hugetlb.c 80.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include "internal.h"
L
Linus Torvalds 已提交
34 35

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 37
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50 51 52
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
53
DEFINE_SPINLOCK(hugetlb_lock);
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
	return subpool_inode(vma->vm_file->f_dentry->d_inode);
}

133 134 135
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
136 137 138 139 140 141
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
142
 *	down_write(&mm->mmap_sem);
143
 * or
144 145
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
226
		/* We overlap with this area, if it extends further than
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

268 269 270 271 272 273 274
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
275 276
		long seg_from;
		long seg_to;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

292 293 294 295
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
296 297
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
298
{
299 300
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
301 302
}

303 304 305 306 307 308
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
324
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325

326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

339 340 341 342 343 344 345
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
346
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347

348 349 350 351 352 353 354 355 356
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
357 358 359 360 361 362 363 364 365
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
366
 */
367 368 369 370 371 372 373 374 375 376 377
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

378 379 380 381 382
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

383
static struct resv_map *resv_map_alloc(void)
384 385 386 387 388 389 390 391 392 393 394
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

395
static void resv_map_release(struct kref *ref)
396 397 398 399 400 401 402 403 404
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 406
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407
	if (!(vma->vm_flags & VM_MAYSHARE))
408 409
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
410
	return NULL;
411 412
}

413
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 415
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417

418 419
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
420 421 422 423 424
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 427

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 429 430 431 432
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 434

	return (get_vma_private_data(vma) & flag) != 0;
435 436 437
}

/* Decrement the reserved pages in the hugepage pool by one */
438 439
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
440
{
441 442 443
	if (vma->vm_flags & VM_NORESERVE)
		return;

444
	if (vma->vm_flags & VM_MAYSHARE) {
445
		/* Shared mappings always use reserves */
446
		h->resv_huge_pages--;
447
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448 449 450 451
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
452
		h->resv_huge_pages--;
453 454 455
	}
}

456
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 458 459
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460
	if (!(vma->vm_flags & VM_MAYSHARE))
461 462 463 464
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
465
static int vma_has_reserves(struct vm_area_struct *vma)
466
{
467
	if (vma->vm_flags & VM_MAYSHARE)
468 469 470 471
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

508
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
509 510
{
	int nid = page_to_nid(page);
511
	list_move(&page->lru, &h->hugepage_freelists[nid]);
512 513
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
514 515
}

516 517 518 519 520 521 522
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523
	list_move(&page->lru, &h->hugepage_activelist);
524
	set_page_refcounted(page);
525 526 527 528 529
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

530 531
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
532
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
533
{
534
	struct page *page = NULL;
535
	struct mempolicy *mpol;
536
	nodemask_t *nodemask;
537
	struct zonelist *zonelist;
538 539
	struct zone *zone;
	struct zoneref *z;
540
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
541

542 543
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
544 545
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
546 547 548 549 550
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
551
	if (!vma_has_reserves(vma) &&
552
			h->free_huge_pages - h->resv_huge_pages == 0)
553
		goto err;
554

555
	/* If reserves cannot be used, ensure enough pages are in the pool */
556
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557
		goto err;
558

559 560
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
561 562 563 564 565 566 567
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
568
		}
L
Linus Torvalds 已提交
569
	}
570

571
	mpol_cond_put(mpol);
572 573
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
574
	return page;
575 576 577 578

err:
	mpol_cond_put(mpol);
	return NULL;
L
Linus Torvalds 已提交
579 580
}

581
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
582 583
{
	int i;
584

585 586
	VM_BUG_ON(h->order >= MAX_ORDER);

587 588 589
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
590 591 592 593
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
594
	}
595
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
596 597
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
598
	arch_release_hugepage(page);
599
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
600 601
}

602 603 604 605 606 607 608 609 610 611 612
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

613 614
static void free_huge_page(struct page *page)
{
615 616 617 618
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
619
	struct hstate *h = page_hstate(page);
620
	int nid = page_to_nid(page);
621 622
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
623

624
	set_page_private(page, 0);
625
	page->mapping = NULL;
626
	BUG_ON(page_count(page));
627
	BUG_ON(page_mapcount(page));
628 629

	spin_lock(&hugetlb_lock);
630 631
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
632
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 634
		/* remove the page from active list */
		list_del(&page->lru);
635 636 637
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
638
	} else {
639
		enqueue_huge_page(h, page);
640
	}
641
	spin_unlock(&hugetlb_lock);
642
	hugepage_subpool_put_pages(spool, 1);
643 644
}

645
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
646
{
647
	INIT_LIST_HEAD(&page->lru);
648 649
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
650
	set_hugetlb_cgroup(page, NULL);
651 652
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
653 654 655 656
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

657 658 659 660 661 662 663 664 665 666 667
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
668
		set_page_count(p, 0);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
685 686
EXPORT_SYMBOL_GPL(PageHuge);

