file.c 48.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31 32 33 34

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
35
#include <asm/spu_info.h>
36 37 38 39
#include <asm/uaccess.h>

#include "spufs.h"

40 41
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

42 43 44 45
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
46
	struct spu_context *ctx = i->i_ctx;
47

48
	mutex_lock(&ctx->mapping_lock);
49
	file->private_data = ctx;
50 51
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
52
	mutex_unlock(&ctx->mapping_lock);
53 54 55 56 57 58 59 60 61
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

62
	mutex_lock(&ctx->mapping_lock);
63 64
	if (!--i->i_openers)
		ctx->local_store = NULL;
65
	mutex_unlock(&ctx->mapping_lock);
66 67 68
	return 0;
}

69 70 71 72 73 74 75 76 77
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

78 79 80 81
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
82
	struct spu_context *ctx = file->private_data;
83
	ssize_t ret;
84

85
	spu_acquire(ctx);
86
	ret = __spufs_mem_read(ctx, buffer, size, pos);
87
	spu_release(ctx);
88 89 90 91 92
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
93
					size_t size, loff_t *ppos)
94 95
{
	struct spu_context *ctx = file->private_data;
96
	char *local_store;
97
	loff_t pos = *ppos;
98
	int ret;
99

100 101 102
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
103
		return -EFBIG;
104 105
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
106 107 108

	spu_acquire(ctx);
	local_store = ctx->ops->get_ls(ctx);
109
	ret = copy_from_user(local_store + pos, buffer, size);
110
	spu_release(ctx);
111 112 113 114 115

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
116 117
}

118 119
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
120
{
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	struct spu_context *ctx	= vma->vm_file->private_data;
	unsigned long pfn, offset, addr0 = address;
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
139

140
	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
141 142 143
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

144 145 146
	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
		 addr0, address, offset);

147 148
	spu_acquire(ctx);

149 150
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
151
							& ~_PAGE_NO_CACHE);
152
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
153 154
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
155 156
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
157
	}
158
	vm_insert_pfn(vma, address, pfn);
159

160
	spu_release(ctx);
161

162
	return NOPFN_REFAULT;
163 164
}

165

166
static struct vm_operations_struct spufs_mem_mmap_vmops = {
167
	.nopfn = spufs_mem_mmap_nopfn,
168 169
};

170
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
171
{
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

188 189
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
190

191
	vma->vm_flags |= VM_IO | VM_PFNMAP;
192 193 194 195
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
196 197 198
	return 0;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
#ifdef CONFIG_SPU_FS_64K_LS
unsigned long spufs_get_unmapped_area(struct file *file, unsigned long addr,
				      unsigned long len, unsigned long pgoff,
				      unsigned long flags)
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

218
static const struct file_operations spufs_mem_fops = {
219
	.open	 		= spufs_mem_open,
220
	.release 		= spufs_mem_release,
221 222 223 224 225 226 227
	.read   		= spufs_mem_read,
	.write   		= spufs_mem_write,
	.llseek  		= generic_file_llseek,
	.mmap    		= spufs_mem_mmap,
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
228 229
};

230
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
231
				    unsigned long address,
232
				    unsigned long ps_offs,
233
				    unsigned long ps_size)
234 235
{
	struct spu_context *ctx = vma->vm_file->private_data;
236
	unsigned long area, offset = address - vma->vm_start;
237 238 239
	int ret;

	offset += vma->vm_pgoff << PAGE_SHIFT;
240
	if (offset >= ps_size)
241
		return NOPFN_SIGBUS;
242

243 244 245
	/* error here usually means a signal.. we might want to test
	 * the error code more precisely though
	 */
246
	ret = spu_acquire_runnable(ctx, 0);
247
	if (ret)
248
		return NOPFN_REFAULT;
249 250

	area = ctx->spu->problem_phys + ps_offs;
251
	vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
252 253
	spu_release(ctx);

254
	return NOPFN_REFAULT;
255 256
}

257
#if SPUFS_MMAP_4K
258 259
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
260
{
261
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
262 263 264
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
265
	.nopfn = spufs_cntl_mmap_nopfn,
266 267 268 269 270 271 272 273 274 275
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

276
	vma->vm_flags |= VM_IO | VM_PFNMAP;
277
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
278
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
279 280 281 282

