rcutree.c 90.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55
#include <linux/random.h>
56

57
#include "rcutree.h"
58 59 60
#include <trace/events/rcu.h>

#include "rcu.h"
61

62 63
/* Data structures. */

64
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66

67
#define RCU_STATE_INITIALIZER(sname, cr) { \
68
	.level = { &sname##_state.node[0] }, \
69
	.call = cr, \
70
	.fqs_state = RCU_GP_IDLE, \
71 72
	.gpnum = -300, \
	.completed = -300, \
73 74 75
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
76
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78
	.name = #sname, \
79 80
}

81 82
struct rcu_state rcu_sched_state =
	RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84

85
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87

88
static struct rcu_state *rcu_state;
89
LIST_HEAD(rcu_struct_flavors);
90

91 92
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93
module_param(rcu_fanout_leaf, int, 0444);
94 95 96 97 98 99 100 101 102 103
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

104 105 106 107 108 109 110 111 112
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
113 114 115
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

116 117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

130 131
#ifdef CONFIG_RCU_BOOST

132 133 134 135 136
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139
DEFINE_PER_CPU(char, rcu_cpu_has_work);
140

141 142
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
143
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 145
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146

147 148 149 150 151 152 153 154 155 156 157 158
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

159 160 161 162 163 164 165 166 167 168
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

169
/*
170
 * Note a quiescent state.  Because we do not need to know
171
 * how many quiescent states passed, just if there was at least
172
 * one since the start of the grace period, this just sets a flag.
173
 * The caller must have disabled preemption.
174
 */
175
void rcu_sched_qs(int cpu)
176
{
177
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178

179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182 183
}

184
void rcu_bh_qs(int cpu)
185
{
186
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187

188
	if (rdp->passed_quiesce == 0)
189
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190
	rdp->passed_quiesce = 1;
191
}
192

193 194 195
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
196
 * The caller must have disabled preemption.
197 198 199
 */
void rcu_note_context_switch(int cpu)
{
200
	trace_rcu_utilization("Start context switch");
201
	rcu_sched_qs(cpu);
202
	rcu_preempt_note_context_switch(cpu);
203
	trace_rcu_utilization("End context switch");
204
}
205
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206

207
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209
	.dynticks = ATOMIC_INIT(1),
210
#if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE)
211 212
	.ignore_user_qs = true,
#endif
213
};
214

215
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
216 217 218
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

219 220 221
module_param(blimit, int, 0444);
module_param(qhimark, int, 0444);
module_param(qlowmark, int, 0444);
222

223 224 225
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

226
module_param(rcu_cpu_stall_suppress, int, 0644);
227
module_param(rcu_cpu_stall_timeout, int, 0644);
228

229 230 231 232 233 234
static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

235 236
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
static void force_quiescent_state(struct rcu_state *rsp);
237
static int rcu_pending(int cpu);
238 239

/*
240
 * Return the number of RCU-sched batches processed thus far for debug & stats.
241
 */
242
long rcu_batches_completed_sched(void)
243
{
244
	return rcu_sched_state.completed;
245
}
246
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
247 248 249 250 251 252 253 254 255 256

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

257 258 259 260 261
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
262
	force_quiescent_state(&rcu_bh_state);
263 264 265
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

291 292 293 294 295
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
296
	force_quiescent_state(&rcu_sched_state);
297 298 299
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
315 316 317
	return *rdp->nxttail[RCU_DONE_TAIL +
			     ACCESS_ONCE(rsp->completed) != rdp->completed] &&
	       !rcu_gp_in_progress(rsp);
318 319 320 321 322 323 324 325 326 327
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

328
/*
329
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
330 331 332 333 334
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
335 336
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
337
{
338
	trace_rcu_dyntick("Start", oldval, 0);
339
	if (!user && !is_idle_task(current)) {
340 341
		struct task_struct *idle = idle_task(smp_processor_id());

342
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
343
		ftrace_dump(DUMP_ORIG);
344 345 346
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
347
	}
348
	rcu_prepare_for_idle(smp_processor_id());
349 350 351 352 353
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
354 355

	/*
356
	 * It is illegal to enter an extended quiescent state while
357 358 359 360 361 362 363 364
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
365
}
366

367 368 369
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
370
 */
371
static void rcu_eqs_enter(bool user)
372
{
373
	long long oldval;
374 375 376
	struct rcu_dynticks *rdtp;

	rdtp = &__get_cpu_var(rcu_dynticks);
377
	oldval = rdtp->dynticks_nesting;
378 379 380 381 382
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
383
	rcu_eqs_enter_common(rdtp, oldval, user);
384
}
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
400 401 402
	unsigned long flags;

	local_irq_save(flags);
403
	rcu_eqs_enter(false);
404
	local_irq_restore(flags);
405
}
406
EXPORT_SYMBOL_GPL(rcu_idle_enter);
407

