file.c 52.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32 33 34 35

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
36
#include <asm/spu_info.h>
37 38 39 40
#include <asm/uaccess.h>

#include "spufs.h"

41 42
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

43

44 45 46 47
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
48
	struct spu_context *ctx = i->i_ctx;
49

50
	mutex_lock(&ctx->mapping_lock);
51
	file->private_data = ctx;
52 53
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
54
	mutex_unlock(&ctx->mapping_lock);
55 56 57 58 59 60 61 62 63
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

64
	mutex_lock(&ctx->mapping_lock);
65 66
	if (!--i->i_openers)
		ctx->local_store = NULL;
67
	mutex_unlock(&ctx->mapping_lock);
68 69 70
	return 0;
}

71 72 73 74 75 76 77 78 79
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

80 81 82 83
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
84
	struct spu_context *ctx = file->private_data;
85
	ssize_t ret;
86

87
	spu_acquire(ctx);
88
	ret = __spufs_mem_read(ctx, buffer, size, pos);
89
	spu_release(ctx);
90 91 92 93 94
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
95
					size_t size, loff_t *ppos)
96 97
{
	struct spu_context *ctx = file->private_data;
98
	char *local_store;
99
	loff_t pos = *ppos;
100
	int ret;
101

102 103 104
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
105
		return -EFBIG;
106 107
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
108 109 110

	spu_acquire(ctx);
	local_store = ctx->ops->get_ls(ctx);
111
	ret = copy_from_user(local_store + pos, buffer, size);
112
	spu_release(ctx);
113 114 115 116 117

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
118 119
}

120 121
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
122
{
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	struct spu_context *ctx	= vma->vm_file->private_data;
	unsigned long pfn, offset, addr0 = address;
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
141

142
	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
143 144 145
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

146 147 148
	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
		 addr0, address, offset);

149 150
	spu_acquire(ctx);

151 152
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
153
							& ~_PAGE_NO_CACHE);
154
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
155 156
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
157 158
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
159
	}
160
	vm_insert_pfn(vma, address, pfn);
161

162
	spu_release(ctx);
163

164
	return NOPFN_REFAULT;
165 166
}

167

168
static struct vm_operations_struct spufs_mem_mmap_vmops = {
169
	.nopfn = spufs_mem_mmap_nopfn,
170 171
};

172
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
173
{
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

190 191
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
192

193
	vma->vm_flags |= VM_IO | VM_PFNMAP;
194 195 196 197
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
198 199 200
	return 0;
}

201
#ifdef CONFIG_SPU_FS_64K_LS
202 203 204
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

220
static const struct file_operations spufs_mem_fops = {
221 222 223 224 225 226
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
227 228 229
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
230 231
};

232
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
233
				    unsigned long address,
234
				    unsigned long ps_offs,
235
				    unsigned long ps_size)
236 237
{
	struct spu_context *ctx = vma->vm_file->private_data;
238
	unsigned long area, offset = address - vma->vm_start;
239 240

	offset += vma->vm_pgoff << PAGE_SHIFT;
241
	if (offset >= ps_size)
242
		return NOPFN_SIGBUS;
243

244 245 246 247 248 249 250
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
	 * to return NOPFN_REFAULT because the mappings may have
	 * hanged.
251
	 */
252 253 254 255 256 257 258
	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
		spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
		down_read(&current->mm->mmap_sem);
		goto out;
	}
259 260

	area = ctx->spu->problem_phys + ps_offs;
261
	vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
262 263

out:
264 265
	spu_release(ctx);

266
	return NOPFN_REFAULT;
267 268
}

269
#if SPUFS_MMAP_4K
270 271
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
272
{
273
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
274 275 276
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
277
	.nopfn = spufs_cntl_mmap_nopfn,
278 279 280 281 282 283 284 285 286 287
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

288
	vma->vm_flags |= VM_IO | VM_PFNMAP;
289
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
290
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
291 292 293 294

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
295 296 297
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
298

299
static u64 spufs_cntl_get(void *data)
300
{
301 302
	struct spu_context *ctx = data;
	u64 val;
303

304 305 306 307 308
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
309 310
}