687
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
688 689
{
	struct page *page;
690

691 692 693
	if (h->order >= MAX_ORDER)
		return NULL;

694
	page = alloc_pages_exact_node(nid,
695 696
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
697
		huge_page_order(h));
L
Linus Torvalds 已提交
698
	if (page) {
699
		if (arch_prepare_hugepage(page)) {
700
			__free_pages(page, huge_page_order(h));
701
			return NULL;
702
		}
703
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
704
	}
705 706 707 708

	return page;
}

709
/*
710 711 712 713 714
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
715
 */
716
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
717
{
718
	nid = next_node(nid, *nodes_allowed);
719
	if (nid == MAX_NUMNODES)
720
		nid = first_node(*nodes_allowed);
721 722 723 724 725
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

726 727 728 729 730 731 732
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

733
/*
734 735 736 737
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
738
 */
739 740
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
741
{
742 743 744 745 746 747
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
748 749

	return nid;
750 751
}

752
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
753 754 755 756 757 758
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

759
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
760
	next_nid = start_nid;
761 762

	do {
763
		page = alloc_fresh_huge_page_node(h, next_nid);
764
		if (page) {
765
			ret = 1;
766 767
			break;
		}
768
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
769
	} while (next_nid != start_nid);
770

771 772 773 774 775
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

776
	return ret;
L
Linus Torvalds 已提交
777 778
}

779
/*
780 781 782 783
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
784
 */
785
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
786
{
787 788 789 790 791 792
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
793 794

	return nid;
795 796 797 798 799 800 801 802
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
803 804
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
805 806 807 808 809
{
	int start_nid;
	int next_nid;
	int ret = 0;

810
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
811 812 813
	next_nid = start_nid;

	do {
814 815 816 817 818 819
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
820 821 822 823 824 825
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
826 827 828 829
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
830 831
			update_and_free_page(h, page);
			ret = 1;
832
			break;
833
		}
834
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
835
	} while (next_nid != start_nid);
836 837 838 839

	return ret;
}

840
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
841 842
{
	struct page *page;
843
	unsigned int r_nid;
844

845 846 847
	if (h->order >= MAX_ORDER)
		return NULL;

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
872
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
873 874 875
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
876 877
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
878 879 880
	}
	spin_unlock(&hugetlb_lock);

881 882 883 884 885 886 887 888
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
889

890 891
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
892
		page = NULL;
893 894
	}

895
	spin_lock(&hugetlb_lock);
896
	if (page) {
897
		INIT_LIST_HEAD(&page->lru);
898
		r_nid = page_to_nid(page);
899
		set_compound_page_dtor(page, free_huge_page);
900
		set_hugetlb_cgroup(page, NULL);
901 902 903
		/*
		 * We incremented the global counters already
		 */
904 905
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
906
		__count_vm_event(HTLB_BUDDY_PGALLOC);
907
	} else {
908 909
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
910
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
911
	}
912
	spin_unlock(&hugetlb_lock);
913 914 915 916

	return page;
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

936
/*
L
Lucas De Marchi 已提交
937
 * Increase the hugetlb pool such that it can accommodate a reservation
938 939
 * of size 'delta'.
 */
940
static int gather_surplus_pages(struct hstate *h, int delta)
941 942 943 944 945
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
946
	bool alloc_ok = true;
947

948
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
949
	if (needed <= 0) {
950
		h->resv_huge_pages += delta;
951
		return 0;
952
	}
953 954 955 956 957 958 959 960

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
961
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
962 963 964 965
		if (!page) {
			alloc_ok = false;
			break;
		}
966 967
		list_add(&page->lru, &surplus_list);
	}
968
	allocated += i;
969 970 971 972 973 974

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
975 976
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
977 978 979 980 981 982 983 984 985 986
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
987 988
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
989
	 * needed to accommodate the reservation.  Add the appropriate number
990
	 * of pages to the hugetlb pool and free the extras back to the buddy
991 992 993
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
994 995
	 */
	needed += allocated;
996
	h->resv_huge_pages += delta;
997
	ret = 0;
998

999
	/* Free the needed pages to the hugetlb pool */
1000
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1001 1002
		if ((--needed) < 0)
			break;
1003 1004 1005 1006 1007 1008
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1009
		enqueue_huge_page(h, page);
1010
	}
1011
free:
1012
	spin_unlock(&hugetlb_lock);
1013 1014 1015 1016

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1017
			put_page(page);
1018
		}
1019
	}
1020
	spin_lock(&hugetlb_lock);
1021 1022 1023 1024 1025 1026 1027 1028

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1029
 * Called with hugetlb_lock held.
1030
 */
1031 1032
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1033 1034 1035
{
	unsigned long nr_pages;