408
#ifdef CONFIG_RCU_USER_QS
409 410 411 412 413 414 415 416 417 418
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
419 420 421
	unsigned long flags;
	struct rcu_dynticks *rdtp;

422 423 424 425 426 427 428 429 430 431 432
	/*
	 * Some contexts may involve an exception occuring in an irq,
	 * leading to that nesting:
	 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
	 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
	 * helpers are enough to protect RCU uses inside the exception. So
	 * just return immediately if we detect we are in an IRQ.
	 */
	if (in_interrupt())
		return;

433 434 435 436
	WARN_ON_ONCE(!current->mm);

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
437
	if (!rdtp->ignore_user_qs && !rdtp->in_user) {
438
		rdtp->in_user = true;
439
		rcu_eqs_enter(true);
440 441
	}
	local_irq_restore(flags);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/**
 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
 * after the current irq returns.
 *
 * This is similar to rcu_user_enter() but in the context of a non-nesting
 * irq. After this call, RCU enters into idle mode when the interrupt
 * returns.
 */
void rcu_user_enter_after_irq(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	/* Ensure this irq is interrupting a non-idle RCU state.  */
	WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
	rdtp->dynticks_nesting = 1;
	local_irq_restore(flags);
}
464
#endif /* CONFIG_RCU_USER_QS */
465

466 467 468 469 470 471
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
472
 *
473 474 475 476 477 478 479 480
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
481
 */
482
void rcu_irq_exit(void)
483 484
{
	unsigned long flags;
485
	long long oldval;
486 487 488 489
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
490
	oldval = rdtp->dynticks_nesting;
491 492
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
493 494 495
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
496
		rcu_eqs_enter_common(rdtp, oldval, true);
497 498 499 500
	local_irq_restore(flags);
}

/*
501
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
502 503 504 505 506
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
507 508
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
509
{
510 511 512 513 514
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
515
	rcu_cleanup_after_idle(smp_processor_id());
516
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
517
	if (!user && !is_idle_task(current)) {
518 519
		struct task_struct *idle = idle_task(smp_processor_id());

520 521
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
522
		ftrace_dump(DUMP_ORIG);
523 524 525
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
526 527 528
	}
}

529 530 531
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
532
 */
533
static void rcu_eqs_exit(bool user)
534 535 536 537 538 539
{
	struct rcu_dynticks *rdtp;
	long long oldval;

	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
540 541 542 543 544
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
545
	rcu_eqs_exit_common(rdtp, oldval, user);
546
}
547 548 549 550 551 552 553 554 555 556 557 558 559 560

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
561 562 563
	unsigned long flags;

	local_irq_save(flags);
564
	rcu_eqs_exit(false);
565
	local_irq_restore(flags);
566
}
567
EXPORT_SYMBOL_GPL(rcu_idle_exit);
568

569
#ifdef CONFIG_RCU_USER_QS
570 571 572 573 574 575 576 577
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
578 579 580
	unsigned long flags;
	struct rcu_dynticks *rdtp;

581 582 583 584 585 586 587 588 589 590 591
	/*
	 * Some contexts may involve an exception occuring in an irq,
	 * leading to that nesting:
	 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
	 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
	 * helpers are enough to protect RCU uses inside the exception. So
	 * just return immediately if we detect we are in an IRQ.
	 */
	if (in_interrupt())
		return;

592 593 594 595
	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	if (rdtp->in_user) {
		rdtp->in_user = false;
596
		rcu_eqs_exit(true);
597 598
	}
	local_irq_restore(flags);
599 600
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/**
 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
 * idle mode after the current non-nesting irq returns.
 *
 * This is similar to rcu_user_exit() but in the context of an irq.
 * This is called when the irq has interrupted a userspace RCU idle mode
 * context. When the current non-nesting interrupt returns after this call,
 * the CPU won't restore the RCU idle mode.
 */
void rcu_user_exit_after_irq(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	/* Ensure we are interrupting an RCU idle mode. */
	WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
	rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
	local_irq_restore(flags);
}
622
#endif /* CONFIG_RCU_USER_QS */
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
654 655 656
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
657
		rcu_eqs_exit_common(rdtp, oldval, true);
658 659 660 661 662 663 664 665 666 667 668 669 670 671
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

672 673
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
674
		return;
675 676 677 678 679 680
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
681 682 683 684 685 686 687 688 689 690 691 692 693
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

694 695
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
696
		return;
697 698 699 700 701
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
702 703 704
}

/**
705
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
706
 *
707
 * If the current CPU is in its idle loop and is neither in an interrupt
708
 * or NMI handler, return true.
709
 */
710
int rcu_is_cpu_idle(void)
711
{
712 713 714 715 716 717
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
718
}
719
EXPORT_SYMBOL(rcu_is_cpu_idle);
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
#ifdef CONFIG_RCU_USER_QS
void rcu_user_hooks_switch(struct task_struct *prev,
			   struct task_struct *next)
{
	struct rcu_dynticks *rdtp;