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
283 284 285
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
286

287
static u64 spufs_cntl_get(void *data)
288
{
289 290
	struct spu_context *ctx = data;
	u64 val;
291

292 293 294 295 296
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
297 298
}

299
static void spufs_cntl_set(void *data, u64 val)
300
{
301 302 303 304 305
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
306 307
}

308
static int spufs_cntl_open(struct inode *inode, struct file *file)
309
{
310 311 312
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

313
	mutex_lock(&ctx->mapping_lock);
314
	file->private_data = ctx;
315 316
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
317
	mutex_unlock(&ctx->mapping_lock);
318 319
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
320 321
}

322 323 324 325 326 327 328 329
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	simple_attr_close(inode, file);

330
	mutex_lock(&ctx->mapping_lock);
331 332
	if (!--i->i_openers)
		ctx->cntl = NULL;
333
	mutex_unlock(&ctx->mapping_lock);
334 335 336
	return 0;
}

337
static const struct file_operations spufs_cntl_fops = {
338
	.open = spufs_cntl_open,
339
	.release = spufs_cntl_release,
340 341
	.read = simple_attr_read,
	.write = simple_attr_write,
342 343 344
	.mmap = spufs_cntl_mmap,
};

345 346 347 348 349 350 351 352
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

353 354 355 356 357 358 359 360 361
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

362 363 364 365 366
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
367
	struct spu_context *ctx = file->private_data;
368 369

	spu_acquire_saved(ctx);
370
	ret = __spufs_regs_read(ctx, buffer, size, pos);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

397
static const struct file_operations spufs_regs_fops = {
398 399 400
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
401 402 403
	.llseek  = generic_file_llseek,
};

404 405 406 407 408 409 410 411 412
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

413 414 415 416 417
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
418
	struct spu_context *ctx = file->private_data;
419 420

	spu_acquire_saved(ctx);
421
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

448
static const struct file_operations spufs_fpcr_fops = {
449 450 451 452 453 454
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

455 456 457 458 459 460 461 462 463
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

464 465 466 467 468 469 470 471
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
472 473 474
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
475
	struct spu_context *ctx = file->private_data;
476 477
	u32 mbox_data, __user *udata;
	ssize_t count;
478 479 480 481

	if (len < 4)
		return -EINVAL;

482 483 484 485 486
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

487
	spu_acquire(ctx);
488
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
506
	spu_release(ctx);
507

508 509
	if (!count)
		count = -EAGAIN;
510

511
	return count;
512 513
}

514
static const struct file_operations spufs_mbox_fops = {
515 516 517 518 519 520 521
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
522
	struct spu_context *ctx = file->private_data;
523 524 525 526 527
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

528 529 530 531 532
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
533 534 535 536 537 538 539

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

540
static const struct file_operations spufs_mbox_stat_fops = {
541 542 543 544 545
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
546
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
547
{
548 549
	return ctx->ops->ibox_read(ctx, data);
}
550

551 552 553
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
554

555
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
556 557
}

558 559
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
560
{
561 562 563 564
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
565 566
}

567 568 569 570 571 572 573 574 575 576 577 578
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
579 580 581
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
582
	struct spu_context *ctx = file->private_data;
583 584
	u32 ibox_data, __user *udata;
	ssize_t count;
585 586 587 588

	if (len < 4)
		return -EINVAL;

589 590 591 592 593
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

594
	spu_acquire(ctx);
595

596 597
	/* wait only for the first element */
	count = 0;
598
	if (file->f_flags & O_NONBLOCK) {
599
		if (!spu_ibox_read(ctx, &ibox_data))
600
			count = -EAGAIN;
601
	} else {
602
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
603
	}
604 605
	if (count)
		goto out;
606

607 608 609 610
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
611

612 613 614 615 616 617 618 619 620 621 622 623 624 625
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
626

627 628
out:
	spu_release(ctx);
629

630
	return count;
631 632 633 634
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
635
	struct spu_context *ctx = file->private_data;
636 637
	unsigned int mask;

638
	poll_wait(file, &ctx->ibox_wq, wait);
639

640 641 642
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
643 644 645 646

	return mask;
}

647
static const struct file_operations spufs_ibox_fops = {
648 649 650 651 652 653 654 655 656
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
657
	struct spu_context *ctx = file->private_data;
658 659 660 661 662
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

