sched_fair.c 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27 28 29 30
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
31 32 33 34
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35
 * Targeted preemption latency for CPU-bound tasks:
36
 */
37 38 39 40 41 42 43
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
44 45 46 47 48

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
49
const_debug unsigned int sysctl_sched_nr_latency = 20;
50

51 52 53 54 55 56 57 58
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

59 60
/*
 * SCHED_BATCH wake-up granularity.
I
Ingo Molnar 已提交
61
 * (default: 10 msec, units: nanoseconds)
62 63 64 65 66
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
67
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
68 69 70

/*
 * SCHED_OTHER wake-up granularity.
I
Ingo Molnar 已提交
71
 * (default: 10 msec, units: nanoseconds)
72 73 74 75 76
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
77
const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
78 79 80 81 82

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

83
#ifdef CONFIG_FAIR_GROUP_SCHED
84

85
/* cpu runqueue to which this cfs_rq is attached */
86 87
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
88
	return cfs_rq->rq;
89 90
}

91 92
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
93

94
#else	/* CONFIG_FAIR_GROUP_SCHED */
95

96 97 98
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

115 116 117
static inline u64
max_vruntime(u64 min_vruntime, u64 vruntime)
{
118 119
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
120 121 122 123 124
		min_vruntime = vruntime;

	return min_vruntime;
}

P
Peter Zijlstra 已提交
125 126 127 128 129 130 131 132 133 134
static inline u64
min_vruntime(u64 min_vruntime, u64 vruntime)
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

135 136
static inline s64
entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
137
{
138
	return se->vruntime - cfs_rq->min_vruntime;
139 140
}

141 142 143
/*
 * Enqueue an entity into the rb-tree:
 */
144
static void
145 146 147 148 149
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
150
	s64 key = entity_key(cfs_rq, se);
151 152 153 154 155 156 157 158 159 160 161 162
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
163
		if (key < entity_key(cfs_rq, entry)) {
164 165 166 167 168 169 170 171 172 173 174 175
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
176
		cfs_rq->rb_leftmost = &se->run_node;
177 178 179 180 181

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

182
static void
183 184 185
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
186
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
I
Ingo Molnar 已提交
187

188 189 190 191 192 193 194 195 196 197 198 199 200
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

216 217 218 219
/**************************************************************
 * Scheduling class statistics methods:
 */

220 221 222 223 224 225 226 227 228

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
229 230 231
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
232
	unsigned long nr_latency = sysctl_sched_nr_latency;
233 234 235 236 237 238 239 240 241

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

242 243 244 245 246 247
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
248
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
249
{
250
	u64 slice = __sched_period(cfs_rq->nr_running);
251

252 253
	slice *= se->load.weight;
	do_div(slice, cfs_rq->load.weight);
254

255
	return slice;
256 257
}

258 259 260 261 262 263
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
264
{
265
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
266

267
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
268

269 270
	return vslice;
}
271

272 273 274 275 276 277 278 279 280
static u64 sched_vslice(struct cfs_rq *cfs_rq)
{
	return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
}

static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
281 282
}

283 284 285 286 287
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
288 289
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
290
{
291
	unsigned long delta_exec_weighted;
P
Peter Zijlstra 已提交
292
	u64 vruntime;
293

294
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
295 296

	curr->sum_exec_runtime += delta_exec;
297
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
298 299 300 301 302 303
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
304 305 306 307 308 309

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
P
Peter Zijlstra 已提交
310 311
		vruntime = min_vruntime(curr->vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
312
	} else
P
Peter Zijlstra 已提交
313
		vruntime = curr->vruntime;
314 315

	cfs_rq->min_vruntime =
P
Peter Zijlstra 已提交
316
		max_vruntime(cfs_rq->min_vruntime, vruntime);
317 318
}

319
static void update_curr(struct cfs_rq *cfs_rq)
320
{
321
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
322
	u64 now = rq_of(cfs_rq)->clock;
323 324 325 326 327 328 329 330 331 332
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
333
	delta_exec = (unsigned long)(now - curr->exec_start);
334

I
Ingo Molnar 已提交
335 336
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
337 338 339
}

static inline void
340
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
341
{
342
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
343 344 345
}

static inline unsigned long
I
Ingo Molnar 已提交
346
calc_weighted(unsigned long delta, struct sched_entity *se)
347
{
I
Ingo Molnar 已提交
348
	unsigned long weight = se->load.weight;
349

I
Ingo Molnar 已提交
350 351 352 353
	if (unlikely(weight != NICE_0_LOAD))
		return (u64)delta * se->load.weight >> NICE_0_SHIFT;
	else
		return delta;
354 355 356 357 358
}