	/* Interrupts are disabled in context switch */
	rdtp = &__get_cpu_var(rcu_dynticks);
	if (!rdtp->ignore_user_qs) {
		clear_tsk_thread_flag(prev, TIF_NOHZ);
		set_tsk_thread_flag(next, TIF_NOHZ);
	}
}
#endif /* #ifdef CONFIG_RCU_USER_QS */

736
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
737 738 739 740 741 742 743

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
744 745 746 747 748 749 750 751 752 753 754
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
755 756 757 758 759 760
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
761 762
	struct rcu_data *rdp;
	struct rcu_node *rnp;
763 764 765 766 767
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
768 769 770
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
771 772 773 774 775 776
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

777
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
778

779
/**
780
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
781
 *
782 783 784
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
785
 */
786
int rcu_is_cpu_rrupt_from_idle(void)
787
{
788
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
789 790 791 792 793
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
794
 * is in dynticks idle mode, which is an extended quiescent state.
795 796 797
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
798
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
799
	return (rdp->dynticks_snap & 0x1) == 0;
800 801 802 803 804 805
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
806
 * for this same CPU, or by virtue of having been offline.
807 808 809
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
810 811
	unsigned int curr;
	unsigned int snap;
812

813 814
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
815 816 817 818 819 820 821 822 823

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
824
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
825
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
826 827 828 829
		rdp->dynticks_fqs++;
		return 1;
	}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
850 851
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

870 871 872
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
873
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
874 875 876 877 878 879 880
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
881
	int ndetected = 0;
882 883 884 885
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
886
	raw_spin_lock_irqsave(&rnp->lock, flags);
887
	delta = jiffies - rsp->jiffies_stall;
888
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
889
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
890 891
		return;
	}
892
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
893
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
894

895 896 897 898 899
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
900
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
901
	       rsp->name);
902
	print_cpu_stall_info_begin();
903
	rcu_for_each_leaf_node(rsp, rnp) {
904
		raw_spin_lock_irqsave(&rnp->lock, flags);
905
		ndetected += rcu_print_task_stall(rnp);
906 907 908 909 910 911 912 913
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
914
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
915
	}
916 917 918 919 920 921 922

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
923
	ndetected += rcu_print_task_stall(rnp);
924 925 926 927
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
928
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
929 930 931
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
932
		dump_stack();
933

934
	/* Complain about tasks blocking the grace period. */
935 936 937

	rcu_print_detail_task_stall(rsp);

938
	force_quiescent_state(rsp);  /* Kick them all. */
939 940 941 942 943 944 945
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

946 947 948 949 950
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
951 952 953 954 955
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
956 957
	if (!trigger_all_cpu_backtrace())
		dump_stack();
958

P
Paul E. McKenney 已提交
959
	raw_spin_lock_irqsave(&rnp->lock, flags);
960
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
961 962
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
963
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
964

965 966 967 968 969
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
970 971
	unsigned long j;
	unsigned long js;
972 973
	struct rcu_node *rnp;

974
	if (rcu_cpu_stall_suppress)
975
		return;
976 977
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
978
	rnp = rdp->mynode;
979 980
	if (rcu_gp_in_progress(rsp) &&
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
981 982 983 984

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

985 986
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
987

988
		/* They had a few time units to dump stack, so complain. */
989 990 991 992
		print_other_cpu_stall(rsp);
	}
}

993 994
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
995
	rcu_cpu_stall_suppress = 1;
996 997 998
	return NOTIFY_DONE;
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1010 1011 1012 1013
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1014 1015
}

1016 1017 1018 1019 1020 1021 1022 1023 1024
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

1025 1026 1027
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
1028 1029 1030
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
1031
 */
1032 1033 1034
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
1035 1036 1037 1038 1039
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
1040
		rdp->gpnum = rnp->gpnum;
1041
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1042 1043
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1044
		zero_cpu_stall_ticks(rdp);
1045 1046 1047
	}
}

1048 1049
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
1050 1051 1052 1053 1054 1055
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
1056
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1057 1058 1059 1060
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1061
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1115
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1116

1117 1118
		/*
		 * If we were in an extended quiescent state, we may have
1119
		 * missed some grace periods that others CPUs handled on
1120
		 * our behalf. Catch up with this state to avoid noting
1121 1122
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
1123 1124
		 * we will detect this later on.  Of course, any quiescent
		 * states we found for the old GP are now invalid.
1125
		 */
1126
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1127
			rdp->gpnum = rdp->completed;
1128 1129
			rdp->passed_quiesce = 0;
		}
1130

1131
		/*
1132 1133
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
1134
		 */
1135
		if ((rnp->qsmask & rdp->grpmask) == 0)
1136
			rdp->qs_pending = 0;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1154
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1155 1156 1157 1158
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1159
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

