
	}
761 762 763 764 765 766 767 768 769 770 771 772

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	ndetected = rcu_print_task_stall(rnp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
773
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
774 775 776
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
777
		dump_stack();
778

779 780 781 782
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

783 784 785 786 787 788 789 790
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

791 792 793 794 795
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
796 797 798 799 800
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
801 802
	if (!trigger_all_cpu_backtrace())
		dump_stack();
803

P
Paul E. McKenney 已提交
804
	raw_spin_lock_irqsave(&rnp->lock, flags);
805
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
806 807
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
808
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
809

810 811 812 813 814
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
815 816
	unsigned long j;
	unsigned long js;
817 818
	struct rcu_node *rnp;

819
	if (rcu_cpu_stall_suppress)
820
		return;
821 822
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
823
	rnp = rdp->mynode;
824
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
825 826 827 828

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

829 830
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
831

832
		/* They had a few time units to dump stack, so complain. */
833 834 835 836
		print_other_cpu_stall(rsp);
	}
}

837 838
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
839
	rcu_cpu_stall_suppress = 1;
840 841 842
	return NOTIFY_DONE;
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

859 860 861 862 863 864 865 866 867
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

868 869 870
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
871 872 873
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
874
 */
875 876 877
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
878 879 880 881 882
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
883
		rdp->gpnum = rnp->gpnum;
884
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
885 886
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
887
			rdp->passed_quiesce = 0;
888 889
		} else
			rdp->qs_pending = 0;
890
		zero_cpu_stall_ticks(rdp);
891 892 893
	}
}

894 895
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
896 897 898 899 900 901
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
902
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
903 904 905 906
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
907
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
949
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
950

951 952
		/*
		 * If we were in an extended quiescent state, we may have
953
		 * missed some grace periods that others CPUs handled on
954
		 * our behalf. Catch up with this state to avoid noting
955 956 957
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
958
		 */
959
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
960 961
			rdp->gpnum = rdp->completed;

962
		/*
963 964
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
965
		 */
966
		if ((rnp->qsmask & rdp->grpmask) == 0)
967
			rdp->qs_pending = 0;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
985
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
986 987 988 989
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
990
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1017 1018 1019

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1020 1021
}

1022 1023 1024 1025 1026
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1027 1028 1029 1030
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1031 1032 1033 1034 1035
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1036
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1037 1038
	struct rcu_node *rnp = rcu_get_root(rsp);

1039
	if (!rcu_scheduler_fully_active ||
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1050

1051
	if (rsp->fqs_active) {
1052
		/*
1053 1054
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
1055
		 */
1056 1057
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1058 1059 1060 1061 1062
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
1063
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1064 1065
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1066 1067
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);
P
Paul E. McKenney 已提交
1068
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1069 1070

	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
1071
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1072 1073

	/*
1074 1075 1076 1077 1078 1079 1080 1081 1082
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
1083 1084 1085 1086
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
1087 1088
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
1089
	 */
1090
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
1091
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1092
		rcu_preempt_check_blocked_tasks(rnp);
1093
		rnp->qsmask = rnp->qsmaskinit;
1094
		rnp->gpnum = rsp->gpnum;
1095 1096 1097
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1098
		rcu_preempt_boost_start_gp(rnp);
1099 1100 1101
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
1102
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1103 1104
	}

1105
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
1106
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1107
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
1108 1109
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1110 1111
}

1112
/*
P
Paul E. McKenney 已提交
1113 1114 1115 1116 1117
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1118
 */
P
Paul E. McKenney 已提交
1119
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1120
	__releases(rcu_get_root(rsp)->lock)
1121
{
1122
	unsigned long gp_duration;
1123 1124
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1125

1126
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1127 1128 1129 1130 1131 1132

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1133 1134 1135
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1170
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1171
	rsp->fqs_state = RCU_GP_IDLE;
1172 1173 1174
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1175
/*
P
Paul E. McKenney 已提交
1176 1177 1178 1179 1180 1181
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1182 1183
 */
static void
P
Paul E. McKenney 已提交
1184 1185
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1186 1187
	__releases(rnp->lock)
{
1188 1189
	struct rcu_node *rnp_c;

1190 1191 1192 1193 1194
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1195
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1196 1197 1198
			return;
		}
		rnp->qsmask &= ~mask;
1199 1200 1201 1202
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1203
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1204 1205