311
static void spufs_cntl_set(void *data, u64 val)
312
{
313 314 315 316 317
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
318 319
}

320
static int spufs_cntl_open(struct inode *inode, struct file *file)
321
{
322 323 324
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

325
	mutex_lock(&ctx->mapping_lock);
326
	file->private_data = ctx;
327 328
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
329
	mutex_unlock(&ctx->mapping_lock);
330 331
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
332 333
}

334 335 336 337 338 339 340 341
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	simple_attr_close(inode, file);

342
	mutex_lock(&ctx->mapping_lock);
343 344
	if (!--i->i_openers)
		ctx->cntl = NULL;
345
	mutex_unlock(&ctx->mapping_lock);
346 347 348
	return 0;
}

349
static const struct file_operations spufs_cntl_fops = {
350
	.open = spufs_cntl_open,
351
	.release = spufs_cntl_release,
352 353
	.read = simple_attr_read,
	.write = simple_attr_write,
354 355 356
	.mmap = spufs_cntl_mmap,
};

357 358 359 360 361 362 363 364
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

365 366 367 368 369 370 371 372 373
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

374 375 376 377 378
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
379
	struct spu_context *ctx = file->private_data;
380 381

	spu_acquire_saved(ctx);
382
	ret = __spufs_regs_read(ctx, buffer, size, pos);
383
	spu_release_saved(ctx);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

405
	spu_release_saved(ctx);
406 407 408
	return ret;
}

409
static const struct file_operations spufs_regs_fops = {
410 411 412
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
413 414 415
	.llseek  = generic_file_llseek,
};

416 417 418 419 420 421 422 423 424
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

425 426 427 428 429
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
430
	struct spu_context *ctx = file->private_data;
431 432

	spu_acquire_saved(ctx);
433
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
434
	spu_release_saved(ctx);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

456
	spu_release_saved(ctx);
457 458 459
	return ret;
}

460
static const struct file_operations spufs_fpcr_fops = {
461 462 463 464 465 466
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

467 468 469 470 471 472 473 474 475
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

476 477 478 479 480 481 482 483
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
484 485 486
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
487
	struct spu_context *ctx = file->private_data;
488 489
	u32 mbox_data, __user *udata;
	ssize_t count;
490 491 492 493

	if (len < 4)
		return -EINVAL;

494 495 496 497 498
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

499
	spu_acquire(ctx);
500
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
518
	spu_release(ctx);
519

520 521
	if (!count)
		count = -EAGAIN;
522

523
	return count;
524 525
}

526
static const struct file_operations spufs_mbox_fops = {
527 528 529 530 531 532 533
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
534
	struct spu_context *ctx = file->private_data;
535 536 537 538 539
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

540 541 542 543 544
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
545 546 547 548 549 550 551

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

552
static const struct file_operations spufs_mbox_stat_fops = {
553 554 555 556 557
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
558
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
559
{
560 561
	return ctx->ops->ibox_read(ctx, data);
}
562

563 564 565
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
566

567
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
568 569
}

570 571
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
572
{
573 574
	struct spu_context *ctx = spu->ctx;

575 576 577
	if (!ctx)
		return;

578 579
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
580 581
}

582 583 584 585 586 587 588 589 590 591 592 593
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
594 595 596
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
597
	struct spu_context *ctx = file->private_data;
598 599
	u32 ibox_data, __user *udata;
	ssize_t count;
600 601 602 603

	if (len < 4)
		return -EINVAL;

604 605 606 607 608
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

609
	spu_acquire(ctx);
610

611 612
	/* wait only for the first element */
	count = 0;
613
	if (file->f_flags & O_NONBLOCK) {
614
		if (!spu_ibox_read(ctx, &ibox_data))
615
			count = -EAGAIN;
616
	} else {
617
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
618
	}
619 620
	if (count)
		goto out;
621

622 623 624 625
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
626

627 628 629 630 631 632 633 634 635 636 637 638 639 640
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
641

642 643
out:
	spu_release(ctx);
644

645
	return count;
646 647 648 649
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
650
	struct spu_context *ctx = file->private_data;
651 652
	unsigned int mask;

