file.c 63.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32
#include <linux/marker.h>
33 34

#include <asm/io.h>
35
#include <asm/time.h>
36
#include <asm/spu.h>
37
#include <asm/spu_info.h>
38 39 40 41
#include <asm/uaccess.h>

#include "spufs.h"

42 43
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
static struct file_operations __fops = {				\
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

158

159 160 161 162
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
163
	struct spu_context *ctx = i->i_ctx;
164

165
	mutex_lock(&ctx->mapping_lock);
166
	file->private_data = ctx;
167 168
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
169
	mutex_unlock(&ctx->mapping_lock);
170 171 172 173 174 175 176 177 178
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

179
	mutex_lock(&ctx->mapping_lock);
180 181
	if (!--i->i_openers)
		ctx->local_store = NULL;
182
	mutex_unlock(&ctx->mapping_lock);
183 184 185
	return 0;
}

186 187 188 189 190 191 192 193 194
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

195 196 197 198
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
199
	struct spu_context *ctx = file->private_data;
200
	ssize_t ret;
201

202 203 204
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
205
	ret = __spufs_mem_read(ctx, buffer, size, pos);
206
	spu_release(ctx);
207

208 209 210 211 212
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
213
					size_t size, loff_t *ppos)
214 215
{
	struct spu_context *ctx = file->private_data;
216
	char *local_store;
217
	loff_t pos = *ppos;
218
	int ret;
219

220 221 222
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
223
		return -EFBIG;
224 225
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
226

227 228 229 230
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

231
	local_store = ctx->ops->get_ls(ctx);
232
	ret = copy_from_user(local_store + pos, buffer, size);
233
	spu_release(ctx);
234 235 236 237 238

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
239 240
}

N
Nick Piggin 已提交
241 242
static int
spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243
{
244
	struct spu_context *ctx	= vma->vm_file->private_data;
N
Nick Piggin 已提交
245 246 247
	unsigned long address = (unsigned long)vmf->virtual_address;
	unsigned long pfn, offset;

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
264

N
Nick Piggin 已提交
265
	offset = vmf->pgoff << PAGE_SHIFT;
266
	if (offset >= LS_SIZE)
N
Nick Piggin 已提交
267
		return VM_FAULT_SIGBUS;
268

N
Nick Piggin 已提交
269 270
	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
			address, offset);
271

272
	if (spu_acquire(ctx))
N
Nick Piggin 已提交
273
		return VM_FAULT_NOPAGE;
274

275
	if (ctx->state == SPU_STATE_SAVED) {
276
		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
277
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
278
	} else {
279
		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
280
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
281
	}
282
	vm_insert_pfn(vma, address, pfn);
283

284
	spu_release(ctx);
285

N
Nick Piggin 已提交
286
	return VM_FAULT_NOPAGE;
287 288
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static int spufs_mem_mmap_access(struct vm_area_struct *vma,
				unsigned long address,
				void *buf, int len, int write)
{
	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	char *local_store;

	if (write && !(vma->vm_flags & VM_WRITE))
		return -EACCES;
	if (spu_acquire(ctx))
		return -EINTR;
	if ((offset + len) > vma->vm_end)
		len = vma->vm_end - offset;
	local_store = ctx->ops->get_ls(ctx);
	if (write)
		memcpy_toio(local_store + offset, buf, len);
	else
		memcpy_fromio(buf, local_store + offset, len);
	spu_release(ctx);
	return len;
}
311

312
static struct vm_operations_struct spufs_mem_mmap_vmops = {
N
Nick Piggin 已提交
313
	.fault = spufs_mem_mmap_fault,
314
	.access = spufs_mem_mmap_access,
315 316
};

317
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
318
{
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

335 336
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
337

338
	vma->vm_flags |= VM_IO | VM_PFNMAP;
339
	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
340 341

	vma->vm_ops = &spufs_mem_mmap_vmops;
342 343 344
	return 0;
}

345
#ifdef CONFIG_SPU_FS_64K_LS
346 347 348
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

364
static const struct file_operations spufs_mem_fops = {
365 366 367 368 369 370
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
371 372 373
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
374 375
};

N
Nick Piggin 已提交
376 377
static int spufs_ps_fault(struct vm_area_struct *vma,
				    struct vm_fault *vmf,
378
				    unsigned long ps_offs,
379
				    unsigned long ps_size)
380 381
{
	struct spu_context *ctx = vma->vm_file->private_data;
N
Nick Piggin 已提交
382
	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
383
	int ret = 0;
384

N
Nick Piggin 已提交
385
	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
386

387
	if (offset >= ps_size)
N
Nick Piggin 已提交
388
		return VM_FAULT_SIGBUS;
389

390 391 392
	if (fatal_signal_pending(current))
		return VM_FAULT_SIGBUS;