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1206
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1207 1208 1209 1210 1211 1212 1213 1214 1215
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1216
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1217
		rnp_c = rnp;
1218
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1219
		raw_spin_lock_irqsave(&rnp->lock, flags);
1220
		WARN_ON_ONCE(rnp_c->qsmask);
1221 1222 1223 1224
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1225
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1226
	 * to clean up and start the next grace period if one is needed.
1227
	 */
P
Paul E. McKenney 已提交
1228
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1229 1230 1231
}

/*
P
Paul E. McKenney 已提交
1232 1233 1234 1235 1236 1237 1238
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1239 1240
 */
static void
1241
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1242 1243 1244 1245 1246 1247
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1248
	raw_spin_lock_irqsave(&rnp->lock, flags);
1249
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1250 1251

		/*
1252 1253 1254 1255
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1256
		 */
1257
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1258
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1259 1260 1261 1262
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1263
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1264 1265 1266 1267 1268 1269 1270 1271 1272
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1273
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1301
	if (!rdp->passed_quiesce)
1302 1303
		return;

P
Paul E. McKenney 已提交
1304 1305 1306 1307
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1308
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1309 1310 1311 1312
}

#ifdef CONFIG_HOTPLUG_CPU

1313
/*
1314
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1315 1316 1317 1318 1319 1320 1321 1322 1323
 * Also record a quiescent state for this CPU for the current grace period.
 * Synchronization and interrupt disabling are not required because
 * this function executes in stop_machine() context.  Therefore, cleanup
 * operations that might block must be done later from the CPU_DEAD
 * notifier.
 *
 * Note that the outgoing CPU's bit has already been cleared in the
 * cpu_online_mask.  This allows us to randomly pick a callback
 * destination from the bits set in that mask.
1324
 */
1325
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1326 1327
{
	int i;
1328
	unsigned long mask;
1329
	int receive_cpu = cpumask_any(cpu_online_mask);
1330
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1331
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1332
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	/* First, adjust the counts. */
	if (rdp->nxtlist != NULL) {
		receive_rdp->qlen_lazy += rdp->qlen_lazy;
		receive_rdp->qlen += rdp->qlen;
		rdp->qlen_lazy = 0;
		rdp->qlen = 0;
	}

	/*
	 * Next, move ready-to-invoke callbacks to be invoked on some
	 * other CPU.  These will not be required to pass through another
	 * grace period:  They are done, regardless of CPU.
	 */
	if (rdp->nxtlist != NULL &&
	    rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
		struct rcu_head *oldhead;
		struct rcu_head **oldtail;
		struct rcu_head **newtail;

		oldhead = rdp->nxtlist;
		oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
		rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
		*receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
		newtail = rdp->nxttail[RCU_DONE_TAIL];
		for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
			if (receive_rdp->nxttail[i] == oldtail)
				receive_rdp->nxttail[i] = newtail;
			if (rdp->nxttail[i] == newtail)
				rdp->nxttail[i] = &rdp->nxtlist;
		}
	}

	/*
	 * Finally, put the rest of the callbacks at the end of the list.
	 * The ones that made it partway through get to start over:  We
	 * cannot assume that grace periods are synchronized across CPUs.
	 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
	 * this does not seem compelling.  Not yet, anyway.)
	 */
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	if (rdp->nxtlist != NULL) {
		*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
		receive_rdp->nxttail[RCU_NEXT_TAIL] =
				rdp->nxttail[RCU_NEXT_TAIL];
		receive_rdp->n_cbs_adopted += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;

		rdp->nxtlist = NULL;
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			rdp->nxttail[i] = &rdp->nxtlist;
	}
1385

1386 1387 1388 1389 1390 1391
	/*
	 * Record a quiescent state for the dying CPU.  This is safe
	 * only because we have already cleared out the callbacks.
	 * (Otherwise, the RCU core might try to schedule the invocation
	 * of callbacks on this now-offline CPU, which would be bad.)
	 */
1392
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
1393 1394 1395 1396 1397
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
	rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
	/* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1398 1399 1400
}

/*
1401 1402 1403 1404
 * The CPU has been completely removed, and some other CPU is reporting
 * this fact from process context.  Do the remainder of the cleanup.
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1405
 */
1406
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1407
{
1408 1409 1410
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1411
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1412
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rnp. */
1413

1414
	/* Adjust any no-longer-needed kthreads. */
1415 1416
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

	/* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1455 1456 1457 1458
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1459
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1460 1461 1462
{
}