1036
	/* Uncommit the reservation */
1037
	h->resv_huge_pages -= unused_resv_pages;
1038

1039 1040 1041 1042
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1043
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1044

1045 1046
	/*
	 * We want to release as many surplus pages as possible, spread
1047 1048 1049 1050 1051
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1052 1053
	 */
	while (nr_pages--) {
1054
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1055
			break;
1056 1057 1058
	}
}

1059 1060 1061
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1062 1063 1064 1065 1066 1067
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1068
 */
1069
static long vma_needs_reservation(struct hstate *h,
1070
			struct vm_area_struct *vma, unsigned long addr)
1071 1072 1073 1074
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1075
	if (vma->vm_flags & VM_MAYSHARE) {
1076
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1077 1078 1079
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1080 1081
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1082

1083
	} else  {
1084
		long err;
1085
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1086 1087 1088 1089 1090 1091 1092
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1093
}
1094 1095
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1096 1097 1098 1099
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1100
	if (vma->vm_flags & VM_MAYSHARE) {
1101
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1102
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1103 1104

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1105
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1106 1107 1108 1109
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1110 1111 1112
	}
}

1113
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1114
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1115
{
1116
	struct hugepage_subpool *spool = subpool_vma(vma);
1117
	struct hstate *h = hstate_vma(vma);
1118
	struct page *page;
1119
	long chg;
1120 1121
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1122

1123
	idx = hstate_index(h);
1124
	/*
1125 1126 1127 1128 1129 1130
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1131
	 */
1132
	chg = vma_needs_reservation(h, vma, addr);
1133
	if (chg < 0)
1134
		return ERR_PTR(-ENOMEM);
1135
	if (chg)
1136
		if (hugepage_subpool_get_pages(spool, chg))
1137
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1138

1139 1140 1141 1142 1143
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1144
	spin_lock(&hugetlb_lock);
1145
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1146
	spin_unlock(&hugetlb_lock);
1147

K
Ken Chen 已提交
1148
	if (!page) {
1149
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1150
		if (!page) {
1151 1152 1153
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1154
			hugepage_subpool_put_pages(spool, chg);
1155
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1156 1157
		}
	}
1158

1159
	set_page_private(page, (unsigned long)spool);
1160

1161
	vma_commit_reservation(h, vma, addr);
1162 1163
	/* update page cgroup details */
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1164
	return page;
1165 1166
}

1167
int __weak alloc_bootmem_huge_page(struct hstate *h)
1168 1169
{
	struct huge_bootmem_page *m;
1170
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1171 1172 1173 1174 1175

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1176
				NODE_DATA(hstate_next_node_to_alloc(h,
1177
						&node_states[N_HIGH_MEMORY])),
1178 1179 1180 1181 1182 1183 1184 1185 1186
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1187
			goto found;
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1201 1202 1203 1204 1205 1206 1207 1208
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1209 1210 1211 1212 1213 1214 1215
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1216 1217 1218 1219 1220 1221 1222 1223 1224
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1225 1226
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1227
		prep_compound_huge_page(page, h->order);
1228
		prep_new_huge_page(h, page, page_to_nid(page));
1229 1230 1231 1232 1233 1234 1235 1236
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1237 1238 1239
	}
}

1240
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1241 1242
{
	unsigned long i;
1243

1244
	for (i = 0; i < h->max_huge_pages; ++i) {
1245 1246 1247
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1248 1249
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1250 1251
			break;
	}
1252
	h->max_huge_pages = i;
1253 1254 1255 1256 1257 1258 1259
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1260 1261 1262
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1263 1264 1265
	}
}

A
Andi Kleen 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1277 1278 1279 1280 1281
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1282 1283 1284 1285 1286
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1287 1288 1289
	}
}

L
Linus Torvalds 已提交
1290
#ifdef CONFIG_HIGHMEM
1291 1292
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1293
{
1294 1295
	int i;

1296 1297 1298
	if (h->order >= MAX_ORDER)
		return;

1299
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1300
		struct page *page, *next;
1301 1302 1303
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1304
				return;
L
Linus Torvalds 已提交
1305 1306 1307
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1308
			update_and_free_page(h, page);
1309 1310
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1311 1312 1313 1314
		}
	}
}
#else
1315 1316
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1317 1318 1319 1320
{
}
#endif

1321 1322 1323 1324 1325
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1326 1327
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1328
{
1329
	int start_nid, next_nid;
1330 1331 1332 1333
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1334
	if (delta < 0)
1335
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1336
	else
1337
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1338 1339 1340 1341 1342 1343 1344 1345
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1346
			if (!h->surplus_huge_pages_node[nid]) {
1347 1348
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1349
				continue;
1350
			}
1351 1352 1353 1354 1355 1356
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1357
						h->nr_huge_pages_node[nid]) {
1358 1359
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1360
				continue;
1361
			}
1362
		}
1363 1364 1365 1366 1367