/*
 * Task is being enqueued - update stats:
 */
359
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
360 361 362 363 364
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
365
	if (se != cfs_rq->curr)
366
		update_stats_wait_start(cfs_rq, se);
367 368 369
}

static void
370
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
371
{
372 373
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
I
Ingo Molnar 已提交
374
	schedstat_set(se->wait_start, 0);
375 376 377
}

static inline void
378
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
379
{
380
	update_curr(cfs_rq);
381 382 383 384
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
385
	if (se != cfs_rq->curr)
386
		update_stats_wait_end(cfs_rq, se);
387 388 389 390 391 392
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
393
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
394 395 396 397
{
	/*
	 * We are starting a new run period:
	 */
398
	se->exec_start = rq_of(cfs_rq)->clock;
399 400 401 402 403 404
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
405
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
406 407 408 409 410 411 412 413
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

430
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
431 432 433
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
434
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
435 436 437 438 439 440 441 442 443 444 445

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
446
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
447 448 449 450 451 452 453 454 455

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
456 457 458 459 460 461 462

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
463 464
			struct task_struct *tsk = task_of(se);

I
Ingo Molnar 已提交
465 466 467
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
468 469 470 471
	}
#endif
}

P
Peter Zijlstra 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

485 486 487
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
488
	u64 vruntime;
489

P
Peter Zijlstra 已提交
490
	vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
491 492 493 494

	if (sched_feat(USE_TREE_AVG)) {
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
P
Peter Zijlstra 已提交
495 496
			vruntime += last->vruntime;
			vruntime >>= 1;
P
Peter Zijlstra 已提交
497
		}
P
Peter Zijlstra 已提交
498
	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
499
		vruntime += sched_vslice(cfs_rq)/2;
P
Peter Zijlstra 已提交
500 501

	if (initial && sched_feat(START_DEBIT))
502
		vruntime += sched_vslice_add(cfs_rq, se);
503

I
Ingo Molnar 已提交
504
	if (!initial) {
505 506 507
		if (sched_feat(NEW_FAIR_SLEEPERS))
			vruntime -= sysctl_sched_latency;

508
		vruntime = max_t(s64, vruntime, se->vruntime);
509 510
	}

P
Peter Zijlstra 已提交
511 512
	se->vruntime = vruntime;

513 514
}

515
static void
516
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
517 518 519 520
{
	/*
	 * Update the fair clock.
	 */
521
	update_curr(cfs_rq);
522

I
Ingo Molnar 已提交
523
	if (wakeup) {
524
		place_entity(cfs_rq, se, 0);
525
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
526
	}
527

528
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
529
	check_spread(cfs_rq, se);
530 531
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
532
	account_entity_enqueue(cfs_rq, se);
533 534 535
}

static void
536
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
537
{
538
	update_stats_dequeue(cfs_rq, se);
539
	if (sleep) {
P
Peter Zijlstra 已提交
540
#ifdef CONFIG_SCHEDSTATS
541 542 543 544
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
545
				se->sleep_start = rq_of(cfs_rq)->clock;
546
			if (tsk->state & TASK_UNINTERRUPTIBLE)
547
				se->block_start = rq_of(cfs_rq)->clock;
548
		}
549
#endif
P
Peter Zijlstra 已提交
550 551
	}

552
	if (se != cfs_rq->curr)
553 554
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
555 556 557 558 559
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
560
static void
I
Ingo Molnar 已提交
561
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
562
{
563 564
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
565
	ideal_runtime = sched_slice(cfs_rq, curr);
566 567
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
568 569 570
		resched_task(rq_of(cfs_rq)->curr);
}

571
static void
572
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
573
{
574 575 576 577 578 579 580 581 582 583 584
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

585
	update_stats_curr_start(cfs_rq, se);
586
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
587 588 589 590 591 592
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
593
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
594 595 596 597
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
598
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
599 600
}

601
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
602
{
D
Dmitry Adamushko 已提交
603
	struct sched_entity *se = NULL;
604

D
Dmitry Adamushko 已提交
605 606 607 608
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
		set_next_entity(cfs_rq, se);
	}
609 610 611 612

	return se;
}

613
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
614 615 616 617 618 619
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
620
		update_curr(cfs_rq);
621

622
	update_stats_curr_end(cfs_rq, prev);
623

P
Peter Zijlstra 已提交
624
	check_spread(cfs_rq, prev);
625
	if (prev->on_rq) {
626
		update_stats_wait_start(cfs_rq, prev);
627 628 629
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
630
	cfs_rq->curr = NULL;
631 632 633 634 635
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
636
	 * Update run-time statistics of the 'current'.
637
	 */
638
	update_curr(cfs_rq);
639

I
Ingo Molnar 已提交
640 641
	if (cfs_rq->nr_running > 1)
		check_preempt_tick(cfs_rq, curr);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
676
	return cfs_rq->tg->cfs_rq[this_cpu];
677 678 679 680 681 682
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

