file.c 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32 33 34 35

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
36
#include <asm/spu_info.h>
37 38 39 40
#include <asm/uaccess.h>

#include "spufs.h"

41 42
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

43

44 45 46 47
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
48
	struct spu_context *ctx = i->i_ctx;
49

50
	mutex_lock(&ctx->mapping_lock);
51
	file->private_data = ctx;
52 53
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
54
	mutex_unlock(&ctx->mapping_lock);
55 56 57 58 59 60 61 62 63
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

64
	mutex_lock(&ctx->mapping_lock);
65 66
	if (!--i->i_openers)
		ctx->local_store = NULL;
67
	mutex_unlock(&ctx->mapping_lock);
68 69 70
	return 0;
}

71 72 73 74 75 76 77 78 79
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

80 81 82 83
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
84
	struct spu_context *ctx = file->private_data;
85
	ssize_t ret;
86

87
	spu_acquire(ctx);
88
	ret = __spufs_mem_read(ctx, buffer, size, pos);
89
	spu_release(ctx);
90 91 92 93 94
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
95
					size_t size, loff_t *ppos)
96 97
{
	struct spu_context *ctx = file->private_data;
98
	char *local_store;
99
	loff_t pos = *ppos;
100
	int ret;
101

102 103 104
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
105
		return -EFBIG;
106 107
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
108 109 110

	spu_acquire(ctx);
	local_store = ctx->ops->get_ls(ctx);
111
	ret = copy_from_user(local_store + pos, buffer, size);
112
	spu_release(ctx);
113 114 115 116 117

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
118 119
}

120 121
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
122
{
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	struct spu_context *ctx	= vma->vm_file->private_data;
	unsigned long pfn, offset, addr0 = address;
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
141

142
	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
143 144 145
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

146 147 148
	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
		 addr0, address, offset);

149 150
	spu_acquire(ctx);

151 152
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
153
							& ~_PAGE_NO_CACHE);
154
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
155 156
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
157 158
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
159
	}
160
	vm_insert_pfn(vma, address, pfn);
161

162
	spu_release(ctx);
163

164
	return NOPFN_REFAULT;
165 166
}

167

168
static struct vm_operations_struct spufs_mem_mmap_vmops = {
169
	.nopfn = spufs_mem_mmap_nopfn,
170 171
};

172
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
173
{
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

190 191
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
192

193
	vma->vm_flags |= VM_IO | VM_PFNMAP;
194 195 196 197
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
198 199 200
	return 0;
}

201
#ifdef CONFIG_SPU_FS_64K_LS
202 203 204
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

220
static const struct file_operations spufs_mem_fops = {
221 222 223 224 225 226
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
227 228 229
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
230 231
};

232
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
233
				    unsigned long address,
234
				    unsigned long ps_offs,
235
				    unsigned long ps_size)
236 237
{
	struct spu_context *ctx = vma->vm_file->private_data;
238
	unsigned long area, offset = address - vma->vm_start;
239 240 241
	int ret;

	offset += vma->vm_pgoff << PAGE_SHIFT;
242
	if (offset >= ps_size)
243
		return NOPFN_SIGBUS;
244

245 246 247
	/* error here usually means a signal.. we might want to test
	 * the error code more precisely though
	 */
248
	ret = spu_acquire_runnable(ctx, 0);
249
	if (ret)
250
		return NOPFN_REFAULT;
251 252

	area = ctx->spu->problem_phys + ps_offs;
253
	vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
254 255
	spu_release(ctx);

256
	return NOPFN_REFAULT;
257 258
}

259
#if SPUFS_MMAP_4K
260 261
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
262
{
263
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
264 265 266
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
267
	.nopfn = spufs_cntl_mmap_nopfn,
268 269 270 271 272 273 274 275 276 277
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

278
	vma->vm_flags |= VM_IO | VM_PFNMAP;
279
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
280
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
281 282 283 284

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
285 286 287
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
288

289
static u64 spufs_cntl_get(void *data)
290
{
291 292
	struct spu_context *ctx = data;
	u64 val;
293

294 295 296 297 298
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
299 300
}