653
	poll_wait(file, &ctx->ibox_wq, wait);
654

655 656 657
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
658 659 660 661

	return mask;
}

662
static const struct file_operations spufs_ibox_fops = {
663 664 665 666 667 668 669 670 671
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
672
	struct spu_context *ctx = file->private_data;
673 674 675 676 677
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

678 679 680
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
681 682 683 684 685 686 687

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

688
static const struct file_operations spufs_ibox_stat_fops = {
689 690 691 692 693
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
694
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
695
{
696 697
	return ctx->ops->wbox_write(ctx, data);
}
698

699 700 701 702
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
703

704
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
705 706 707 708

	return ret;
}

709 710
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
711
{
712 713
	struct spu_context *ctx = spu->ctx;

714 715 716
	if (!ctx)
		return;

717 718
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
719 720
}

721 722 723 724 725 726 727 728 729 730 731 732
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
733 734 735
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
736
	struct spu_context *ctx = file->private_data;
737 738
	u32 wbox_data, __user *udata;
	ssize_t count;
739 740 741 742

	if (len < 4)
		return -EINVAL;

743 744 745 746 747
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
748 749
		return -EFAULT;

750 751
	spu_acquire(ctx);

752 753 754 755 756
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
757
	if (file->f_flags & O_NONBLOCK) {
758
		if (!spu_wbox_write(ctx, wbox_data))
759
			count = -EAGAIN;
760
	} else {
761
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
762 763
	}

764 765
	if (count)
		goto out;
766

767
	/* write as much as possible */
768 769 770 771 772 773 774 775 776 777 778 779 780 781
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
782 783 784 785
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
786
	struct spu_context *ctx = file->private_data;
787 788
	unsigned int mask;

789
	poll_wait(file, &ctx->wbox_wq, wait);
790

791 792 793
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
794 795 796 797

	return mask;
}

798
static const struct file_operations spufs_wbox_fops = {
799 800 801 802 803 804 805 806 807
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
808
	struct spu_context *ctx = file->private_data;
809 810 811 812 813
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

814 815 816
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
817 818 819 820 821 822 823

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

824
static const struct file_operations spufs_wbox_stat_fops = {
825 826 827 828
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

829 830 831 832
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
833

834
	mutex_lock(&ctx->mapping_lock);
835
	file->private_data = ctx;
836 837
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
838
	mutex_unlock(&ctx->mapping_lock);
839 840 841
	return nonseekable_open(inode, file);
}

842 843 844 845 846 847
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

848
	mutex_lock(&ctx->mapping_lock);
849 850
	if (!--i->i_openers)
		ctx->signal1 = NULL;
851
	mutex_unlock(&ctx->mapping_lock);
852 853 854
	return 0;
}

855
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
856 857
			size_t len, loff_t *pos)
{
858
	int ret = 0;
859 860 861 862 863
	u32 data;

	if (len < 4)
		return -EINVAL;

864 865 866 867
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
868

869 870 871
	if (!ret)
		goto out;

872 873 874
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

875 876
out:
	return ret;
877 878
}

879 880 881 882 883 884 885 886
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

	spu_acquire_saved(ctx);
	ret = __spufs_signal1_read(ctx, buf, len, pos);
887
	spu_release_saved(ctx);
888 889 890 891

	return ret;
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

906 907 908
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
909 910 911 912

	return 4;
}

913 914
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
915
{
916
#if PAGE_SIZE == 0x1000
917
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
918 919 920 921
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
922
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
923 924 925
#else
#error unsupported page size
#endif
926 927 928
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
929
	.nopfn = spufs_signal1_mmap_nopfn,
930 931 932 933 934 935 936
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

937
	vma->vm_flags |= VM_IO | VM_PFNMAP;
938
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
939
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
940 941 942 943 944

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

945
static const struct file_operations spufs_signal1_fops = {
946
	.open = spufs_signal1_open,
947
	.release = spufs_signal1_release,
948 949
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
950
	.mmap = spufs_signal1_mmap,
951 952
};

953 954 955 956 957 958 959
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

960 961 962 963
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
964

965
	mutex_lock(&ctx->mapping_lock);
966
	file->private_data = ctx;
967 968
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
969
	mutex_unlock(&ctx->mapping_lock);
970 971 972
	return nonseekable_open(inode, file);
}