683 684 685
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
686
{
687
	if (se->cfs_rq == pse->cfs_rq)
688 689 690 691 692
		return 1;

	return 0;
}

693 694 695 696 697
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

730 731
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
732 733 734 735
{
	return 1;
}

736 737 738 739 740
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

741 742 743 744 745 746 747
#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
748
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
749 750 751 752 753 754 755 756
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
757
		enqueue_entity(cfs_rq, se, wakeup);
758
		wakeup = 1;
759 760 761 762 763 764 765 766
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
767
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
768 769 770 771 772 773
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
774
		dequeue_entity(cfs_rq, se, sleep);
775 776 777
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
778
		sleep = 1;
779 780 781 782
	}
}

/*
783 784 785
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
786
 */
787
static void yield_task_fair(struct rq *rq)
788
{
S
Srivatsa Vaddagiri 已提交
789
	struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
790
	struct sched_entity *rightmost, *se = &rq->curr->se;
791 792

	/*
793 794 795 796 797 798 799 800 801 802 803
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
D
Dmitry Adamushko 已提交
804
		update_curr(cfs_rq);
805 806 807 808 809

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
810
	 */
D
Dmitry Adamushko 已提交
811
	rightmost = __pick_last_entity(cfs_rq);
812 813 814
	/*
	 * Already in the rightmost position?
	 */
D
Dmitry Adamushko 已提交
815
	if (unlikely(rightmost->vruntime < se->vruntime))
816 817 818 819
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
820 821
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
822
	 */
823
	se->vruntime = rightmost->vruntime + 1;
824 825 826 827 828
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
829
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
830 831
{
	struct task_struct *curr = rq->curr;
832
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
833
	struct sched_entity *se = &curr->se, *pse = &p->se;
834
	s64 delta;
835 836

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
837
		update_rq_clock(rq);
838
		update_curr(cfs_rq);
839 840 841 842
		resched_task(curr);
		return;
	}

843 844 845 846
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
	}
847

848
	delta = se->vruntime - pse->vruntime;
849

850 851
	if (delta > (s64)sysctl_sched_wakeup_granularity)
		resched_task(curr);
852 853
}

854
static struct task_struct *pick_next_task_fair(struct rq *rq)
855 856 857 858 859 860 861 862
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
863
		se = pick_next_entity(cfs_rq);
864 865 866 867 868 869 870 871 872
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
873
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
874 875 876 877 878 879
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
880
		put_prev_entity(cfs_rq, se);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

923
#ifdef CONFIG_FAIR_GROUP_SCHED
924 925 926 927 928 929 930 931
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

932 933 934 935
	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

936 937 938 939
	p = task_of(curr);

	return p->prio;
}
940
#endif
941

P
Peter Williams 已提交
942
static unsigned long
943
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
944 945 946
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
947 948 949 950 951 952 953 954 955 956
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
957
#ifdef CONFIG_FAIR_GROUP_SCHED
958
		struct cfs_rq *this_cfs_rq;
959
		long imbalance;
960 961 962 963
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

964
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
965 966 967 968 969 970 971 972
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

973 974
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
975
# define maxload rem_load_move
976
#endif
977 978 979 980 981 982
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
983
				&load_moved, this_best_prio, &cfs_rq_iterator);
984 985 986 987 988 989 990 991 992

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
993
	return max_load_move - rem_load_move;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

1010 1011
#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)

1012 1013 1014 1015 1016 1017 1018
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1019
static void task_new_fair(struct rq *rq, struct task_struct *p)
1020 1021
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1022
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1023 1024 1025

	sched_info_queued(p);

1026
	update_curr(cfs_rq);
1027
	place_entity(cfs_rq, se, 1);
1028 1029 1030

	if (sysctl_sched_child_runs_first &&
			curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1031
		/*
1032 1033 1034
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1035 1036
		swap(curr->vruntime, se->vruntime);
	}
1037

I
Ingo Molnar 已提交
1038
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1039 1040
	check_spread(cfs_rq, se);
	check_spread(cfs_rq, curr);
1041
	__enqueue_entity(cfs_rq, se);
1042
	account_entity_enqueue(cfs_rq, se);
1043
	resched_task(rq->curr);
1044 1045
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

1059 1060 1061
/*
 * All the scheduling class methods:
 */
1062 1063
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1064 1065 1066 1067
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1068
	.check_preempt_curr	= check_preempt_wakeup,
1069 1070 1071 1072 1073 1074

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

1075
	.set_curr_task          = set_curr_task_fair,
1076 1077 1078 1079 1080
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1081
static void print_cfs_stats(struct seq_file *m, int cpu)
1082 1083 1084
{
	struct cfs_rq *cfs_rq;

S
Srivatsa Vaddagiri 已提交
1085 1086 1087
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1088
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1089
		print_cfs_rq(m, cpu, cfs_rq);
1090 1091
}
#endif