393 394 395 396 397 398 399
	/*
	 * Because we release the mmap_sem, the context may be destroyed while
	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
	 * in the meantime.
	 */
	get_spu_context(ctx);

400 401 402 403 404
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
N
Nick Piggin 已提交
405
	 * to return VM_FAULT_NOPAGE because the mappings may have
406
	 * hanged.
407
	 */
408
	if (spu_acquire(ctx))
409
		goto refault;
410

411 412
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
N
Nick Piggin 已提交
413
		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
414
		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
N
Nick Piggin 已提交
415
		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
416
		down_read(&current->mm->mmap_sem);
417 418
	} else {
		area = ctx->spu->problem_phys + ps_offs;
N
Nick Piggin 已提交
419 420 421
		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
					(area + offset) >> PAGE_SHIFT);
		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
422
	}
423

424 425
	if (!ret)
		spu_release(ctx);
426 427 428

refault:
	put_spu_context(ctx);
N
Nick Piggin 已提交
429
	return VM_FAULT_NOPAGE;
430 431
}

432
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
433 434
static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
					   struct vm_fault *vmf)
435
{
436
	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
437 438 439
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
N
Nick Piggin 已提交
440
	.fault = spufs_cntl_mmap_fault,
441 442 443 444 445 446 447 448 449 450
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

451
	vma->vm_flags |= VM_IO | VM_PFNMAP;
452
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
453 454 455 456

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
457 458 459
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
460

461
static int spufs_cntl_get(void *data, u64 *val)
462
{
463
	struct spu_context *ctx = data;
464
	int ret;
465

466 467 468
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
469
	*val = ctx->ops->status_read(ctx);
470 471
	spu_release(ctx);

472
	return 0;
473 474
}

475
static int spufs_cntl_set(void *data, u64 val)
476
{
477
	struct spu_context *ctx = data;
478
	int ret;
479

480 481 482
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
483 484
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
485 486

	return 0;
487 488
}

489
static int spufs_cntl_open(struct inode *inode, struct file *file)
490
{
491 492 493
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

494
	mutex_lock(&ctx->mapping_lock);
495
	file->private_data = ctx;
496 497
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
498
	mutex_unlock(&ctx->mapping_lock);
499
	return simple_attr_open(inode, file, spufs_cntl_get,
500
					spufs_cntl_set, "0x%08lx");
501 502
}

503 504 505 506 507 508
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

509
	simple_attr_release(inode, file);
510

511
	mutex_lock(&ctx->mapping_lock);
512 513
	if (!--i->i_openers)
		ctx->cntl = NULL;
514
	mutex_unlock(&ctx->mapping_lock);
515 516 517
	return 0;
}

518
static const struct file_operations spufs_cntl_fops = {
519
	.open = spufs_cntl_open,
520
	.release = spufs_cntl_release,
521 522
	.read = simple_attr_read,
	.write = simple_attr_write,
523 524 525
	.mmap = spufs_cntl_mmap,
};

526 527 528 529 530 531 532 533
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

534 535 536 537 538 539 540 541 542
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

543 544 545 546 547
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
548
	struct spu_context *ctx = file->private_data;
549

550 551 552 553 554
	/* pre-check for file position: if we'd return EOF, there's no point
	 * causing a deschedule */
	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
		return 0;

555 556 557
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
558
	ret = __spufs_regs_read(ctx, buffer, size, pos);
559
	spu_release_saved(ctx);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

576 577 578
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
579 580 581 582

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

583
	spu_release_saved(ctx);
584 585 586
	return ret;
}

587
static const struct file_operations spufs_regs_fops = {
588 589 590
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
591 592 593
	.llseek  = generic_file_llseek,
};

594 595 596 597 598 599 600 601 602
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

603 604 605 606 607
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
608
	struct spu_context *ctx = file->private_data;
609

610 611 612
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
613
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
614
	spu_release_saved(ctx);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;

630 631 632
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
633

634
	*pos += size;
635 636 637
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

638
	spu_release_saved(ctx);
639 640 641
	return ret;
}

642
static const struct file_operations spufs_fpcr_fops = {
643 644 645 646 647 648
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

649 650 651 652 653 654 655 656 657
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

658 659 660 661 662 663 664 665
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
666 667 668
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
669
	struct spu_context *ctx = file->private_data;
670 671
	u32 mbox_data, __user *udata;
	ssize_t count;
672 673 674 675

	if (len < 4)
		return -EINVAL;

676 677 678 679 680
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

681 682 683 684
	count = spu_acquire(ctx);
	if (count)
		return count;

685
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
703
	spu_release(ctx);
704