1173 1174
	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1175 1176
}

1177
/*
1178
 * Initialize a new grace period.
1179
 */
1180
static int rcu_gp_init(struct rcu_state *rsp)
1181 1182
{
	struct rcu_data *rdp;
1183
	struct rcu_node *rnp = rcu_get_root(rsp);
1184

1185
	raw_spin_lock_irq(&rnp->lock);
1186
	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	if (rcu_gp_in_progress(rsp)) {
		/* Grace period already in progress, don't start another.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
	record_gp_stall_check_time(rsp);
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1201
	mutex_lock(&rsp->onoff_mutex);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1217 1218
		raw_spin_lock_irq(&rnp->lock);
		rdp = this_cpu_ptr(rsp->rda);
1219 1220 1221
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
		rnp->gpnum = rsp->gpnum;
1222
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1223 1224 1225 1226 1227 1228 1229 1230
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1231 1232 1233 1234
#ifdef CONFIG_PROVE_RCU_DELAY
		if ((random32() % (rcu_num_nodes * 8)) == 0)
			schedule_timeout_uninterruptible(2);
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1235 1236
		cond_resched();
	}
1237

1238
	mutex_unlock(&rsp->onoff_mutex);
1239 1240
	return 1;
}
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/*
 * Do one round of quiescent-state forcing.
 */
int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
{
	int fqs_state = fqs_state_in;
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
		force_qs_rnp(rsp, dyntick_save_progress_counter);
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1268 1269 1270
/*
 * Clean up after the old grace period.
 */
1271
static void rcu_gp_cleanup(struct rcu_state *rsp)
1272 1273 1274 1275
{
	unsigned long gp_duration;
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1276

1277 1278 1279 1280
	raw_spin_lock_irq(&rnp->lock);
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1281

1282 1283 1284 1285 1286 1287 1288 1289
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1290
	raw_spin_unlock_irq(&rnp->lock);
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1302
		raw_spin_lock_irq(&rnp->lock);
1303 1304 1305
		rnp->completed = rsp->gpnum;
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1306
	}
1307 1308
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1309 1310 1311 1312

	rsp->completed = rsp->gpnum; /* Declare grace period done. */
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
	rsp->fqs_state = RCU_GP_IDLE;
1313
	rdp = this_cpu_ptr(rsp->rda);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	if (cpu_needs_another_gp(rsp, rdp))
		rsp->gp_flags = 1;
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1324
	int fqs_state;
1325
	unsigned long j;
1326
	int ret;
1327 1328 1329 1330 1331 1332 1333
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1334 1335 1336 1337 1338
			wait_event_interruptible(rsp->gp_wq,
						 rsp->gp_flags &
						 RCU_GP_FLAG_INIT);
			if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
			    rcu_gp_init(rsp))
1339 1340 1341 1342
				break;
			cond_resched();
			flush_signals(current);
		}
1343

1344 1345
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1346 1347 1348 1349 1350
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1351
		for (;;) {
1352
			rsp->jiffies_force_qs = jiffies + j;
1353 1354 1355 1356
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
					(rsp->gp_flags & RCU_GP_FLAG_FQS) ||
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1357
					j);
1358
			/* If grace period done, leave loop. */
1359
			if (!ACCESS_ONCE(rnp->qsmask) &&
1360
			    !rcu_preempt_blocked_readers_cgp(rnp))
1361
				break;
1362 1363 1364 1365 1366 1367 1368 1369 1370
			/* If time for quiescent-state forcing, do it. */
			if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
			}
1371 1372 1373 1374 1375 1376 1377 1378
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1379
		}
1380 1381 1382

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1383 1384 1385
	}
}

1386 1387 1388 1389 1390
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1391 1392 1393 1394
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1395 1396 1397 1398 1399
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1400
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1401 1402
	struct rcu_node *rnp = rcu_get_root(rsp);

1403
	if (!rsp->gp_kthread ||
1404 1405
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
1406 1407 1408
		 * Either we have not yet spawned the grace-period
		 * task or this CPU does not need another grace period.
		 * Either way, don't start a new grace period.
1409 1410 1411 1412
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1413

1414
	rsp->gp_flags = RCU_GP_FLAG_INIT;
1415 1416
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	wake_up(&rsp->gp_wq);
1417 1418
}

1419
/*
P
Paul E. McKenney 已提交
1420 1421 1422 1423 1424
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1425
 */
P
Paul E. McKenney 已提交
1426
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1427
	__releases(rcu_get_root(rsp)->lock)
1428
{
1429
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1430 1431
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1432 1433
}

1434
/*
P
Paul E. McKenney 已提交
1435 1436 1437 1438 1439 1440
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1441 1442
 */
static void
P
Paul E. McKenney 已提交
1443 1444
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1445 1446
	__releases(rnp->lock)
{
1447 1448
	struct rcu_node *rnp_c;