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1368
	} while (next_nid != start_nid);
1369 1370 1371 1372

	return ret;
}

1373
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1374 1375
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1376
{
1377
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1378

1379 1380 1381
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1382 1383 1384 1385
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1386 1387 1388 1389 1390 1391
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1392
	 */
L
Linus Torvalds 已提交
1393
	spin_lock(&hugetlb_lock);
1394
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1395
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1396 1397 1398
			break;
	}

1399
	while (count > persistent_huge_pages(h)) {
1400 1401 1402 1403 1404 1405
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1406
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1407 1408 1409 1410
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1411 1412 1413
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1414 1415 1416 1417 1418 1419 1420 1421
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1422 1423 1424 1425 1426 1427 1428 1429
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1430
	 */
1431
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1432
	min_count = max(count, min_count);
1433
	try_to_free_low(h, min_count, nodes_allowed);
1434
	while (min_count < persistent_huge_pages(h)) {
1435
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1436 1437
			break;
	}
1438
	while (count < persistent_huge_pages(h)) {
1439
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1440 1441 1442
			break;
	}
out:
1443
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1444
	spin_unlock(&hugetlb_lock);
1445
	return ret;
L
Linus Torvalds 已提交
1446 1447
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1458 1459 1460
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1461 1462
{
	int i;
1463

1464
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1465 1466 1467
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1468
			return &hstates[i];
1469 1470 1471
		}

	return kobj_to_node_hstate(kobj, nidp);
1472 1473
}

1474
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1475 1476
					struct kobj_attribute *attr, char *buf)
{
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1488
}
1489

1490 1491 1492
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1493 1494
{
	int err;
1495
	int nid;
1496
	unsigned long count;
1497
	struct hstate *h;
1498
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1499

1500
	err = strict_strtoul(buf, 10, &count);
1501
	if (err)
1502
		goto out;
1503

1504
	h = kobj_to_hstate(kobj, &nid);
1505 1506 1507 1508 1509
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1529
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1530

1531
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1532 1533 1534
		NODEMASK_FREE(nodes_allowed);

	return len;
1535 1536 1537
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1550 1551 1552
}
HSTATE_ATTR(nr_hugepages);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1574 1575 1576
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1577
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1578 1579
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1580

1581 1582 1583 1584 1585
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1586
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1587

1588 1589 1590
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1591 1592
	err = strict_strtoul(buf, 10, &input);
	if (err)
1593
		return err;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1617 1618 1619 1620 1621 1622
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1623
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1624 1625 1626 1627 1628 1629 1630
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1642 1643 1644 1645 1646 1647 1648 1649 1650
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1651 1652 1653
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1654 1655 1656 1657 1658 1659 1660
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1661 1662 1663
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1664 1665
{
	int retval;
1666
	int hi = hstate_index(h);
1667

1668 1669
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1670 1671
		return -ENOMEM;

1672
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1673
	if (retval)
1674
		kobject_put(hstate_kobjs[hi]);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1689 1690
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1691 1692 1693 1694 1695 1696
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1697 1698 1699 1700
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1701 1702 1703
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1704 1705 1706 1707 1708 1709 1710 1711 1712
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1713
 * A subset of global hstate attributes for node devices
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1727
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1750
 * Unregister hstate attributes from a single node device.
1751 1752 1753 1754 1755
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1756
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1757 1758

	if (!nhs->hugepages_kobj)
1759
		return;		/* no hstate attributes */
1760

1761 1762 1763 1764 1765
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1766
		}
1767
	}
1768 1769 1770 1771 1772 1773

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1774
 * hugetlb module exit:  unregister hstate attributes from node devices
1775 1776 1777 1778 1779 1780 1781
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1782
	 * disable node device registrations.
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
1794
 * Register hstate attributes for a single node device.
1795 1796 1797 1798 1799
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1800
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1801 1802 1803 1804 1805 1806
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1807
							&node->dev.kobj);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1818
						h->name, node->dev.id);
1819 1820 1821 1822 1823 1824 1825
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1826
 * hugetlb init time:  register hstate attributes for all registered node
1827 1828
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1829 1830 1831 1832 1833
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1834
	for_each_node_state(nid, N_HIGH_MEMORY) {
1835
		struct node *node = &node_devices[nid];
1836
		if (node->dev.id == nid)
1837 1838 1839 1840
			hugetlb_register_node(node);
	}

	/*
1841
	 * Let the node device driver know we're here so it can
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1863 1864 1865 1866
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1867 1868
	hugetlb_unregister_all_nodes();

1869
	for_each_hstate(h) {
1870
		kobject_put(hstate_kobjs[hstate_index(h)]);
1871 1872 1873 1874 1875 1876 1877 1878
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1879 1880 1881 1882 1883 1884
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1885