705 706
	if (!count)
		count = -EAGAIN;
707

708
	return count;
709 710
}

711
static const struct file_operations spufs_mbox_fops = {
712 713 714 715 716 717 718
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
719
	struct spu_context *ctx = file->private_data;
720
	ssize_t ret;
721 722 723 724 725
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

726 727 728
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
729 730 731 732

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
733 734 735 736 737 738 739

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

740
static const struct file_operations spufs_mbox_stat_fops = {
741 742 743 744 745
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
746
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
747
{
748 749
	return ctx->ops->ibox_read(ctx, data);
}
750

751 752 753
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
754

755
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
756 757
}

758 759
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
760
{
761 762
	struct spu_context *ctx = spu->ctx;

763 764 765
	if (!ctx)
		return;

766 767
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
768 769
}

770 771 772 773 774 775 776 777 778 779 780 781
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
782 783 784
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
785
	struct spu_context *ctx = file->private_data;
786 787
	u32 ibox_data, __user *udata;
	ssize_t count;
788 789 790 791

	if (len < 4)
		return -EINVAL;

792 793 794 795 796
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

797 798
	count = spu_acquire(ctx);
	if (count)
799
		goto out;
800

801 802
	/* wait only for the first element */
	count = 0;
803
	if (file->f_flags & O_NONBLOCK) {
804
		if (!spu_ibox_read(ctx, &ibox_data)) {
805
			count = -EAGAIN;
806 807
			goto out_unlock;
		}
808
	} else {
809
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
810 811
		if (count)
			goto out;
812 813
	}

814 815 816
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
817
		goto out_unlock;
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
833

834
out_unlock:
835
	spu_release(ctx);
836
out:
837
	return count;
838 839 840 841
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
842
	struct spu_context *ctx = file->private_data;
843 844
	unsigned int mask;

845
	poll_wait(file, &ctx->ibox_wq, wait);
846

847 848 849 850 851
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
852 853
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
854 855 856 857

	return mask;
}

858
static const struct file_operations spufs_ibox_fops = {
859 860 861 862 863 864 865 866 867
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
868
	struct spu_context *ctx = file->private_data;
869
	ssize_t ret;
870 871 872 873 874
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

875 876 877
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
878 879
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
880 881 882 883 884 885 886

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

887
static const struct file_operations spufs_ibox_stat_fops = {
888 889 890 891 892
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
893
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
894
{
895 896
	return ctx->ops->wbox_write(ctx, data);
}
897

898 899 900 901
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
902

903
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
904 905 906 907

	return ret;
}

908 909
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
910
{
911 912
	struct spu_context *ctx = spu->ctx;

913 914 915
	if (!ctx)
		return;

916 917
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
918 919
}

920 921 922 923 924 925 926 927 928 929 930 931
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
932 933 934
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
935
	struct spu_context *ctx = file->private_data;
936 937
	u32 wbox_data, __user *udata;
	ssize_t count;
938 939 940 941

	if (len < 4)
		return -EINVAL;

942 943 944 945 946
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
947 948
		return -EFAULT;

949 950
	count = spu_acquire(ctx);
	if (count)
951
		goto out;
952

953 954 955 956 957
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
958
	if (file->f_flags & O_NONBLOCK) {
959
		if (!spu_wbox_write(ctx, wbox_data)) {
960
			count = -EAGAIN;
961 962
			goto out_unlock;
		}
963
	} else {
964
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
965 966
		if (count)
			goto out;
967 968
	}

969

970
	/* write as much as possible */
971 972 973 974 975 976 977 978 979 980 981
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

982
out_unlock:
983
	spu_release(ctx);
984
out:
985
	return count;
986 987 988 989
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
990
	struct spu_context *ctx = file->private_data;
991 992
	unsigned int mask;

993
	poll_wait(file, &ctx->wbox_wq, wait);
994

995 996 997 998 999
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1000 1001
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
1002 1003 1004 1005

	return mask;
}

1006
static const struct file_operations spufs_wbox_fops = {
1007 1008 1009 1010 1011 1012 1013 1014 1015
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
1016
	struct spu_context *ctx = file->private_data;
1017
	ssize_t ret;
1018 1019 1020 1021 1022
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

1023 1024 1025
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1026 1027
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
1028 1029 1030 1031 1032 1033 1034

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

1035
static const struct file_operations spufs_wbox_stat_fops = {
1036 1037 1038 1039
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

1040 1041 1042 1043
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1044

1045
	mutex_lock(&ctx->mapping_lock);
1046
	file->private_data = ctx;
1047 1048
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1049
	mutex_unlock(&ctx->mapping_lock);
1050 1051 1052
	return nonseekable_open(inode, file);
}

1053 1054 1055 1056 1057 1058
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1059
	mutex_lock(&ctx->mapping_lock);
1060 1061
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1062
	mutex_unlock(&ctx->mapping_lock);
1063 1064 1065
	return 0;
}