1463
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1464 1465 1466 1467 1468 1469 1470 1471 1472
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1473
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1474 1475 1476
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1477
	int bl, count, count_lazy;
1478 1479

	/* If no callbacks are ready, just return.*/
1480
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1481
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1482 1483 1484
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1485
		return;
1486
	}
1487 1488 1489 1490 1491 1492

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1493
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1494
	bl = rdp->blimit;
1495
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
1506
	count = count_lazy = 0;
1507 1508 1509
	while (list) {
		next = list->next;
		prefetch(next);
1510
		debug_rcu_head_unqueue(list);
1511 1512
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1513
		list = next;
1514 1515 1516 1517
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1518 1519 1520 1521
			break;
	}

	local_irq_save(flags);
1522 1523 1524
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1525 1526

	/* Update count, and requeue any remaining callbacks. */
1527
	rdp->qlen_lazy -= count_lazy;
1528
	rdp->qlen -= count;
1529
	rdp->n_cbs_invoked += count;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1544 1545 1546 1547 1548 1549 1550
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1551 1552
	local_irq_restore(flags);

1553
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1554
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1555
		invoke_rcu_core();
1556 1557 1558 1559 1560
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1561
 * Also schedule RCU core processing.
1562
 *
1563
 * This function must be called from hardirq context.  It is normally
1564 1565 1566 1567 1568
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1569
	trace_rcu_utilization("Start scheduler-tick");
1570
	increment_cpu_stall_ticks();
1571
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1572 1573 1574 1575 1576

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1577
		 * a quiescent state, so note it.
1578 1579
		 *
		 * No memory barrier is required here because both
1580 1581 1582
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1583 1584
		 */

1585 1586
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1587 1588 1589 1590 1591 1592 1593

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1594
		 * critical section, so note it.
1595 1596
		 */

1597
		rcu_bh_qs(cpu);
1598
	}
1599
	rcu_preempt_check_callbacks(cpu);
1600
	if (rcu_pending(cpu))
1601
		invoke_rcu_core();
1602
	trace_rcu_utilization("End scheduler-tick");
1603 1604 1605 1606 1607
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1608 1609
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1610
 * The caller must have suppressed start of new grace periods.
1611
 */
1612
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1613 1614 1615 1616 1617
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1618
	struct rcu_node *rnp;
1619

1620
	rcu_for_each_leaf_node(rsp, rnp) {
1621
		mask = 0;
P
Paul E. McKenney 已提交
1622
		raw_spin_lock_irqsave(&rnp->lock, flags);
1623
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1624
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1625
			return;
1626
		}
1627
		if (rnp->qsmask == 0) {
1628
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1629 1630
			continue;
		}
1631
		cpu = rnp->grplo;
1632
		bit = 1;
1633
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1634 1635
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1636 1637
				mask |= bit;
		}
1638
		if (mask != 0) {
1639

P
Paul E. McKenney 已提交
1640 1641
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1642 1643
			continue;
		}
P
Paul E. McKenney 已提交
1644
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1645
	}
1646
	rnp = rcu_get_root(rsp);
1647 1648 1649 1650
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1662 1663 1664
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1665
		return;  /* No grace period in progress, nothing to force. */
1666
	}
P
Paul E. McKenney 已提交
1667
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1668
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1669
		trace_rcu_utilization("End fqs");
1670 1671
		return;	/* Someone else is already on the job. */
	}
1672
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1673
		goto unlock_fqs_ret; /* no emergency and done recently. */
1674
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1675
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1676
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1677
	if(!rcu_gp_in_progress(rsp)) {
1678
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1679
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1680
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1681
	}
1682
	rsp->fqs_active = 1;
1683
	switch (rsp->fqs_state) {
1684
	case RCU_GP_IDLE:
1685 1686
	case RCU_GP_INIT:

1687
		break; /* grace period idle or initializing, ignore. */
1688 1689 1690 1691 1692

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1693 1694
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1695
		/* Record dyntick-idle state. */
1696
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1697
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1698
		if (rcu_gp_in_progress(rsp))
1699
			rsp->fqs_state = RCU_FORCE_QS;
1700
		break;
1701 1702 1703 1704

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1705
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1706
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1707 1708 1709

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1710
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1711
		break;
1712
	}
1713
	rsp->fqs_active = 0;
1714
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1715
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1716 1717
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1718
		trace_rcu_utilization("End fqs");
1719 1720
		return;
	}
P
Paul E. McKenney 已提交
1721
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1722
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1723
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1724
	trace_rcu_utilization("End fqs");
1725 1726 1727
}