1886 1887 1888 1889
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1890
	}
1891
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1892 1893
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1894 1895 1896

	hugetlb_init_hstates();

1897 1898
	gather_bootmem_prealloc();

1899 1900 1901 1902
	report_hugepages();

	hugetlb_sysfs_init();

1903 1904
	hugetlb_register_all_nodes();

1905 1906 1907 1908 1909 1910 1911 1912
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1913 1914
	unsigned long i;

1915 1916 1917 1918
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
1919
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1920
	BUG_ON(order == 0);
1921
	h = &hstates[hugetlb_max_hstate++];
1922 1923
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1924 1925 1926 1927
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1928
	INIT_LIST_HEAD(&h->hugepage_activelist);
1929 1930
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1931 1932
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1933

1934 1935 1936
	parsed_hstate = h;
}

1937
static int __init hugetlb_nrpages_setup(char *s)
1938 1939
{
	unsigned long *mhp;
1940
	static unsigned long *last_mhp;
1941 1942

	/*
1943
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1944 1945
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1946
	if (!hugetlb_max_hstate)
1947 1948 1949 1950
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1951 1952 1953 1954 1955 1956
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1957 1958 1959
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1960 1961 1962 1963 1964
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1965
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1966 1967 1968 1969
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1970 1971
	return 1;
}
1972 1973 1974 1975 1976 1977 1978 1979
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1993 1994 1995
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1996
{
1997 1998
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1999
	int ret;
2000

2001
	tmp = h->max_huge_pages;
2002

2003 2004 2005
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2006 2007
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2008 2009 2010
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2011

2012
	if (write) {
2013 2014
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
2025 2026
out:
	return ret;
L
Linus Torvalds 已提交
2027
}
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2046
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2047
			void __user *buffer,
2048 2049
			size_t *length, loff_t *ppos)
{
2050
	proc_dointvec(table, write, buffer, length, ppos);
2051 2052 2053 2054 2055 2056 2057
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2058
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2059
			void __user *buffer,
2060 2061
			size_t *length, loff_t *ppos)
{
2062
	struct hstate *h = &default_hstate;
2063
	unsigned long tmp;
2064
	int ret;
2065

2066
	tmp = h->nr_overcommit_huge_pages;
2067

2068 2069 2070
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2071 2072
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2073 2074 2075
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2076 2077 2078 2079 2080 2081

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2082 2083
out:
	return ret;
2084 2085
}

L
Linus Torvalds 已提交
2086 2087
#endif /* CONFIG_SYSCTL */

2088
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2089
{
2090
	struct hstate *h = &default_hstate;
2091
	seq_printf(m,
2092 2093 2094 2095 2096
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2097 2098 2099 2100 2101
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2102 2103 2104 2105
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2106
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2107 2108
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2109 2110
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2111 2112 2113
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2119 2120
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2121 2122
}

2123
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2146
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2147 2148
			goto out;

2149 2150
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2151 2152 2153 2154 2155 2156
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2157
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2158 2159 2160 2161 2162 2163

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2164 2165 2166 2167 2168 2169 2170 2171
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2172
	 * has a reference to the reservation map it cannot disappear until
2173 2174 2175 2176 2177 2178 2179
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2180 2181 2182 2183 2184 2185 2186 2187 2188
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2189 2190
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2191
	struct hstate *h = hstate_vma(vma);
2192
	struct resv_map *reservations = vma_resv_map(vma);
2193
	struct hugepage_subpool *spool = subpool_vma(vma);
2194 2195 2196 2197 2198
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2199 2200
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2201 2202 2203 2204

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2205
		resv_map_put(vma);
2206

2207
		if (reserve) {
2208
			hugetlb_acct_memory(h, -reserve);
2209
			hugepage_subpool_put_pages(spool, reserve);
2210
		}
2211
	}
2212 2213
}

L
Linus Torvalds 已提交
2214 2215 2216 2217 2218 2219
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2220
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2221 2222
{
	BUG();
N
Nick Piggin 已提交
2223
	return 0;
L
Linus Torvalds 已提交
2224 2225
}

2226
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2227
	.fault = hugetlb_vm_op_fault,
2228
	.open = hugetlb_vm_op_open,
2229
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2230 2231
};

2232 2233
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2234 2235 2236
{
	pte_t entry;

2237
	if (writable) {
D
David Gibson 已提交
2238 2239 2240
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2241
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2242 2243 2244
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2245
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2246 2247 2248 2249

	return entry;
}

2250 2251 2252 2253 2254
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2255
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2256
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2257
		update_mmu_cache(vma, address, ptep);
2258 2259 2260
}


D
David Gibson 已提交
2261 2262 2263 2264 2265
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2266
	unsigned long addr;
2267
	int cow;
2268 2269
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2270 2271