1449 1450 1451 1452 1453
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1454
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1455 1456 1457
			return;
		}
		rnp->qsmask &= ~mask;
1458 1459 1460 1461
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1462
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1463 1464

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1465
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1466 1467 1468 1469 1470 1471 1472 1473 1474
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1475
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1476
		rnp_c = rnp;
1477
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1478
		raw_spin_lock_irqsave(&rnp->lock, flags);
1479
		WARN_ON_ONCE(rnp_c->qsmask);
1480 1481 1482 1483
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1484
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1485
	 * to clean up and start the next grace period if one is needed.
1486
	 */
P
Paul E. McKenney 已提交
1487
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1488 1489 1490
}

/*
P
Paul E. McKenney 已提交
1491 1492 1493 1494 1495 1496 1497
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1498 1499
 */
static void
1500
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1501 1502 1503 1504 1505 1506
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1507
	raw_spin_lock_irqsave(&rnp->lock, flags);
1508 1509
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1510 1511

		/*
1512 1513 1514 1515
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1516
		 */
1517
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1518
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1519 1520 1521 1522
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1523
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1524 1525 1526 1527 1528 1529 1530 1531 1532
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1533
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1561
	if (!rdp->passed_quiesce)
1562 1563
		return;

P
Paul E. McKenney 已提交
1564 1565 1566 1567
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1568
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1569 1570 1571 1572
}

#ifdef CONFIG_HOTPLUG_CPU

1573
/*
1574 1575 1576
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1577
 */
1578 1579 1580
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1581
{
1582 1583 1584 1585 1586
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1587
	if (rdp->nxtlist != NULL) {
1588 1589 1590
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1591
		rdp->qlen_lazy = 0;
1592
		ACCESS_ONCE(rdp->qlen) = 0;
1593 1594 1595
	}

	/*
1596 1597 1598 1599 1600 1601 1602
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1603
	 */
1604 1605 1606 1607
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1608 1609 1610
	}

	/*
1611 1612 1613
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1614
	 */
1615
	if (rdp->nxtlist != NULL) {
1616 1617
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1618
	}
1619

1620
	/* Finally, initialize the rcu_data structure's list to empty.  */
1621
	init_callback_list(rdp);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1637 1638
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1678 1679 1680
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1681 1682 1683
}

/*
1684
 * The CPU has been completely removed, and some other CPU is reporting
1685 1686
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
1687 1688
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1689
 */
1690
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1691
{
1692 1693 1694
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1695
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1696
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1697

1698
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
1699
	rcu_boost_kthread_setaffinity(rnp, -1);
1700

1701
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1702 1703

	/* Exclude any attempts to start a new grace period. */
1704
	mutex_lock(&rsp->onoff_mutex);
1705 1706
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1707 1708 1709 1710
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1743 1744 1745
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
1746 1747 1748
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1749
	mutex_unlock(&rsp->onoff_mutex);
1750 1751 1752 1753
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1754
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1755 1756 1757
{
}

1758
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1759 1760 1761 1762 1763 1764 1765 1766 1767
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1768
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1769 1770 1771
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1772
	int bl, count, count_lazy, i;
1773 1774

	/* If no callbacks are ready, just return.*/
1775
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1776
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1777 1778 1779
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1780
		return;
1781
	}
1782 1783 1784 1785 1786 1787

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1788
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1789
	bl = rdp->blimit;
1790
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1791 1792 1793 1794
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1795 1796 1797
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1798 1799 1800
	local_irq_restore(flags);

	/* Invoke callbacks. */
1801
	count = count_lazy = 0;
1802 1803 1804
	while (list) {
		next = list->next;
		prefetch(next);
1805
		debug_rcu_head_unqueue(list);
1806 1807
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1808
		list = next;
1809 1810 1811 1812
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1813 1814 1815 1816
			break;
	}

	local_irq_save(flags);
1817 1818 1819
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1820 1821 1822 1823 1824

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1825 1826 1827
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1828 1829 1830
			else
				break;
	}
1831 1832
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
1833
	ACCESS_ONCE(rdp->qlen) -= count;
1834
	rdp->n_cbs_invoked += count;
1835 1836 1837 1838 1839

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1840 1841 1842 1843 1844 1845
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
1846
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1847

1848 1849
	local_irq_restore(flags);

1850
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1851
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1852
		invoke_rcu_core();
1853 1854 1855 1856 1857
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1858
 * Also schedule RCU core processing.
1859
 *
1860
 * This function must be called from hardirq context.  It is normally
1861 1862 1863 1864 1865
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1866
	trace_rcu_utilization("Start scheduler-tick");
1867
	increment_cpu_stall_ticks();
1868
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1869 1870 1871 1872 1873