973 974 975 976 977 978
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

979
	mutex_lock(&ctx->mapping_lock);
980 981
	if (!--i->i_openers)
		ctx->signal2 = NULL;
982
	mutex_unlock(&ctx->mapping_lock);
983 984 985
	return 0;
}

986
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
987 988
			size_t len, loff_t *pos)
{
989
	int ret = 0;
990 991 992 993 994
	u32 data;

	if (len < 4)
		return -EINVAL;

995 996 997 998
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
999

1000 1001 1002
	if (!ret)
		goto out;

1003 1004 1005
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1006
out:
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1018
	spu_release_saved(ctx);
1019 1020

	return ret;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1037 1038 1039
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1040 1041 1042 1043

	return 4;
}

1044
#if SPUFS_MMAP_4K
1045 1046
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1047
{
1048
#if PAGE_SIZE == 0x1000
1049
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1050 1051 1052 1053
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1054
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1055 1056 1057
#else
#error unsupported page size
#endif
1058 1059 1060
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1061
	.nopfn = spufs_signal2_mmap_nopfn,
1062 1063 1064 1065 1066 1067 1068
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1069
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1070
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1071
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1072 1073 1074 1075

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1076 1077 1078
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1079

1080
static const struct file_operations spufs_signal2_fops = {
1081
	.open = spufs_signal2_open,
1082
	.release = spufs_signal2_release,
1083 1084
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1085
	.mmap = spufs_signal2_mmap,
1086 1087
};

1088 1089 1090 1091 1092 1093 1094
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
static u64 __##__get(void *data)					\
{									\
	struct spu_context *ctx = data;					\
	u64 ret;							\
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
		spu_acquire(ctx);					\
		ret = __get(ctx);					\
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
		spu_acquire_saved(ctx);					\
		ret = __get(ctx);					\
		spu_release_saved(ctx);					\
	} else								\
		ret = __get(ctx);					\
									\
	return ret;							\
}									\
DEFINE_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);

1125 1126 1127 1128
static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1129 1130 1131
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1132 1133
}

1134
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1135 1136 1137
{
	return ctx->ops->signal1_type_get(ctx);
}
1138 1139
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
		       spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1140

1141 1142 1143 1144 1145

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1146 1147 1148
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1149 1150
}

1151
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1152 1153 1154
{
	return ctx->ops->signal2_type_get(ctx);
}
1155 1156
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
		       spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1157

1158
#if SPUFS_MMAP_4K
1159 1160
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1161
{
1162
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1163 1164 1165
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1166
	.nopfn = spufs_mss_mmap_nopfn,
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1177
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1178
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1179
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1180 1181 1182 1183

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1184 1185 1186
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1187 1188 1189 1190

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1191
	struct spu_context *ctx = i->i_ctx;
1192 1193

	file->private_data = i->i_ctx;
1194

1195
	mutex_lock(&ctx->mapping_lock);
1196 1197
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1198
	mutex_unlock(&ctx->mapping_lock);
1199 1200 1201
	return nonseekable_open(inode, file);
}

1202 1203 1204 1205 1206 1207
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1208
	mutex_lock(&ctx->mapping_lock);
1209 1210
	if (!--i->i_openers)
		ctx->mss = NULL;
1211
	mutex_unlock(&ctx->mapping_lock);
1212 1213 1214
	return 0;
}

1215
static const struct file_operations spufs_mss_fops = {
1216
	.open	 = spufs_mss_open,
1217
	.release = spufs_mss_release,
1218
	.mmap	 = spufs_mss_mmap,
1219 1220
};

1221 1222
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1223
{
1224
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1225 1226 1227
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1228
	.nopfn = spufs_psmap_mmap_nopfn,
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1239
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1250
	struct spu_context *ctx = i->i_ctx;
1251

1252
	mutex_lock(&ctx->mapping_lock);
1253
	file->private_data = i->i_ctx;
1254 1255
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1256
	mutex_unlock(&ctx->mapping_lock);
1257 1258 1259
	return nonseekable_open(inode, file);
}