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2272

2273
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2274 2275 2276
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2277
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2278 2279
		if (!dst_pte)
			goto nomem;
2280 2281 2282 2283 2284

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2285
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2286
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2287
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2288
			if (cow)
2289 2290
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2291 2292
			ptepage = pte_page(entry);
			get_page(ptepage);
2293
			page_dup_rmap(ptepage);
2294 2295 2296
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2297
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2298 2299 2300 2301 2302 2303 2304
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2305 2306 2307 2308 2309 2310 2311
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2312
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2313
		return 1;
2314
	else
N
Naoya Horiguchi 已提交
2315 2316 2317
		return 0;
}

2318 2319 2320 2321 2322 2323 2324
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2325
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2326
		return 1;
2327
	else
2328 2329 2330
		return 0;
}

2331 2332 2333
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2334
{
2335
	int force_flush = 0;
D
David Gibson 已提交
2336 2337
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2338
	pte_t *ptep;
D
David Gibson 已提交
2339 2340
	pte_t pte;
	struct page *page;
2341 2342 2343
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

D
David Gibson 已提交
2344
	WARN_ON(!is_vm_hugetlb_page(vma));
2345 2346
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2347

2348
	tlb_start_vma(tlb, vma);
A
Andrea Arcangeli 已提交
2349
	mmu_notifier_invalidate_range_start(mm, start, end);
2350
again:
2351
	spin_lock(&mm->page_table_lock);
2352
	for (address = start; address < end; address += sz) {
2353
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2354
		if (!ptep)
2355 2356
			continue;

2357 2358 2359
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

		page = pte_page(pte);
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2388
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2389
		tlb_remove_tlb_entry(tlb, ptep, address);
2390 2391
		if (pte_dirty(pte))
			set_page_dirty(page);
2392

2393 2394 2395 2396
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2397 2398 2399
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2400
	}
2401
	spin_unlock(&mm->page_table_lock);
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2412
	}
2413 2414
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2415
}
D
David Gibson 已提交
2416

2417
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2418
			  unsigned long end, struct page *ref_page)
2419
{
2420 2421 2422 2423 2424 2425 2426 2427
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

	tlb_gather_mmu(&tlb, mm, 0);
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2428 2429
}

2430 2431 2432 2433 2434 2435
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2436 2437
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2438
{
2439
	struct hstate *h = hstate_vma(vma);
2440 2441 2442 2443 2444 2445 2446 2447 2448
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2449
	address = address & huge_page_mask(h);
2450
	pgoff = vma_hugecache_offset(h, vma, address);
2451
	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2452

2453 2454 2455 2456 2457
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2458
	mutex_lock(&mapping->i_mmap_mutex);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2472 2473
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2474
	}
2475
	mutex_unlock(&mapping->i_mmap_mutex);
2476 2477 2478 2479

	return 1;
}

2480 2481
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2482 2483 2484
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2485
 */
2486
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2487 2488
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2489
{
2490
	struct hstate *h = hstate_vma(vma);
2491
	struct page *old_page, *new_page;
2492
	int avoidcopy;
2493
	int outside_reserve = 0;
2494 2495 2496

	old_page = pte_page(pte);

2497
retry_avoidcopy:
2498 2499
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2500
	avoidcopy = (page_mapcount(old_page) == 1);
2501
	if (avoidcopy) {
2502 2503
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2504
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2505
		return 0;
2506 2507
	}

2508 2509 2510 2511 2512 2513 2514 2515 2516
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2517
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2518 2519 2520 2521
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2522
	page_cache_get(old_page);
2523 2524 2525

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2526
	new_page = alloc_huge_page(vma, address, outside_reserve);
2527

2528
	if (IS_ERR(new_page)) {
2529
		long err = PTR_ERR(new_page);
2530
		page_cache_release(old_page);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2543
				spin_lock(&mm->page_table_lock);
2544 2545 2546 2547 2548 2549 2550 2551
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2552 2553 2554 2555
			}
			WARN_ON_ONCE(1);
		}

2556 2557
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2558 2559 2560 2561
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2562 2563
	}

2564 2565 2566 2567
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2568
	if (unlikely(anon_vma_prepare(vma))) {
2569 2570
		page_cache_release(new_page);
		page_cache_release(old_page);
2571 2572
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2573
		return VM_FAULT_OOM;
2574
	}
2575

A
Andrea Arcangeli 已提交
2576 2577
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2578
	__SetPageUptodate(new_page);
2579

2580 2581 2582 2583 2584
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2585
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2586
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2587
		/* Break COW */
2588 2589 2590
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2591
		huge_ptep_clear_flush(vma, address, ptep);
2592 2593
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2594
		page_remove_rmap(old_page);
2595
		hugepage_add_new_anon_rmap(new_page, vma, address);
2596 2597
		/* Make the old page be freed below */
		new_page = old_page;
2598 2599 2600
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2601 2602 2603
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2604
	return 0;
2605 2606
}