/*
1728 1729 1730
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1731 1732 1733 1734 1735 1736
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1737 1738
	WARN_ON_ONCE(rdp->beenonline == 0);

1739 1740 1741 1742
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1743
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1757
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1758 1759 1760 1761
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1762
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1763
		invoke_rcu_callbacks(rsp, rdp);
1764 1765
}

1766
/*
1767
 * Do RCU core processing for the current CPU.
1768
 */
1769
static void rcu_process_callbacks(struct softirq_action *unused)
1770
{
1771
	trace_rcu_utilization("Start RCU core");
1772 1773
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1774
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1775
	rcu_preempt_process_callbacks();
1776
	trace_rcu_utilization("End RCU core");
1777 1778
}

1779
/*
1780 1781 1782 1783 1784
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1785
 */
1786
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1787
{
1788 1789
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1790 1791
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1792 1793
		return;
	}
1794
	invoke_rcu_callbacks_kthread();
1795 1796
}

1797
static void invoke_rcu_core(void)
1798 1799 1800 1801
{
	raise_softirq(RCU_SOFTIRQ);
}

1802 1803
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1804
	   struct rcu_state *rsp, bool lazy)
1805 1806 1807 1808
{
	unsigned long flags;
	struct rcu_data *rdp;

1809
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1810
	debug_rcu_head_queue(head);
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1823
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1824
	rdp = this_cpu_ptr(rsp->rda);
1825 1826 1827 1828

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1829
	rdp->qlen++;
1830 1831
	if (lazy)
		rdp->qlen_lazy++;
1832 1833
	else
		rcu_idle_count_callbacks_posted();
1834

1835 1836
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1837
					 rdp->qlen_lazy, rdp->qlen);
1838
	else
1839
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1840

1841 1842 1843 1844 1845
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1846

1847 1848 1849 1850 1851 1852 1853
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1854
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1876
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1877 1878 1879 1880 1881
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1882
 * Queue an RCU-sched callback for invocation after a grace period.
1883
 */
1884
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1885
{
1886
	__call_rcu(head, func, &rcu_sched_state, 0);
1887
}
1888
EXPORT_SYMBOL_GPL(call_rcu_sched);
1889 1890

/*
1891
 * Queue an RCU callback for invocation after a quicker grace period.
1892 1893 1894
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
1895
	__call_rcu(head, func, &rcu_bh_state, 0);
1896 1897 1898
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
1924 1925 1926 1927
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
1928 1929
	if (rcu_blocking_is_gp())
		return;
1930
	wait_rcu_gp(call_rcu_sched);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
1945 1946 1947 1948
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1949 1950
	if (rcu_blocking_is_gp())
		return;
1951
	wait_rcu_gp(call_rcu_bh);
1952 1953 1954
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
1985
 *
1986 1987 1988 1989
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2019
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2076 2077 2078 2079 2080 2081 2082 2083 2084
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2085 2086
	struct rcu_node *rnp = rdp->mynode;

2087 2088 2089 2090 2091 2092
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2093 2094
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2095 2096 2097 2098 2099 2100

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
2101
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
2102
		if (!rdp->preemptible &&
2103 2104 2105
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
2106
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2107
		rdp->n_rp_report_qs++;
2108
		return 1;
2109
	}
2110 2111

	/* Does this CPU have callbacks ready to invoke? */
2112 2113
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2114
		return 1;
2115
	}
2116 2117

	/* Has RCU gone idle with this CPU needing another grace period? */
2118 2119
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2120
		return 1;
2121
	}
2122 2123

	/* Has another RCU grace period completed?  */
2124
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2125
		rdp->n_rp_gp_completed++;
2126
		return 1;
2127
	}
2128 2129

	/* Has a new RCU grace period started? */
2130
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2131
		rdp->n_rp_gp_started++;
2132
		return 1;
2133
	}
2134 2135

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2136
	if (rcu_gp_in_progress(rsp) &&
2137
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2138
		rdp->n_rp_need_fqs++;
2139
		return 1;
2140
	}
2141 2142