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1874
		 * a quiescent state, so note it.
1875 1876
		 *
		 * No memory barrier is required here because both
1877 1878 1879
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1880 1881
		 */

1882 1883
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1884 1885 1886 1887 1888 1889 1890

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1891
		 * critical section, so note it.
1892 1893
		 */

1894
		rcu_bh_qs(cpu);
1895
	}
1896
	rcu_preempt_check_callbacks(cpu);
1897
	if (rcu_pending(cpu))
1898
		invoke_rcu_core();
1899
	trace_rcu_utilization("End scheduler-tick");
1900 1901 1902 1903 1904
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1905 1906
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1907
 * The caller must have suppressed start of new grace periods.
1908
 */
1909
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1910 1911 1912 1913 1914
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1915
	struct rcu_node *rnp;
1916

1917
	rcu_for_each_leaf_node(rsp, rnp) {
1918
		cond_resched();
1919
		mask = 0;
P
Paul E. McKenney 已提交
1920
		raw_spin_lock_irqsave(&rnp->lock, flags);
1921
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1922
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1923
			return;
1924
		}
1925
		if (rnp->qsmask == 0) {
1926
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1927 1928
			continue;
		}
1929
		cpu = rnp->grplo;
1930
		bit = 1;
1931
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1932 1933
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1934 1935
				mask |= bit;
		}
1936
		if (mask != 0) {
1937

P
Paul E. McKenney 已提交
1938 1939
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1940 1941
			continue;
		}
P
Paul E. McKenney 已提交
1942
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1943
	}
1944
	rnp = rcu_get_root(rsp);
1945 1946 1947 1948
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1949 1950 1951 1952 1953 1954
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
1955
static void force_quiescent_state(struct rcu_state *rsp)
1956 1957
{
	unsigned long flags;
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
			rsp->n_force_qs_lh++;
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1976

1977 1978 1979 1980 1981 1982
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		rsp->n_force_qs_lh++;
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1983
		return;  /* Someone beat us to it. */
1984
	}
1985
	rsp->gp_flags |= RCU_GP_FLAG_FQS;
1986
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1987
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1988 1989 1990
}

/*
1991 1992 1993
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1994 1995
 */
static void
1996
__rcu_process_callbacks(struct rcu_state *rsp)
1997 1998
{
	unsigned long flags;
1999
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2000

2001 2002
	WARN_ON_ONCE(rdp->beenonline == 0);

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
2014
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
2015 2016 2017 2018
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
2019
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2020
		invoke_rcu_callbacks(rsp, rdp);
2021 2022
}

2023
/*
2024
 * Do RCU core processing for the current CPU.
2025
 */
2026
static void rcu_process_callbacks(struct softirq_action *unused)
2027
{
2028 2029
	struct rcu_state *rsp;

2030 2031
	if (cpu_is_offline(smp_processor_id()))
		return;
2032
	trace_rcu_utilization("Start RCU core");
2033 2034
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2035
	trace_rcu_utilization("End RCU core");
2036 2037
}

2038
/*
2039 2040 2041 2042 2043
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2044
 */
2045
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2046
{
2047 2048
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2049 2050
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2051 2052
		return;
	}
2053
	invoke_rcu_callbacks_kthread();
2054 2055
}

2056
static void invoke_rcu_core(void)
2057 2058 2059 2060
{
	raise_softirq(RCU_SOFTIRQ);
}

2061 2062 2063 2064 2065
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2066
{
2067 2068 2069 2070
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2071
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2072 2073
		invoke_rcu_core();

2074
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2075
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2076
		return;
2077

2078 2079 2080 2081 2082 2083 2084
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2085
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2103
				force_quiescent_state(rsp);
2104 2105 2106
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2107
	}
2108 2109
}

2110 2111
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2112
	   struct rcu_state *rsp, bool lazy)
2113 2114 2115 2116
{
	unsigned long flags;
	struct rcu_data *rdp;

2117
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2118
	debug_rcu_head_queue(head);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2129
	rdp = this_cpu_ptr(rsp->rda);
2130 2131

	/* Add the callback to our list. */
2132 2133 2134 2135 2136 2137
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL)) {
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		WARN_ON_ONCE(1);
		local_irq_restore(flags);
		return;
	}
2138
	ACCESS_ONCE(rdp->qlen)++;
2139 2140
	if (lazy)
		rdp->qlen_lazy++;
2141 2142
	else
		rcu_idle_count_callbacks_posted();
2143 2144 2145
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2146

2147 2148
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2149
					 rdp->qlen_lazy, rdp->qlen);
2150
	else
2151
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2152

2153 2154
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2155 2156 2157 2158
	local_irq_restore(flags);
}

/*
2159
 * Queue an RCU-sched callback for invocation after a grace period.
2160
 */
2161
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2162
{
2163
	__call_rcu(head, func, &rcu_sched_state, 0);
2164
}
2165
EXPORT_SYMBOL_GPL(call_rcu_sched);
2166 2167