301
static void spufs_cntl_set(void *data, u64 val)
302
{
303 304 305 306 307
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
308 309
}

310
static int spufs_cntl_open(struct inode *inode, struct file *file)
311
{
312 313 314
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

315
	mutex_lock(&ctx->mapping_lock);
316
	file->private_data = ctx;
317 318
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
319
	mutex_unlock(&ctx->mapping_lock);
320 321
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
322 323
}

324 325 326 327 328 329 330 331
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	simple_attr_close(inode, file);

332
	mutex_lock(&ctx->mapping_lock);
333 334
	if (!--i->i_openers)
		ctx->cntl = NULL;
335
	mutex_unlock(&ctx->mapping_lock);
336 337 338
	return 0;
}

339
static const struct file_operations spufs_cntl_fops = {
340
	.open = spufs_cntl_open,
341
	.release = spufs_cntl_release,
342 343
	.read = simple_attr_read,
	.write = simple_attr_write,
344 345 346
	.mmap = spufs_cntl_mmap,
};

347 348 349 350 351 352 353 354
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

355 356 357 358 359 360 361 362 363
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

364 365 366 367 368
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
369
	struct spu_context *ctx = file->private_data;
370 371

	spu_acquire_saved(ctx);
372
	ret = __spufs_regs_read(ctx, buffer, size, pos);
373
	spu_release_saved(ctx);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

395
	spu_release_saved(ctx);
396 397 398
	return ret;
}

399
static const struct file_operations spufs_regs_fops = {
400 401 402
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
403 404 405
	.llseek  = generic_file_llseek,
};

406 407 408 409 410 411 412 413 414
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

415 416 417 418 419
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
420
	struct spu_context *ctx = file->private_data;
421 422

	spu_acquire_saved(ctx);
423
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
424
	spu_release_saved(ctx);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

446
	spu_release_saved(ctx);
447 448 449
	return ret;
}

450
static const struct file_operations spufs_fpcr_fops = {
451 452 453 454 455 456
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

457 458 459 460 461 462 463 464 465
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

466 467 468 469 470 471 472 473
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
474 475 476
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
477
	struct spu_context *ctx = file->private_data;
478 479
	u32 mbox_data, __user *udata;
	ssize_t count;
480 481 482 483

	if (len < 4)
		return -EINVAL;

484 485 486 487 488
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

489
	spu_acquire(ctx);
490
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
508
	spu_release(ctx);
509

510 511
	if (!count)
		count = -EAGAIN;
512

513
	return count;
514 515
}

516
static const struct file_operations spufs_mbox_fops = {
517 518 519 520 521 522 523
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
524
	struct spu_context *ctx = file->private_data;
525 526 527 528 529
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

530 531 532 533 534
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
535 536 537 538 539 540 541

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

542
static const struct file_operations spufs_mbox_stat_fops = {
543 544 545 546 547
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
548
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
549
{
550 551
	return ctx->ops->ibox_read(ctx, data);
}
552

553 554 555
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
556

557
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
558 559
}

560 561
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
562
{
563 564 565 566
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
567 568
}

569 570 571 572 573 574 575 576 577 578 579 580
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
581 582 583
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
584
	struct spu_context *ctx = file->private_data;
585 586
	u32 ibox_data, __user *udata;
	ssize_t count;
587 588 589 590

	if (len < 4)
		return -EINVAL;

591 592 593 594 595
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

596
	spu_acquire(ctx);
597

598 599
	/* wait only for the first element */
	count = 0;
600
	if (file->f_flags & O_NONBLOCK) {
601
		if (!spu_ibox_read(ctx, &ibox_data))
602
			count = -EAGAIN;
603
	} else {
604
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
605
	}
606 607
	if (count)
		goto out;
608

609 610 611 612
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
628

629 630
out:
	spu_release(ctx);
631

632
	return count;
633 634 635 636
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
637
	struct spu_context *ctx = file->private_data;
638 639
	unsigned int mask;