1066
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1067 1068
			size_t len, loff_t *pos)
{
1069
	int ret = 0;
1070 1071 1072 1073 1074
	u32 data;

	if (len < 4)
		return -EINVAL;

1075 1076 1077 1078
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1079

1080 1081 1082
	if (!ret)
		goto out;

1083 1084 1085
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1086 1087
out:
	return ret;
1088 1089
}

1090 1091 1092 1093 1094 1095
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1096 1097 1098
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1099
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1100
	spu_release_saved(ctx);
1101 1102 1103 1104

	return ret;
}

1105 1106 1107 1108
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1109
	ssize_t ret;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1120 1121 1122
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1123 1124
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1125 1126 1127 1128

	return 4;
}

N
Nick Piggin 已提交
1129 1130
static int
spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1131
{
1132 1133 1134
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1135 1136 1137
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1138
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1139 1140 1141
#else
#error unsupported page size
#endif
1142 1143 1144
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
N
Nick Piggin 已提交
1145
	.fault = spufs_signal1_mmap_fault,
1146 1147 1148 1149 1150 1151 1152
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1153
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1154
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1155 1156 1157 1158 1159

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1160
static const struct file_operations spufs_signal1_fops = {
1161
	.open = spufs_signal1_open,
1162
	.release = spufs_signal1_release,
1163 1164
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1165
	.mmap = spufs_signal1_mmap,
1166 1167
};

1168 1169 1170 1171 1172 1173 1174
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1175 1176 1177 1178
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1179

1180
	mutex_lock(&ctx->mapping_lock);
1181
	file->private_data = ctx;
1182 1183
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1184
	mutex_unlock(&ctx->mapping_lock);
1185 1186 1187
	return nonseekable_open(inode, file);
}

1188 1189 1190 1191 1192 1193
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1194
	mutex_lock(&ctx->mapping_lock);
1195 1196
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1197
	mutex_unlock(&ctx->mapping_lock);
1198 1199 1200
	return 0;
}

1201
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1202 1203
			size_t len, loff_t *pos)
{
1204
	int ret = 0;
1205 1206 1207 1208 1209
	u32 data;

	if (len < 4)
		return -EINVAL;

1210 1211 1212 1213
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1214

1215 1216 1217
	if (!ret)
		goto out;

1218 1219 1220
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1221
out:
1222 1223 1224 1225 1226 1227 1228 1229 1230
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1231 1232 1233
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1234
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1235
	spu_release_saved(ctx);
1236 1237

	return ret;
1238 1239 1240 1241 1242 1243
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1244
	ssize_t ret;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1255 1256 1257
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1258 1259
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1260 1261 1262 1263

	return 4;
}

1264
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1265 1266
static int
spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1267
{
1268 1269 1270
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1271 1272 1273
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1274
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1275 1276 1277
#else
#error unsupported page size
#endif
1278 1279 1280
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
N
Nick Piggin 已提交
1281
	.fault = spufs_signal2_mmap_fault,
1282 1283 1284 1285 1286 1287 1288
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1289
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1290
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1291 1292 1293 1294

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1295 1296 1297
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1298

1299
static const struct file_operations spufs_signal2_fops = {
1300
	.open = spufs_signal2_open,
1301
	.release = spufs_signal2_release,
1302 1303
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1304
	.mmap = spufs_signal2_mmap,
1305 1306
};

1307 1308 1309 1310 1311 1312 1313
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1324
static int __##__get(void *data, u64 *val)				\
1325 1326
{									\
	struct spu_context *ctx = data;					\
1327
	int ret = 0;							\
1328 1329
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1330 1331 1332
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1333
		*val = __get(ctx);					\
1334 1335
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1336 1337 1338
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1339
		*val = __get(ctx);					\
1340 1341
		spu_release_saved(ctx);					\
	} else								\
1342
		*val = __get(ctx);					\
1343
									\
1344
	return 0;							\
1345
}									\
1346
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1347

1348
static int spufs_signal1_type_set(void *data, u64 val)
1349 1350
{
	struct spu_context *ctx = data;
1351
	int ret;
1352

1353 1354 1355
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1356 1357
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1358 1359

	return 0;
1360 1361
}

1362
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1363 1364 1365
{
	return ctx->ops->signal1_type_get(ctx);
}
1366
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1367
		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1368

1369

1370
static int spufs_signal2_type_set(void *data, u64 val)
1371 1372
{
	struct spu_context *ctx = data;
1373
	int ret;
1374

1375 1376 1377
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1378 1379
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1380 1381

	return 0;
1382 1383
}

1384
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1385 1386 1387
{
	return ctx->ops->signal2_type_get(ctx);
}
1388
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1389
		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1390