/*
2168
 * Queue an RCU callback for invocation after a quicker grace period.
2169 2170 2171
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
2172
	__call_rcu(head, func, &rcu_bh_state, 0);
2173 2174 2175
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2187 2188
	int ret;

2189
	might_sleep();  /* Check for RCU read-side critical section. */
2190 2191 2192 2193
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2194 2195
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2221 2222 2223 2224
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2225 2226
	if (rcu_blocking_is_gp())
		return;
2227
	wait_rcu_gp(call_rcu_sched);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2242 2243 2244 2245
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2246 2247
	if (rcu_blocking_is_gp())
		return;
2248
	wait_rcu_gp(call_rcu_bh);
2249 2250 2251
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2282
 *
2283 2284 2285 2286
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2316
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
2328
		if (trycount++ < 10) {
2329
			udelay(trycount * num_online_cpus());
2330
		} else {
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2373 2374 2375 2376 2377 2378 2379 2380 2381
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2382 2383
	struct rcu_node *rnp = rdp->mynode;

2384 2385 2386 2387 2388 2389
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2390 2391
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2392
		rdp->n_rp_qs_pending++;
2393
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2394
		rdp->n_rp_report_qs++;
2395
		return 1;
2396
	}
2397 2398

	/* Does this CPU have callbacks ready to invoke? */
2399 2400
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2401
		return 1;
2402
	}
2403 2404

	/* Has RCU gone idle with this CPU needing another grace period? */
2405 2406
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2407
		return 1;
2408
	}
2409 2410

	/* Has another RCU grace period completed?  */
2411
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2412
		rdp->n_rp_gp_completed++;
2413
		return 1;
2414
	}
2415 2416

	/* Has a new RCU grace period started? */
2417
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2418
		rdp->n_rp_gp_started++;
2419
		return 1;
2420
	}
2421 2422

	/* nothing to do */
2423
	rdp->n_rp_need_nothing++;
2424 2425 2426 2427 2428 2429 2430 2431
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2432
static int rcu_pending(int cpu)
2433
{
2434 2435 2436 2437 2438 2439
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2440 2441 2442 2443 2444
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2445
 * 1 if so.
2446
 */
2447
static int rcu_cpu_has_callbacks(int cpu)
2448
{
2449 2450
	struct rcu_state *rsp;

2451
	/* RCU callbacks either ready or pending? */
2452 2453 2454 2455
	for_each_rcu_flavor(rsp)
		if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
			return 1;
	return 0;
2456 2457
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2469 2470 2471 2472
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2473
static void rcu_barrier_callback(struct rcu_head *rhp)
2474
{
2475 2476 2477
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2478 2479
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2480
		complete(&rsp->barrier_completion);
2481 2482 2483
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2484 2485 2486 2487 2488 2489 2490
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2491
	struct rcu_state *rsp = type;
2492
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2493

2494
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2495
	atomic_inc(&rsp->barrier_cpu_count);
2496
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2497 2498 2499 2500 2501 2502
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2503
static void _rcu_barrier(struct rcu_state *rsp)
2504
{
2505 2506
	int cpu;
	struct rcu_data *rdp;
2507 2508
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2509

2510
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2511

2512
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2513
	mutex_lock(&rsp->barrier_mutex);
2514

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2528
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2529
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2530
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2543
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2544
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2545

2546
	/*
2547 2548
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
2549 2550
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
2551
	 */
2552
	init_completion(&rsp->barrier_completion);
2553
	atomic_set(&rsp->barrier_cpu_count, 1);
2554
	get_online_cpus();
2555 2556

	/*
2557 2558 2559
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
2560
	 */
2561
	for_each_online_cpu(cpu) {
2562
		rdp = per_cpu_ptr(rsp->rda, cpu);
2563
		if (ACCESS_ONCE(rdp->qlen)) {
2564 2565
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2566
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2567
		} else {
2568 2569
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2570 2571
		}
	}
2572
	put_online_cpus();
2573 2574 2575 2576 2577

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2578
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2579
		complete(&rsp->barrier_completion);
2580

2581 2582 2583 2584
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2585
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2586 2587
	smp_mb(); /* Keep increment before caller's subsequent code. */

2588
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2589
	wait_for_completion(&rsp->barrier_completion);
2590 2591