1260 1261 1262 1263 1264 1265
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1266
	mutex_lock(&ctx->mapping_lock);
1267 1268
	if (!--i->i_openers)
		ctx->psmap = NULL;
1269
	mutex_unlock(&ctx->mapping_lock);
1270 1271 1272
	return 0;
}

1273
static const struct file_operations spufs_psmap_fops = {
1274
	.open	 = spufs_psmap_open,
1275
	.release = spufs_psmap_release,
1276
	.mmap	 = spufs_psmap_mmap,
1277 1278 1279
};


1280
#if SPUFS_MMAP_4K
1281 1282
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1283
{
1284
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1285 1286 1287
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1288
	.nopfn = spufs_mfc_mmap_nopfn,
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1299
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1300
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1301
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1302 1303 1304 1305

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1306 1307 1308
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1322
	mutex_lock(&ctx->mapping_lock);
1323
	file->private_data = ctx;
1324 1325
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1326
	mutex_unlock(&ctx->mapping_lock);
1327 1328 1329
	return nonseekable_open(inode, file);
}

1330 1331 1332 1333 1334 1335
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1336
	mutex_lock(&ctx->mapping_lock);
1337 1338
	if (!--i->i_openers)
		ctx->mfc = NULL;
1339
	mutex_unlock(&ctx->mapping_lock);
1340 1341 1342
	return 0;
}

1343 1344 1345 1346 1347
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1348 1349 1350
	if (!ctx)
		return;

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1527 1528
	spu_acquire(ctx);
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1529 1530 1531
	if (ret)
		goto out;

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}

	if (ret)
1543
		goto out_unlock;
1544 1545

	ctx->tagwait |= 1 << cmd.tag;
1546
	ret = size;
1547

1548 1549
out_unlock:
	spu_release(ctx);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1560 1561
	poll_wait(file, &ctx->mfc_wq, wait);

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1580
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1606
	return spufs_mfc_flush(file, NULL);
1607 1608 1609 1610 1611 1612 1613 1614 1615
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1616
static const struct file_operations spufs_mfc_fops = {
1617
	.open	 = spufs_mfc_open,
1618
	.release = spufs_mfc_release,
1619 1620 1621 1622 1623 1624
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1625
	.mmap	 = spufs_mfc_mmap,
1626 1627
};

1628 1629 1630
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1631 1632 1633
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1634 1635
}

1636
static u64 spufs_npc_get(struct spu_context *ctx)
1637 1638 1639
{
	return ctx->ops->npc_read(ctx);
}
1640 1641
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1642

1643 1644 1645 1646 1647 1648
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
1649
	spu_release_saved(ctx);
1650 1651
}

1652
static u64 spufs_decr_get(struct spu_context *ctx)
1653 1654
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1655 1656
	return lscsa->decr.slot[0];
}
1657 1658
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1659 1660 1661 1662 1663

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	spu_acquire_saved(ctx);
1664 1665 1666 1667
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1668
	spu_release_saved(ctx);
1669 1670
}

1671
static u64 spufs_decr_status_get(struct spu_context *ctx)
1672
{
1673 1674 1675 1676
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1677
}
1678 1679 1680
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1681 1682 1683 1684 1685 1686 1687

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
1688
	spu_release_saved(ctx);
1689 1690
}

1691
static u64 spufs_event_mask_get(struct spu_context *ctx)
1692 1693
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1694 1695 1696
	return lscsa->event_mask.slot[0];
}

1697 1698 1699
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1700

1701
static u64 spufs_event_status_get(struct spu_context *ctx)
1702 1703 1704 1705 1706
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1707 1708 1709
		return state->spu_chnldata_RW[0];
	return 0;
}
1710 1711
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1712

1713 1714 1715 1716 1717 1718
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
1719
	spu_release_saved(ctx);
1720 1721
}

1722
static u64 spufs_srr0_get(struct spu_context *ctx)
1723 1724
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1725
	return lscsa->srr0.slot[0];
1726
}
1727 1728
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1729

1730
static u64 spufs_id_get(struct spu_context *ctx)
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
1741 1742
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
1743

1744
static u64 spufs_object_id_get(struct spu_context *ctx)
1745 1746
{
	/* FIXME: Should there really be no locking here? */
1747
	return ctx->object_id;
1748 1749
}