2607
/* Return the pagecache page at a given address within a VMA */
2608 2609
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2610 2611
{
	struct address_space *mapping;
2612
	pgoff_t idx;
2613 2614

	mapping = vma->vm_file->f_mapping;
2615
	idx = vma_hugecache_offset(h, vma, address);
2616 2617 2618 2619

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2620 2621 2622 2623 2624
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2640
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2641
			unsigned long address, pte_t *ptep, unsigned int flags)
2642
{
2643
	struct hstate *h = hstate_vma(vma);
2644
	int ret = VM_FAULT_SIGBUS;
2645
	int anon_rmap = 0;
2646
	pgoff_t idx;
A
Adam Litke 已提交
2647 2648 2649
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2650
	pte_t new_pte;
A
Adam Litke 已提交
2651

2652 2653 2654
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2655
	 * COW. Warn that such a situation has occurred as it may not be obvious
2656 2657 2658 2659 2660 2661 2662 2663
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2664
	mapping = vma->vm_file->f_mapping;
2665
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2666 2667 2668 2669 2670

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2671 2672 2673
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2674
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2675 2676
		if (idx >= size)
			goto out;
2677
		page = alloc_huge_page(vma, address, 0);
2678
		if (IS_ERR(page)) {
2679 2680 2681 2682 2683
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2684 2685
			goto out;
		}
A
Andrea Arcangeli 已提交
2686
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2687
		__SetPageUptodate(page);
2688

2689
		if (vma->vm_flags & VM_MAYSHARE) {
2690
			int err;
K
Ken Chen 已提交
2691
			struct inode *inode = mapping->host;
2692 2693 2694 2695 2696 2697 2698 2699

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2700 2701

			spin_lock(&inode->i_lock);
2702
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2703
			spin_unlock(&inode->i_lock);
2704
		} else {
2705
			lock_page(page);
2706 2707 2708 2709
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2710
			anon_rmap = 1;
2711
		}
2712
	} else {
2713 2714 2715 2716 2717 2718
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2719
			ret = VM_FAULT_HWPOISON |
2720
				VM_FAULT_SET_HINDEX(hstate_index(h));
2721 2722
			goto backout_unlocked;
		}
2723
	}
2724

2725 2726 2727 2728 2729 2730
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2731
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2732 2733 2734 2735
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2736

2737
	spin_lock(&mm->page_table_lock);
2738
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2739 2740 2741
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2742
	ret = 0;
2743
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2744 2745
		goto backout;

2746 2747 2748 2749
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2750 2751 2752 2753
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2754
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2755
		/* Optimization, do the COW without a second fault */
2756
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2757 2758
	}

2759
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2760 2761
	unlock_page(page);
out:
2762
	return ret;
A
Adam Litke 已提交
2763 2764 2765

backout:
	spin_unlock(&mm->page_table_lock);
2766
backout_unlocked:
A
Adam Litke 已提交
2767 2768 2769
	unlock_page(page);
	put_page(page);
	goto out;
2770 2771
}

2772
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2773
			unsigned long address, unsigned int flags)
2774 2775 2776
{
	pte_t *ptep;
	pte_t entry;
2777
	int ret;
2778
	struct page *page = NULL;
2779
	struct page *pagecache_page = NULL;
2780
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2781
	struct hstate *h = hstate_vma(vma);
2782

2783 2784
	address &= huge_page_mask(h);

2785 2786 2787
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2788 2789 2790 2791
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2792
			return VM_FAULT_HWPOISON_LARGE |
2793
				VM_FAULT_SET_HINDEX(hstate_index(h));
2794 2795
	}

2796
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2797 2798 2799
	if (!ptep)
		return VM_FAULT_OOM;

2800 2801 2802 2803 2804 2805
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2806 2807
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2808
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2809
		goto out_mutex;
2810
	}
2811

N
Nick Piggin 已提交
2812
	ret = 0;
2813

2814 2815 2816 2817 2818 2819 2820 2821
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2822
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2823 2824
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2825
			goto out_mutex;
2826
		}
2827

2828
		if (!(vma->vm_flags & VM_MAYSHARE))
2829 2830 2831 2832
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2833 2834 2835 2836 2837 2838 2839 2840
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2841
	get_page(page);
2842
	if (page != pagecache_page)
2843 2844
		lock_page(page);

2845 2846
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2847 2848 2849 2850
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2851
	if (flags & FAULT_FLAG_WRITE) {
2852
		if (!pte_write(entry)) {
2853 2854
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2855 2856 2857 2858 2859
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2860 2861
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2862
		update_mmu_cache(vma, address, ptep);
2863 2864

out_page_table_lock:
2865
	spin_unlock(&mm->page_table_lock);
2866 2867 2868 2869 2870