	/* Other rcu_barrier() invocations can now safely proceed. */
2592
	mutex_unlock(&rsp->barrier_mutex);
2593 2594 2595 2596 2597 2598 2599
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2600
	_rcu_barrier(&rcu_bh_state);
2601 2602 2603 2604 2605 2606 2607 2608
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2609
	_rcu_barrier(&rcu_sched_state);
2610 2611 2612
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2613
/*
2614
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2615
 */
2616 2617
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2618 2619
{
	unsigned long flags;
2620
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2621 2622 2623
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2624
	raw_spin_lock_irqsave(&rnp->lock, flags);
2625
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2626
	init_callback_list(rdp);
2627
	rdp->qlen_lazy = 0;
2628
	ACCESS_ONCE(rdp->qlen) = 0;
2629
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2630
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2631
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2632 2633 2634
#ifdef CONFIG_RCU_USER_QS
	WARN_ON_ONCE(rdp->dynticks->in_user);
#endif
2635
	rdp->cpu = cpu;
2636
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2637
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2638 2639 2640 2641 2642 2643 2644
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2645
 */
2646
static void __cpuinit
P
Paul E. McKenney 已提交
2647
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2648 2649 2650
{
	unsigned long flags;
	unsigned long mask;
2651
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2652 2653
	struct rcu_node *rnp = rcu_get_root(rsp);

2654 2655 2656
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

2657
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2658
	raw_spin_lock_irqsave(&rnp->lock, flags);
2659
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2660
	rdp->preemptible = preemptible;
2661 2662
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2663
	rdp->blimit = blimit;
2664
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
2665
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2666 2667
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2668
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2669
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2670 2671 2672 2673 2674 2675

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2676
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2677 2678
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2679
		if (rnp == rdp->mynode) {
2680 2681 2682 2683 2684 2685
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2686
			rdp->completed = rnp->completed;
2687 2688
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2689
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2690
		}
P
Paul E. McKenney 已提交
2691
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2692 2693
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
2694
	local_irq_restore(flags);
2695

2696
	mutex_unlock(&rsp->onoff_mutex);
2697 2698
}

P
Peter Zijlstra 已提交
2699
static void __cpuinit rcu_prepare_cpu(int cpu)
2700
{
2701 2702 2703 2704 2705
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
2706 2707 2708
}

/*
2709
 * Handle CPU online/offline notification events.
2710
 */
2711 2712
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2713 2714
{
	long cpu = (long)hcpu;
2715
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2716
	struct rcu_node *rnp = rdp->mynode;
2717
	struct rcu_state *rsp;
2718

2719
	trace_rcu_utilization("Start CPU hotplug");
2720 2721 2722
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2723 2724
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2725 2726
		break;
	case CPU_ONLINE:
2727
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
2728
		rcu_boost_kthread_setaffinity(rnp, -1);
2729 2730
		break;
	case CPU_DOWN_PREPARE:
T
Thomas Gleixner 已提交
2731
		rcu_boost_kthread_setaffinity(rnp, cpu);
2732
		break;
2733 2734 2735
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2736 2737 2738
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2739
		 */
2740 2741
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
2742
		rcu_cleanup_after_idle(cpu);
2743
		break;
2744 2745 2746 2747
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2748 2749
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
2750 2751 2752 2753
		break;
	default:
		break;
	}
2754
	trace_rcu_utilization("End CPU hotplug");
2755 2756 2757
	return NOTIFY_OK;
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
		t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2795 2796 2797 2798 2799 2800 2801 2802 2803
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2804
	for (i = rcu_num_lvls - 1; i > 0; i--)
2805
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2806
	rsp->levelspread[0] = rcu_fanout_leaf;
2807 2808 2809 2810 2811 2812 2813 2814
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

2815
	cprv = nr_cpu_ids;
2816
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2827 2828
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2829
{
2830 2831 2832 2833 2834 2835 2836 2837
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
2838 2839 2840 2841 2842
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2843 2844
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2845 2846
	/* Initialize the level-tracking arrays. */

2847 2848 2849
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
2850 2851 2852 2853 2854
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

2855
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2856 2857 2858
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2859
			raw_spin_lock_init(&rnp->lock);
2860 2861
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2862 2863 2864
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
2865 2866
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2884
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2885 2886
		}
	}
2887

2888
	rsp->rda = rda;
2889
	init_waitqueue_head(&rsp->gp_wq);
2890
	rnp = rsp->level[rcu_num_lvls - 1];
2891
	for_each_possible_cpu(i) {
2892
		while (i > rnp->grphi)
2893
			rnp++;
2894
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2895 2896
		rcu_boot_init_percpu_data(i, rsp);
	}
2897
	list_add(&rsp->flavors, &rcu_struct_flavors);
2898 2899
}

2900 2901 2902 2903 2904 2905 2906 2907 2908
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
2909
	int n = nr_cpu_ids;
2910 2911 2912
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
2913 2914
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

2961
void __init rcu_init(void)
2962
{
P
Paul E. McKenney 已提交
2963
	int cpu;
2964

2965
	rcu_bootup_announce();
2966
	rcu_init_geometry();
2967 2968
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2969
	__rcu_init_preempt();
2970
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2971 2972 2973 2974 2975 2976 2977

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2978 2979
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2980
	check_cpu_stall_init();
2981 2982
}

2983
#include "rcutree_plugin.h"