	/* nothing to do */
2143
	rdp->n_rp_need_nothing++;
2144 2145 2146 2147 2148 2149 2150 2151
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2152
static int rcu_pending(int cpu)
2153
{
2154
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2155 2156
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
2157 2158 2159 2160 2161
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2162
 * 1 if so.
2163
 */
2164
static int rcu_cpu_has_callbacks(int cpu)
2165 2166
{
	/* RCU callbacks either ready or pending? */
2167
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2168
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
2169
	       rcu_preempt_cpu_has_callbacks(cpu);
2170 2171
}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2202 2203
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
2204 2205 2206
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
2207
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2208 2209 2210 2211 2212 2213 2214 2215 2216
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
2217 2218 2219
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2234
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2235 2236 2237 2238 2239 2240 2241 2242
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2243
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2244 2245 2246
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2247
/*
2248
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2249
 */
2250 2251
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2252 2253 2254
{
	unsigned long flags;
	int i;
2255
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2256 2257 2258
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2259
	raw_spin_lock_irqsave(&rnp->lock, flags);
2260 2261 2262 2263
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
2264
	rdp->qlen_lazy = 0;
2265 2266
	rdp->qlen = 0;
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2267
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2268
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2269
	rdp->cpu = cpu;
2270
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2271
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2272 2273 2274 2275 2276 2277 2278
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2279
 */
2280
static void __cpuinit
P
Paul E. McKenney 已提交
2281
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2282 2283 2284
{
	unsigned long flags;
	unsigned long mask;
2285
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2286 2287 2288
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2289
	raw_spin_lock_irqsave(&rnp->lock, flags);
2290
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2291
	rdp->preemptible = preemptible;
2292 2293
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2294
	rdp->blimit = blimit;
2295
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2296 2297
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2298
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2299
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2300 2301 2302 2303 2304 2305 2306

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2307
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2308 2309 2310 2311 2312 2313

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2314
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2315 2316
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2317
		if (rnp == rdp->mynode) {
2318 2319 2320 2321 2322 2323
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2324
			rdp->completed = rnp->completed;
2325 2326
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2327
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2328
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2329
		}
P
Paul E. McKenney 已提交
2330
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2331 2332 2333
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2334
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2335 2336
}

P
Peter Zijlstra 已提交
2337
static void __cpuinit rcu_prepare_cpu(int cpu)
2338
{
2339 2340 2341
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2342 2343 2344
}

/*
2345
 * Handle CPU online/offline notification events.
2346
 */
2347 2348
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2349 2350
{
	long cpu = (long)hcpu;
2351
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2352
	struct rcu_node *rnp = rdp->mynode;
2353

2354
	trace_rcu_utilization("Start CPU hotplug");
2355 2356 2357
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2358 2359
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2360 2361
		break;
	case CPU_ONLINE:
2362 2363
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2364
		rcu_cpu_kthread_setrt(cpu, 1);
2365 2366 2367
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2368
		rcu_cpu_kthread_setrt(cpu, 0);
2369
		break;
2370 2371 2372
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2373 2374 2375
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2376
		 */
2377 2378 2379
		rcu_cleanup_dying_cpu(&rcu_bh_state);
		rcu_cleanup_dying_cpu(&rcu_sched_state);
		rcu_preempt_cleanup_dying_cpu();
2380
		rcu_cleanup_after_idle(cpu);
2381
		break;
2382 2383 2384 2385
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2386 2387 2388
		rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
		rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
		rcu_preempt_cleanup_dead_cpu(cpu);
2389 2390 2391 2392
		break;
	default:
		break;
	}
2393
	trace_rcu_utilization("End CPU hotplug");
2394 2395 2396
	return NOTIFY_OK;
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2412 2413 2414 2415 2416 2417 2418 2419 2420
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2421
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2422
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2423
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2444 2445
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2446
{
2447 2448 2449 2450
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2451 2452 2453 2454 2455
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2456 2457
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2470
			raw_spin_lock_init(&rnp->lock);
2471 2472
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2473
			rnp->gpnum = 0;
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2491
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2492 2493
		}
	}
2494

2495
	rsp->rda = rda;
2496 2497
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2498
		while (i > rnp->grphi)
2499
			rnp++;
2500
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2501 2502
		rcu_boot_init_percpu_data(i, rsp);
	}
2503 2504
}

2505
void __init rcu_init(void)
2506
{
P
Paul E. McKenney 已提交
2507
	int cpu;
2508

2509
	rcu_bootup_announce();
2510 2511
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2512
	__rcu_init_preempt();
2513
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2514 2515 2516 2517 2518 2519 2520

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2521 2522
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2523
	check_cpu_stall_init();
2524 2525
}

2526
#include "rcutree_plugin.h"