1391
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1392 1393
static int
spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1394
{
1395
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1396 1397 1398
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
N
Nick Piggin 已提交
1399
	.fault = spufs_mss_mmap_fault,
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1410
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1411
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1412 1413 1414 1415

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1416 1417 1418
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1419 1420 1421 1422

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1423
	struct spu_context *ctx = i->i_ctx;
1424 1425

	file->private_data = i->i_ctx;
1426

1427
	mutex_lock(&ctx->mapping_lock);
1428 1429
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1430
	mutex_unlock(&ctx->mapping_lock);
1431 1432 1433
	return nonseekable_open(inode, file);
}

1434 1435 1436 1437 1438 1439
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1440
	mutex_lock(&ctx->mapping_lock);
1441 1442
	if (!--i->i_openers)
		ctx->mss = NULL;
1443
	mutex_unlock(&ctx->mapping_lock);
1444 1445 1446
	return 0;
}

1447
static const struct file_operations spufs_mss_fops = {
1448
	.open	 = spufs_mss_open,
1449
	.release = spufs_mss_release,
1450
	.mmap	 = spufs_mss_mmap,
1451 1452
};

N
Nick Piggin 已提交
1453 1454
static int
spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1455
{
1456
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1457 1458 1459
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
N
Nick Piggin 已提交
1460
	.fault = spufs_psmap_mmap_fault,
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1471
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1472
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1473 1474 1475 1476 1477 1478 1479 1480

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1481
	struct spu_context *ctx = i->i_ctx;
1482

1483
	mutex_lock(&ctx->mapping_lock);
1484
	file->private_data = i->i_ctx;
1485 1486
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1487
	mutex_unlock(&ctx->mapping_lock);
1488 1489 1490
	return nonseekable_open(inode, file);
}

1491 1492 1493 1494 1495 1496
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1497
	mutex_lock(&ctx->mapping_lock);
1498 1499
	if (!--i->i_openers)
		ctx->psmap = NULL;
1500
	mutex_unlock(&ctx->mapping_lock);
1501 1502 1503
	return 0;
}

1504
static const struct file_operations spufs_psmap_fops = {
1505
	.open	 = spufs_psmap_open,
1506
	.release = spufs_psmap_release,
1507
	.mmap	 = spufs_psmap_mmap,
1508 1509 1510
};


1511
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1512 1513
static int
spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1514
{
1515
	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1516 1517 1518
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
N
Nick Piggin 已提交
1519
	.fault = spufs_mfc_mmap_fault,
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1530
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1531
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1532 1533 1534 1535

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1536 1537 1538
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1552
	mutex_lock(&ctx->mapping_lock);
1553
	file->private_data = ctx;
1554 1555
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1556
	mutex_unlock(&ctx->mapping_lock);
1557 1558 1559
	return nonseekable_open(inode, file);
}

1560 1561 1562 1563 1564 1565
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1566
	mutex_lock(&ctx->mapping_lock);
1567 1568
	if (!--i->i_openers)
		ctx->mfc = NULL;
1569
	mutex_unlock(&ctx->mapping_lock);
1570 1571 1572
	return 0;
}

1573 1574 1575 1576 1577
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1578 1579 1580
	if (!ctx)
		return;

1581 1582
	wake_up_all(&ctx->mfc_wq);

1583
	pr_debug("%s %s\n", __func__, spu->name);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1627 1628 1629 1630 1631
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1632 1633 1634 1635 1636
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1637
			/* XXX(hch): shouldn't we clear ret here? */
1638 1639 1640 1641
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
1642 1643
		if (ret)
			goto out;
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	}
	spu_release(ctx);

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1761 1762 1763 1764
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1765
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1766 1767 1768
	if (ret)
		goto out;

1769 1770 1771 1772 1773 1774
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
1775 1776
		if (ret)
			goto out;
1777 1778 1779 1780 1781
		if (status)
			ret = status;
	}

	if (ret)
1782
		goto out_unlock;
1783 1784

	ctx->tagwait |= 1 << cmd.tag;
1785
	ret = size;
1786

1787 1788
out_unlock:
	spu_release(ctx);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1799 1800
	poll_wait(file, &ctx->mfc_wq, wait);

1801 1802 1803 1804 1805
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

1817
	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1818 1819 1820 1821 1822
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1823
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1824 1825 1826 1827
{
	struct spu_context *ctx = file->private_data;
	int ret;