640
	poll_wait(file, &ctx->ibox_wq, wait);
641

642 643 644
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
645 646 647 648

	return mask;
}

649
static const struct file_operations spufs_ibox_fops = {
650 651 652 653 654 655 656 657 658
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
659
	struct spu_context *ctx = file->private_data;
660 661 662 663 664
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

665 666 667
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
668 669 670 671 672 673 674

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

675
static const struct file_operations spufs_ibox_stat_fops = {
676 677 678 679 680
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
681
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
682
{
683 684
	return ctx->ops->wbox_write(ctx, data);
}
685

686 687 688 689
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
690

691
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
692 693 694 695

	return ret;
}

696 697
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
698
{
699 700 701 702
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
703 704
}

705 706 707 708 709 710 711 712 713 714 715 716
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
717 718 719
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
720
	struct spu_context *ctx = file->private_data;
721 722
	u32 wbox_data, __user *udata;
	ssize_t count;
723 724 725 726

	if (len < 4)
		return -EINVAL;

727 728 729 730 731
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
732 733
		return -EFAULT;

734 735
	spu_acquire(ctx);

736 737 738 739 740
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
741
	if (file->f_flags & O_NONBLOCK) {
742
		if (!spu_wbox_write(ctx, wbox_data))
743
			count = -EAGAIN;
744
	} else {
745
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
746 747
	}

748 749
	if (count)
		goto out;
750

751
	/* write as much as possible */
752 753 754 755 756 757 758 759 760 761 762 763 764 765
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
766 767 768 769
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
770
	struct spu_context *ctx = file->private_data;
771 772
	unsigned int mask;

773
	poll_wait(file, &ctx->wbox_wq, wait);
774

775 776 777
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
778 779 780 781

	return mask;
}

782
static const struct file_operations spufs_wbox_fops = {
783 784 785 786 787 788 789 790 791
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
792
	struct spu_context *ctx = file->private_data;
793 794 795 796 797
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

798 799 800
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
801 802 803 804 805 806 807

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

808
static const struct file_operations spufs_wbox_stat_fops = {
809 810 811 812
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

813 814 815 816
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
817

818
	mutex_lock(&ctx->mapping_lock);
819
	file->private_data = ctx;
820 821
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
822
	mutex_unlock(&ctx->mapping_lock);
823 824 825
	return nonseekable_open(inode, file);
}

826 827 828 829 830 831
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

832
	mutex_lock(&ctx->mapping_lock);
833 834
	if (!--i->i_openers)
		ctx->signal1 = NULL;
835
	mutex_unlock(&ctx->mapping_lock);
836 837 838
	return 0;
}

839
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
840 841
			size_t len, loff_t *pos)
{
842
	int ret = 0;
843 844 845 846 847
	u32 data;

	if (len < 4)
		return -EINVAL;

848 849 850 851
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
852

853 854 855
	if (!ret)
		goto out;

856 857 858
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

859 860
out:
	return ret;
861 862
}

863 864 865 866 867 868 869 870
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

	spu_acquire_saved(ctx);
	ret = __spufs_signal1_read(ctx, buf, len, pos);
871
	spu_release_saved(ctx);
872 873 874 875

	return ret;
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

890 891 892
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
893 894 895 896

	return 4;
}

897 898
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
899
{
900
#if PAGE_SIZE == 0x1000
901
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
902 903 904 905
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
906
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
907 908 909
#else
#error unsupported page size
#endif
910 911 912
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
913
	.nopfn = spufs_signal1_mmap_nopfn,
914 915 916 917 918 919 920
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

921
	vma->vm_flags |= VM_IO | VM_PFNMAP;
922
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
923
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
924 925 926 927 928

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

929
static const struct file_operations spufs_signal1_fops = {
930
	.open = spufs_signal1_open,
931
	.release = spufs_signal1_release,
932 933
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
934
	.mmap = spufs_signal1_mmap,
935 936
};

937 938 939 940 941 942 943
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

944 945 946 947
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
948

949
	mutex_lock(&ctx->mapping_lock);
950
	file->private_data = ctx;
951 952
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
953
	mutex_unlock(&ctx->mapping_lock);
954 955 956
	return nonseekable_open(inode, file);
}