1750 1751 1752 1753 1754 1755
static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

1756 1757
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1758

1759
static u64 spufs_lslr_get(struct spu_context *ctx)
1760 1761 1762
{
	return ctx->csa.priv2.spu_lslr_RW;
}
1763 1764
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1765 1766 1767 1768 1769 1770 1771 1772 1773

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 mbox_stat;
	u32 data;

	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1811 1812 1813
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
1814
	int ret;
1815 1816 1817 1818 1819 1820 1821
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1822
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1823
	spin_unlock(&ctx->csa.register_lock);
1824
	spu_release_saved(ctx);
1825

1826
	return ret;
1827 1828
}

1829
static const struct file_operations spufs_mbox_info_fops = {
1830 1831 1832 1833 1834
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 ibox_stat;
	u32 data;

	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1849 1850 1851 1852
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
1853
	int ret;
1854 1855 1856 1857 1858 1859

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1860
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1861
	spin_unlock(&ctx->csa.register_lock);
1862
	spu_release_saved(ctx);
1863

1864
	return ret;
1865 1866
}

1867
static const struct file_operations spufs_ibox_info_fops = {
1868 1869 1870 1871 1872
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

1873 1874
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1875 1876 1877 1878 1879
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1896 1897 1898 1899 1900
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1901
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1902
	spin_unlock(&ctx->csa.register_lock);
1903
	spu_release_saved(ctx);
1904

1905
	return ret;
1906 1907
}

1908
static const struct file_operations spufs_wbox_info_fops = {
1909 1910 1911 1912 1913
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1914 1915
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
1953
	spu_release_saved(ctx);
1954 1955 1956 1957

	return ret;
}

1958
static const struct file_operations spufs_dma_info_fops = {
1959 1960 1961 1962
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

1963 1964
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1965 1966 1967
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
1968
	int ret = sizeof info;
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2003
	spin_unlock(&ctx->csa.register_lock);
2004
	spu_release_saved(ctx);
2005 2006 2007 2008

	return ret;
}

2009
static const struct file_operations spufs_proxydma_info_fops = {
2010 2011 2012 2013
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2034 2035 2036 2037 2038
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2039
		enum spu_utilization_state state)
2040
{
2041 2042
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2057

2058
	return time / NSEC_PER_MSEC;
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	spu_acquire(ctx);
	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2093 2094 2095 2096 2097
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


2123
struct tree_descr spufs_dir_contents[] = {
2124
	{ "capabilities", &spufs_caps_fops, 0444, },
2125
	{ "mem",  &spufs_mem_fops,  0666, },
2126
	{ "regs", &spufs_regs_fops,  0666, },
2127 2128 2129 2130 2131 2132
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2133 2134
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2135 2136
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2137
	{ "cntl", &spufs_cntl_fops,  0666, },
2138
	{ "fpcr", &spufs_fpcr_fops, 0666, },
2139 2140 2141 2142 2143
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2144 2145 2146
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2147
	{ "event_status", &spufs_event_status_ops, 0444, },
2148
	{ "psmap", &spufs_psmap_fops, 0666, },
2149 2150
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2151 2152 2153
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2154 2155
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2156
	{ "tid", &spufs_tid_fops, 0444, },
2157
	{ "stat", &spufs_stat_fops, 0444, },
2158 2159
	{},
};
2160 2161

struct tree_descr spufs_dir_nosched_contents[] = {
2162
	{ "capabilities", &spufs_caps_fops, 0444, },
2163 2164 2165 2166 2167 2168 2169
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2170 2171
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2172 2173 2174 2175 2176 2177 2178 2179 2180
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2181
	{ "tid", &spufs_tid_fops, 0444, },
2182
	{ "stat", &spufs_stat_fops, 0444, },
2183 2184
	{},
};
2185 2186

struct spufs_coredump_reader spufs_coredump_read[] = {
2187 2188
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2189 2190 2191
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2192 2193
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2194
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2195
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2196 2197 2198
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2199 2200 2201 2202 2203 2204
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2205 2206
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2207
	{ NULL },
2208
};