1828 1829
	ret = spu_acquire(ctx);
	if (ret)
1830
		goto out;
1831 1832 1833 1834 1835 1836 1837 1838
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1839 1840
	if (ret)
		goto out;
1841 1842 1843 1844
#else
	ret = 0;
#endif
	spu_release(ctx);
1845
out:
1846 1847 1848 1849 1850 1851
	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1852
	return spufs_mfc_flush(file, NULL);
1853 1854 1855 1856 1857 1858 1859 1860 1861
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1862
static const struct file_operations spufs_mfc_fops = {
1863
	.open	 = spufs_mfc_open,
1864
	.release = spufs_mfc_release,
1865 1866 1867 1868 1869 1870
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1871
	.mmap	 = spufs_mfc_mmap,
1872 1873
};

1874
static int spufs_npc_set(void *data, u64 val)
1875 1876
{
	struct spu_context *ctx = data;
1877 1878 1879 1880 1881
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1882 1883
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1884 1885

	return 0;
1886 1887
}

1888
static u64 spufs_npc_get(struct spu_context *ctx)
1889 1890 1891
{
	return ctx->ops->npc_read(ctx);
}
1892 1893
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1894

1895
static int spufs_decr_set(void *data, u64 val)
1896 1897 1898
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1899 1900 1901 1902 1903
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1904
	lscsa->decr.slot[0] = (u32) val;
1905
	spu_release_saved(ctx);
1906 1907

	return 0;
1908 1909
}

1910
static u64 spufs_decr_get(struct spu_context *ctx)
1911 1912
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1913 1914
	return lscsa->decr.slot[0];
}
1915 1916
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1917

1918
static int spufs_decr_status_set(void *data, u64 val)
1919 1920
{
	struct spu_context *ctx = data;
1921 1922 1923 1924 1925
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1926 1927 1928 1929
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1930
	spu_release_saved(ctx);
1931 1932

	return 0;
1933 1934
}

1935
static u64 spufs_decr_status_get(struct spu_context *ctx)
1936
{
1937 1938 1939 1940
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1941
}
1942 1943 1944
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1945

1946
static int spufs_event_mask_set(void *data, u64 val)
1947 1948 1949
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1950 1951 1952 1953 1954
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1955
	lscsa->event_mask.slot[0] = (u32) val;
1956
	spu_release_saved(ctx);
1957 1958

	return 0;
1959 1960
}

1961
static u64 spufs_event_mask_get(struct spu_context *ctx)
1962 1963
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1964 1965 1966
	return lscsa->event_mask.slot[0];
}

1967 1968 1969
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1970

1971
static u64 spufs_event_status_get(struct spu_context *ctx)
1972 1973 1974 1975 1976
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1977 1978 1979
		return state->spu_chnldata_RW[0];
	return 0;
}
1980 1981
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1982

1983
static int spufs_srr0_set(void *data, u64 val)
1984 1985 1986
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1987 1988 1989 1990 1991
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1992
	lscsa->srr0.slot[0] = (u32) val;
1993
	spu_release_saved(ctx);
1994 1995

	return 0;
1996 1997
}

1998
static u64 spufs_srr0_get(struct spu_context *ctx)
1999 2000
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2001
	return lscsa->srr0.slot[0];
2002
}
2003 2004
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2005

2006
static u64 spufs_id_get(struct spu_context *ctx)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
2017 2018
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
2019

2020
static u64 spufs_object_id_get(struct spu_context *ctx)
2021 2022
{
	/* FIXME: Should there really be no locking here? */
2023
	return ctx->object_id;
2024 2025
}

2026
static int spufs_object_id_set(void *data, u64 id)
2027 2028 2029
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
2030 2031

	return 0;
2032 2033
}

2034 2035
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2036

2037
static u64 spufs_lslr_get(struct spu_context *ctx)
2038 2039 2040
{
	return ctx->csa.priv2.spu_lslr_RW;
}
2041 2042
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2043 2044 2045 2046 2047 2048 2049 2050 2051

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2075 2076 2077 2078 2079
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2080 2081 2082 2083 2084
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2085 2086 2087 2088

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2089 2090 2091
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2092
	int ret;
2093 2094 2095 2096 2097
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2098 2099 2100
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2101
	spin_lock(&ctx->csa.register_lock);
2102
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2103
	spin_unlock(&ctx->csa.register_lock);
2104
	spu_release_saved(ctx);
2105

2106
	return ret;
2107 2108
}

2109
static const struct file_operations spufs_mbox_info_fops = {
2110 2111 2112 2113 2114
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2115 2116 2117 2118 2119
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2120 2121 2122 2123 2124
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2125 2126 2127 2128

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2129 2130 2131 2132
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2133
	int ret;
2134 2135 2136 2137

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2138 2139 2140
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2141
	spin_lock(&ctx->csa.register_lock);
2142
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2143
	spin_unlock(&ctx->csa.register_lock);
2144
	spu_release_saved(ctx);
2145