957 958 959 960 961 962
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

963
	mutex_lock(&ctx->mapping_lock);
964 965
	if (!--i->i_openers)
		ctx->signal2 = NULL;
966
	mutex_unlock(&ctx->mapping_lock);
967 968 969
	return 0;
}

970
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
971 972
			size_t len, loff_t *pos)
{
973
	int ret = 0;
974 975 976 977 978
	u32 data;

	if (len < 4)
		return -EINVAL;

979 980 981 982
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
983

984 985 986
	if (!ret)
		goto out;

987 988 989
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

990
out:
991 992 993 994 995 996 997 998 999 1000 1001
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1002
	spu_release_saved(ctx);
1003 1004

	return ret;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1021 1022 1023
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1024 1025 1026 1027

	return 4;
}

1028
#if SPUFS_MMAP_4K
1029 1030
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1031
{
1032
#if PAGE_SIZE == 0x1000
1033
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1034 1035 1036 1037
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1038
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1039 1040 1041
#else
#error unsupported page size
#endif
1042 1043 1044
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1045
	.nopfn = spufs_signal2_mmap_nopfn,
1046 1047 1048 1049 1050 1051 1052
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1053
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1054
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1055
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1056 1057 1058 1059

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1060 1061 1062
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1063

1064
static const struct file_operations spufs_signal2_fops = {
1065
	.open = spufs_signal2_open,
1066
	.release = spufs_signal2_release,
1067 1068
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1069
	.mmap = spufs_signal2_mmap,
1070 1071
};

1072 1073 1074 1075 1076 1077 1078
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
static u64 __##__get(void *data)					\
{									\
	struct spu_context *ctx = data;					\
	u64 ret;							\
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
		spu_acquire(ctx);					\
		ret = __get(ctx);					\
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
		spu_acquire_saved(ctx);					\
		ret = __get(ctx);					\
		spu_release_saved(ctx);					\
	} else								\
		ret = __get(ctx);					\
									\
	return ret;							\
}									\
DEFINE_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);

1109 1110 1111 1112
static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1113 1114 1115
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1116 1117
}

1118
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1119 1120 1121
{
	return ctx->ops->signal1_type_get(ctx);
}
1122 1123
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
		       spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1124

1125 1126 1127 1128 1129

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1130 1131 1132
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1133 1134
}

1135
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1136 1137 1138
{
	return ctx->ops->signal2_type_get(ctx);
}
1139 1140
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
		       spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1141

1142
#if SPUFS_MMAP_4K
1143 1144
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1145
{
1146
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1147 1148 1149
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1150
	.nopfn = spufs_mss_mmap_nopfn,
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1161
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1162
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1163
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1164 1165 1166 1167

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1168 1169 1170
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1171 1172 1173 1174

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1175
	struct spu_context *ctx = i->i_ctx;
1176 1177

	file->private_data = i->i_ctx;
1178

1179
	mutex_lock(&ctx->mapping_lock);
1180 1181
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1182
	mutex_unlock(&ctx->mapping_lock);
1183 1184 1185
	return nonseekable_open(inode, file);
}

1186 1187 1188 1189 1190 1191
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1192
	mutex_lock(&ctx->mapping_lock);
1193 1194
	if (!--i->i_openers)
		ctx->mss = NULL;
1195
	mutex_unlock(&ctx->mapping_lock);
1196 1197 1198
	return 0;
}

1199
static const struct file_operations spufs_mss_fops = {
1200
	.open	 = spufs_mss_open,
1201
	.release = spufs_mss_release,
1202
	.mmap	 = spufs_mss_mmap,
1203 1204
};

1205 1206
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1207
{
1208
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1209 1210 1211
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1212
	.nopfn = spufs_psmap_mmap_nopfn,
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1223
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1234
	struct spu_context *ctx = i->i_ctx;
1235

1236
	mutex_lock(&ctx->mapping_lock);
1237
	file->private_data = i->i_ctx;
1238 1239
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1240
	mutex_unlock(&ctx->mapping_lock);
1241 1242 1243
	return nonseekable_open(inode, file);
}