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2871 2872
	if (page != pagecache_page)
		unlock_page(page);
2873
	put_page(page);
2874

2875
out_mutex:
2876
	mutex_unlock(&hugetlb_instantiation_mutex);
2877 2878

	return ret;
2879 2880
}

A
Andi Kleen 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2890 2891
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2892
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2893
			unsigned int flags)
D
David Gibson 已提交
2894
{
2895 2896
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2897
	int remainder = *length;
2898
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2899

2900
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2901
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2902
		pte_t *pte;
H
Hugh Dickins 已提交
2903
		int absent;
A
Adam Litke 已提交
2904
		struct page *page;
D
David Gibson 已提交
2905

A
Adam Litke 已提交
2906 2907
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2908
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2909 2910
		 * first, for the page indexing below to work.
		 */
2911
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2912 2913 2914 2915
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2916 2917 2918 2919
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2920
		 */
H
Hugh Dickins 已提交
2921 2922
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2923 2924 2925
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2926

H
Hugh Dickins 已提交
2927 2928
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2929
			int ret;
D
David Gibson 已提交
2930

A
Adam Litke 已提交
2931
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2932 2933
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2934
			spin_lock(&mm->page_table_lock);
2935
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2936
				continue;
D
David Gibson 已提交
2937

A
Adam Litke 已提交
2938 2939 2940 2941
			remainder = 0;
			break;
		}

2942
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2943
		page = pte_page(huge_ptep_get(pte));
2944
same_page:
2945
		if (pages) {
H
Hugh Dickins 已提交
2946
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2947
			get_page(pages[i]);
2948
		}
D
David Gibson 已提交
2949 2950 2951 2952 2953

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2954
		++pfn_offset;
D
David Gibson 已提交
2955 2956
		--remainder;
		++i;
2957
		if (vaddr < vma->vm_end && remainder &&
2958
				pfn_offset < pages_per_huge_page(h)) {
2959 2960 2961 2962 2963 2964
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2965
	}
2966
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2967 2968 2969
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2970
	return i ? i : -EFAULT;
D
David Gibson 已提交
2971
}
2972 2973 2974 2975 2976 2977 2978 2979

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2980
	struct hstate *h = hstate_vma(vma);
2981 2982 2983 2984

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2985
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2986
	spin_lock(&mm->page_table_lock);
2987
	for (; address < end; address += huge_page_size(h)) {
2988 2989 2990
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2991 2992
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2993
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2994 2995 2996 2997 2998 2999
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
3000
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3001 3002 3003 3004

	flush_tlb_range(vma, start, end);
}

3005 3006
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3007
					struct vm_area_struct *vma,
3008
					vm_flags_t vm_flags)
3009
{
3010
	long ret, chg;
3011
	struct hstate *h = hstate_inode(inode);
3012
	struct hugepage_subpool *spool = subpool_inode(inode);
3013

3014 3015 3016
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3017
	 * without using reserves
3018
	 */
3019
	if (vm_flags & VM_NORESERVE)
3020 3021
		return 0;

3022 3023 3024 3025 3026 3027
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3028
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3029
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3030 3031 3032 3033 3034
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3035
		chg = to - from;
3036

3037 3038 3039 3040
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3041 3042 3043 3044
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3045

3046
	/* There must be enough pages in the subpool for the mapping */
3047 3048 3049 3050
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3051 3052

	/*
3053
	 * Check enough hugepages are available for the reservation.
3054
	 * Hand the pages back to the subpool if there are not
3055
	 */
3056
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3057
	if (ret < 0) {
3058
		hugepage_subpool_put_pages(spool, chg);
3059
		goto out_err;
K
Ken Chen 已提交
3060
	}
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3073
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3074
		region_add(&inode->i_mapping->private_list, from, to);
3075
	return 0;
3076
out_err:
3077 3078
	if (vma)
		resv_map_put(vma);
3079
	return ret;
3080 3081 3082 3083
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3084
	struct hstate *h = hstate_inode(inode);
3085
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3086
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3087 3088

	spin_lock(&inode->i_lock);
3089
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3090 3091
	spin_unlock(&inode->i_lock);

3092
	hugepage_subpool_put_pages(spool, (chg - freed));
3093
	hugetlb_acct_memory(h, -(chg - freed));
3094
}
3095

3096 3097
#ifdef CONFIG_MEMORY_FAILURE

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3112 3113 3114 3115
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3116
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3117 3118 3119
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3120
	int ret = -EBUSY;
3121 3122

	spin_lock(&hugetlb_lock);
3123 3124
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
3125
		set_page_refcounted(hpage);
3126 3127 3128 3129
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3130
	spin_unlock(&hugetlb_lock);
3131
	return ret;
3132
}
3133
#endif