2146
	return ret;
2147 2148
}

2149
static const struct file_operations spufs_ibox_info_fops = {
2150 2151 2152 2153 2154
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2155 2156
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2157 2158 2159 2160 2161
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2178 2179 2180
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2181 2182 2183
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2184
	spin_lock(&ctx->csa.register_lock);
2185
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2186
	spin_unlock(&ctx->csa.register_lock);
2187
	spu_release_saved(ctx);
2188

2189
	return ret;
2190 2191
}

2192
static const struct file_operations spufs_wbox_info_fops = {
2193 2194 2195 2196 2197
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2198 2199
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2224 2225 2226 2227 2228 2229 2230 2231 2232
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2233 2234 2235
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2236 2237 2238
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2239
	spu_release_saved(ctx);
2240 2241 2242 2243

	return ret;
}

2244
static const struct file_operations spufs_dma_info_fops = {
2245 2246 2247 2248
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2249 2250
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2251 2252 2253
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2254
	int ret = sizeof info;
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2286 2287 2288
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2289 2290
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2291
	spin_unlock(&ctx->csa.register_lock);
2292
	spu_release_saved(ctx);
2293 2294 2295 2296

	return ret;
}

2297
static const struct file_operations spufs_proxydma_info_fops = {
2298 2299 2300 2301
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2322 2323 2324 2325 2326
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2327
		enum spu_utilization_state state)
2328
{
2329 2330
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2331

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2345

2346
	return time / NSEC_PER_MSEC;
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2377 2378 2379 2380 2381
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2382 2383 2384

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2385 2386 2387 2388 2389
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
static inline int spufs_switch_log_used(struct spu_context *ctx)
{
	return (ctx->switch_log->head - ctx->switch_log->tail) %
		SWITCH_LOG_BUFSIZE;
}

static inline int spufs_switch_log_avail(struct spu_context *ctx)
{
	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
}

static int spufs_switch_log_open(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2428 2429 2430 2431 2432
	int rc;

	rc = spu_acquire(ctx);
	if (rc)
		return rc;
2433 2434

	if (ctx->switch_log) {
2435 2436
		rc = -EBUSY;
		goto out;
2437
	}
2438

2439
	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2440 2441 2442 2443 2444 2445 2446 2447
		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
		GFP_KERNEL);

	if (!ctx->switch_log) {
		rc = -ENOMEM;
		goto out;
	}

2448
	ctx->switch_log->head = ctx->switch_log->tail = 0;
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	init_waitqueue_head(&ctx->switch_log->wait);
	rc = 0;

out:
	spu_release(ctx);
	return rc;
}

static int spufs_switch_log_release(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int rc;

	rc = spu_acquire(ctx);
	if (rc)
		return rc;

	kfree(ctx->switch_log);
	ctx->switch_log = NULL;
	spu_release(ctx);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

	return 0;
}

static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
{
	struct switch_log_entry *p;

	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;

	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
			(unsigned int) p->tstamp.tv_sec,
			(unsigned int) p->tstamp.tv_nsec,
			p->spu_id,
			(unsigned int) p->type,
			(unsigned int) p->val,
			(unsigned long long) p->timebase);
}

static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
			     size_t len, loff_t *ppos)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int error = 0, cnt = 0;

	if (!buf || len < 0)
		return -EINVAL;

2498 2499 2500 2501
	error = spu_acquire(ctx);
	if (error)
		return error;

2502 2503 2504 2505
	while (cnt < len) {
		char tbuf[128];
		int width;

2506 2507 2508 2509 2510 2511 2512
		if (spufs_switch_log_used(ctx) == 0) {
			if (cnt > 0) {
				/* If there's data ready to go, we can
				 * just return straight away */
				break;

			} else if (file->f_flags & O_NONBLOCK) {
2513 2514
				error = -EAGAIN;
				break;
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

			} else {
				/* spufs_wait will drop the mutex and
				 * re-acquire, but since we're in read(), the
				 * file cannot be _released (and so
				 * ctx->switch_log is stable).
				 */
				error = spufs_wait(ctx->switch_log->wait,
						spufs_switch_log_used(ctx) > 0);

				/* On error, spufs_wait returns without the
				 * state mutex held */
				if (error)
					return error;

				/* We may have had entries read from underneath
				 * us while we dropped the mutex in spufs_wait,
				 * so re-check */
				if (spufs_switch_log_used(ctx) == 0)
					continue;
2535
			}
2536 2537 2538
		}

		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2539
		if (width < len)
2540 2541 2542
			ctx->switch_log->tail =
				(ctx->switch_log->tail + 1) %
				 SWITCH_LOG_BUFSIZE;
2543 2544 2545
		else
			/* If the record is greater than space available return
			 * partial buffer (so far) */
2546 2547 2548 2549 2550 2551 2552 2553
			break;

		error = copy_to_user(buf + cnt, tbuf, width);
		if (error)
			break;
		cnt += width;
	}