1244 1245 1246 1247 1248 1249
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1250
	mutex_lock(&ctx->mapping_lock);
1251 1252
	if (!--i->i_openers)
		ctx->psmap = NULL;
1253
	mutex_unlock(&ctx->mapping_lock);
1254 1255 1256
	return 0;
}

1257
static const struct file_operations spufs_psmap_fops = {
1258
	.open	 = spufs_psmap_open,
1259
	.release = spufs_psmap_release,
1260
	.mmap	 = spufs_psmap_mmap,
1261 1262 1263
};


1264
#if SPUFS_MMAP_4K
1265 1266
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1267
{
1268
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1269 1270 1271
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1272
	.nopfn = spufs_mfc_mmap_nopfn,
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1283
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1284
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1285
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1286 1287 1288 1289

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1290 1291 1292
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1306
	mutex_lock(&ctx->mapping_lock);
1307
	file->private_data = ctx;
1308 1309
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1310
	mutex_unlock(&ctx->mapping_lock);
1311 1312 1313
	return nonseekable_open(inode, file);
}

1314 1315 1316 1317 1318 1319
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1320
	mutex_lock(&ctx->mapping_lock);
1321 1322
	if (!--i->i_openers)
		ctx->mfc = NULL;
1323
	mutex_unlock(&ctx->mapping_lock);
1324 1325 1326
	return 0;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1508 1509 1510 1511
	ret = spu_acquire_runnable(ctx, 0);
	if (ret)
		goto out;

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}

	if (ret)
1523
		goto out_unlock;
1524 1525

	ctx->tagwait |= 1 << cmd.tag;
1526
	ret = size;
1527

1528 1529
out_unlock:
	spu_release(ctx);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1540 1541
	poll_wait(file, &ctx->mfc_wq, wait);

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1560
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1586
	return spufs_mfc_flush(file, NULL);
1587 1588 1589 1590 1591 1592 1593 1594 1595
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1596
static const struct file_operations spufs_mfc_fops = {
1597
	.open	 = spufs_mfc_open,
1598
	.release = spufs_mfc_release,
1599 1600 1601 1602 1603 1604
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1605
	.mmap	 = spufs_mfc_mmap,
1606 1607
};

1608 1609 1610
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1611 1612 1613
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1614 1615
}

1616
static u64 spufs_npc_get(struct spu_context *ctx)
1617 1618 1619
{
	return ctx->ops->npc_read(ctx);
}
1620 1621
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1622

1623 1624 1625 1626 1627 1628
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
1629
	spu_release_saved(ctx);
1630 1631
}

1632
static u64 spufs_decr_get(struct spu_context *ctx)
1633 1634
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1635 1636
	return lscsa->decr.slot[0];
}
1637 1638
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1639 1640 1641 1642 1643

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	spu_acquire_saved(ctx);
1644 1645 1646 1647
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1648
	spu_release_saved(ctx);
1649 1650
}

1651
static u64 spufs_decr_status_get(struct spu_context *ctx)
1652
{
1653 1654 1655 1656
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1657
}
1658 1659 1660
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1661 1662 1663 1664 1665 1666 1667

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
1668
	spu_release_saved(ctx);
1669 1670
}

1671
static u64 spufs_event_mask_get(struct spu_context *ctx)
1672 1673
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1674 1675 1676
	return lscsa->event_mask.slot[0];
}

1677 1678 1679
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1680

1681
static u64 spufs_event_status_get(struct spu_context *ctx)
1682 1683 1684 1685 1686
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1687 1688 1689
		return state->spu_chnldata_RW[0];
	return 0;
}
1690 1691
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1692

1693 1694 1695 1696 1697 1698
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
1699
	spu_release_saved(ctx);
1700 1701
}

1702
static u64 spufs_srr0_get(struct spu_context *ctx)
1703 1704
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1705
	return lscsa->srr0.slot[0];
1706
}
1707 1708
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1709

1710
static u64 spufs_id_get(struct spu_context *ctx)
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
1721 1722
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
1723

1724
static u64 spufs_object_id_get(struct spu_context *ctx)
1725 1726
{
	/* FIXME: Should there really be no locking here? */
1727
	return ctx->object_id;
1728 1729
}

1730 1731 1732 1733 1734 1735
static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

1736 1737
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1738

1739
static u64 spufs_lslr_get(struct spu_context *ctx)
1740 1741 1742
{
	return ctx->csa.priv2.spu_lslr_RW;
}
1743 1744
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1745 1746 1747 1748 1749 1750 1751 1752 1753

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 mbox_stat;
	u32 data;

	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1791 1792 1793
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
1794
	int ret;
1795 1796 1797 1798 1799 1800 1801
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1802
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1803
	spin_unlock(&ctx->csa.register_lock);
1804
	spu_release_saved(ctx);
1805

1806
	return ret;
1807 1808
}

1809
static const struct file_operations spufs_mbox_info_fops = {
1810 1811 1812 1813 1814
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 ibox_stat;
	u32 data;

	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1829 1830 1831 1832
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
1833
	int ret;
1834 1835 1836 1837 1838 1839

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1840
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1841
	spin_unlock(&ctx->csa.register_lock);
1842
	spu_release_saved(ctx);
1843

1844
	return ret;
1845 1846
}

1847
static const struct file_operations spufs_ibox_info_fops = {
1848 1849 1850 1851 1852
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

1853 1854
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1855 1856 1857 1858 1859
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1876 1877 1878 1879 1880
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1881
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1882
	spin_unlock(&ctx->csa.register_lock);
1883
	spu_release_saved(ctx);
1884

1885
	return ret;
1886 1887
}

1888
static const struct file_operations spufs_wbox_info_fops = {
1889 1890 1891 1892 1893
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1894 1895
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
1933
	spu_release_saved(ctx);
1934 1935 1936 1937

	return ret;
}

1938
static const struct file_operations spufs_dma_info_fops = {
1939 1940 1941 1942
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

1943 1944
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1945 1946 1947
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
1948
	int ret = sizeof info;
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
1983
	spin_unlock(&ctx->csa.register_lock);
1984
	spu_release_saved(ctx);
1985 1986 1987 1988

	return ret;
}

1989
static const struct file_operations spufs_proxydma_info_fops = {
1990 1991 1992 1993
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2014 2015 2016 2017 2018
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2019
		enum spu_utilization_state state)
2020
{
2021 2022
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2037

2038
	return time / NSEC_PER_MSEC;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	spu_acquire(ctx);
	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2073 2074 2075 2076 2077
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


2103
struct tree_descr spufs_dir_contents[] = {
2104
	{ "capabilities", &spufs_caps_fops, 0444, },
2105
	{ "mem",  &spufs_mem_fops,  0666, },
2106
	{ "regs", &spufs_regs_fops,  0666, },
2107 2108 2109 2110 2111 2112
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2113 2114
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2115 2116
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2117
	{ "cntl", &spufs_cntl_fops,  0666, },
2118
	{ "fpcr", &spufs_fpcr_fops, 0666, },
2119 2120 2121 2122 2123
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2124 2125 2126
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2127
	{ "event_status", &spufs_event_status_ops, 0444, },
2128
	{ "psmap", &spufs_psmap_fops, 0666, },
2129 2130
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2131 2132 2133
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2134 2135
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2136
	{ "tid", &spufs_tid_fops, 0444, },
2137
	{ "stat", &spufs_stat_fops, 0444, },
2138 2139
	{},
};
2140 2141

struct tree_descr spufs_dir_nosched_contents[] = {
2142
	{ "capabilities", &spufs_caps_fops, 0444, },
2143 2144 2145 2146 2147 2148 2149
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2150 2151
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2152 2153 2154 2155 2156 2157 2158 2159 2160
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2161
	{ "tid", &spufs_tid_fops, 0444, },
2162
	{ "stat", &spufs_stat_fops, 0444, },
2163 2164
	{},
};
2165 2166

struct spufs_coredump_reader spufs_coredump_read[] = {
2167 2168
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2169 2170 2171
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2172 2173
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2174
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2175
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2176 2177 2178
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2179 2180 2181 2182 2183 2184
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2185 2186
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2187
	{ NULL },
2188
};