2554 2555
	spu_release(ctx);

2556 2557 2558 2559 2560 2561 2562 2563
	return cnt == 0 ? error : cnt;
}

static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	unsigned int mask = 0;
2564
	int rc;
2565 2566 2567

	poll_wait(file, &ctx->switch_log->wait, wait);

2568 2569 2570 2571
	rc = spu_acquire(ctx);
	if (rc)
		return rc;

2572 2573 2574
	if (spufs_switch_log_used(ctx) > 0)
		mask |= POLLIN;

2575 2576
	spu_release(ctx);

2577 2578 2579 2580
	return mask;
}

static const struct file_operations spufs_switch_log_fops = {
2581 2582 2583 2584 2585
	.owner		= THIS_MODULE,
	.open		= spufs_switch_log_open,
	.read		= spufs_switch_log_read,
	.poll		= spufs_switch_log_poll,
	.release	= spufs_switch_log_release,
2586 2587
};

2588 2589 2590 2591 2592
/**
 * Log a context switch event to a switch log reader.
 *
 * Must be called with ctx->state_mutex held.
 */
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
		u32 type, u32 val)
{
	if (!ctx->switch_log)
		return;

	if (spufs_switch_log_avail(ctx) > 1) {
		struct switch_log_entry *p;

		p = ctx->switch_log->log + ctx->switch_log->head;
		ktime_get_ts(&p->tstamp);
		p->timebase = get_tb();
		p->spu_id = spu ? spu->number : -1;
		p->type = type;
		p->val = val;

		ctx->switch_log->head =
			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
	}

	wake_up(&ctx->switch_log->wait);
}
2615

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
static int spufs_show_ctx(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
	u64 mfc_control_RW;

	mutex_lock(&ctx->state_mutex);
	if (ctx->spu) {
		struct spu *spu = ctx->spu;
		struct spu_priv2 __iomem *priv2 = spu->priv2;

		spin_lock_irq(&spu->register_lock);
		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
		spin_unlock_irq(&spu->register_lock);
	} else {
		struct spu_state *csa = &ctx->csa;

		mfc_control_RW = csa->priv2.mfc_control_RW;
	}

	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
		" %c %lx %lx %lx %lx %x %x\n",
		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
		ctx->flags,
		ctx->sched_flags,
		ctx->prio,
		ctx->time_slice,
		ctx->spu ? ctx->spu->number : -1,
		!list_empty(&ctx->rq) ? 'q' : ' ',
		ctx->csa.class_0_pending,
		ctx->csa.class_0_dar,
		ctx->csa.class_1_dsisr,
		mfc_control_RW,
		ctx->ops->runcntl_read(ctx),
		ctx->ops->status_read(ctx));

	mutex_unlock(&ctx->state_mutex);

	return 0;
}

static int spufs_ctx_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_ctx_fops = {
	.open           = spufs_ctx_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

2668
struct spufs_tree_descr spufs_dir_contents[] = {
2669
	{ "capabilities", &spufs_caps_fops, 0444, },
2670 2671
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2672 2673 2674
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2675 2676 2677
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2678 2679
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2680 2681
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2682
	{ "cntl", &spufs_cntl_fops,  0666, },
2683
	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2684 2685 2686 2687 2688
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2689 2690 2691
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2692
	{ "event_status", &spufs_event_status_ops, 0444, },
2693
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2694 2695
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2696 2697 2698 2699 2700 2701 2702
	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
	{ "dma_info", &spufs_dma_info_fops, 0444,
		sizeof(struct spu_dma_info), },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
		sizeof(struct spu_proxydma_info)},
2703
	{ "tid", &spufs_tid_fops, 0444, },
2704
	{ "stat", &spufs_stat_fops, 0444, },
2705
	{ "switch_log", &spufs_switch_log_fops, 0444 },
2706 2707
	{},
};
2708

2709
struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2710
	{ "capabilities", &spufs_caps_fops, 0444, },
2711
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2712 2713 2714
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2715 2716 2717
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2718 2719
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2720 2721 2722 2723 2724 2725
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
2726
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2727 2728
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2729
	{ "tid", &spufs_tid_fops, 0444, },
2730
	{ "stat", &spufs_stat_fops, 0444, },
2731 2732 2733 2734
	{},
};

struct spufs_tree_descr spufs_dir_debug_contents[] = {
2735
	{ ".ctx", &spufs_ctx_fops, 0444, },
2736 2737
	{},
};
2738 2739

struct spufs_coredump_reader spufs_coredump_read[] = {
2740 2741
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2742 2743 2744
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2745 2746
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2747
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2748
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2749 2750 2751
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2752 2753 2754 2755 2756 2757
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2758 2759
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2760
	{ NULL },
2761
};