663 664 665
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
666 667 668 669 670 671 672

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

673
static const struct file_operations spufs_ibox_stat_fops = {
674 675 676 677 678
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
679
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
680
{
681 682
	return ctx->ops->wbox_write(ctx, data);
}
683

684 685 686 687
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
688

689
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
690 691 692 693

	return ret;
}

694 695
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
696
{
697 698 699 700
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
701 702
}

703 704 705 706 707 708 709 710 711 712 713 714
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
715 716 717
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
718
	struct spu_context *ctx = file->private_data;
719 720
	u32 wbox_data, __user *udata;
	ssize_t count;
721 722 723 724

	if (len < 4)
		return -EINVAL;

725 726 727 728 729
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
730 731
		return -EFAULT;

732 733
	spu_acquire(ctx);

734 735 736 737 738
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
739
	if (file->f_flags & O_NONBLOCK) {
740
		if (!spu_wbox_write(ctx, wbox_data))
741
			count = -EAGAIN;
742
	} else {
743
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
744 745
	}

746 747
	if (count)
		goto out;
748

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	/* write aѕ much as possible */
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
764 765 766 767
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
768
	struct spu_context *ctx = file->private_data;
769 770
	unsigned int mask;

771
	poll_wait(file, &ctx->wbox_wq, wait);
772

773 774 775
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
776 777 778 779

	return mask;
}

780
static const struct file_operations spufs_wbox_fops = {
781 782 783 784 785 786 787 788 789
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
790
	struct spu_context *ctx = file->private_data;
791 792 793 794 795
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

796 797 798
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
799 800 801 802 803 804 805

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

806
static const struct file_operations spufs_wbox_stat_fops = {
807 808 809 810
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

811 812 813 814
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
815

816
	mutex_lock(&ctx->mapping_lock);
817
	file->private_data = ctx;
818 819
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
820
	mutex_unlock(&ctx->mapping_lock);
821 822 823
	return nonseekable_open(inode, file);
}

824 825 826 827 828 829
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

830
	mutex_lock(&ctx->mapping_lock);
831 832
	if (!--i->i_openers)
		ctx->signal1 = NULL;
833
	mutex_unlock(&ctx->mapping_lock);
834 835 836
	return 0;
}

837
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
838 839
			size_t len, loff_t *pos)
{
840
	int ret = 0;
841 842 843 844 845
	u32 data;

	if (len < 4)
		return -EINVAL;

846 847 848 849
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
850

851 852 853
	if (!ret)
		goto out;

854 855 856
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

857 858
out:
	return ret;
859 860
}

861 862 863 864 865 866 867 868 869 870 871 872 873
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

	spu_acquire_saved(ctx);
	ret = __spufs_signal1_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

888 889 890
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
891 892 893 894

	return 4;
}

895 896
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
897
{
898
#if PAGE_SIZE == 0x1000
899
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
900 901 902 903
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
904
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
905 906 907
#else
#error unsupported page size
#endif
908 909 910
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
911
	.nopfn = spufs_signal1_mmap_nopfn,
912 913 914 915 916 917 918
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

919
	vma->vm_flags |= VM_IO | VM_PFNMAP;
920
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
921
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
922 923 924 925 926

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

927
static const struct file_operations spufs_signal1_fops = {
928
	.open = spufs_signal1_open,
929
	.release = spufs_signal1_release,
930 931
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
932
	.mmap = spufs_signal1_mmap,
933 934
};

935 936 937 938
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
939

940
	mutex_lock(&ctx->mapping_lock);
941
	file->private_data = ctx;
942 943
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
944
	mutex_unlock(&ctx->mapping_lock);
945 946 947
	return nonseekable_open(inode, file);
}

948 949 950 951 952 953
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

954
	mutex_lock(&ctx->mapping_lock);
955 956
	if (!--i->i_openers)
		ctx->signal2 = NULL;
957
	mutex_unlock(&ctx->mapping_lock);
958 959 960
	return 0;
}

961
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
962 963
			size_t len, loff_t *pos)
{
964
	int ret = 0;
965 966 967 968 969
	u32 data;

	if (len < 4)
		return -EINVAL;

970 971 972 973
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
974

975 976 977
	if (!ret)
		goto out;

978 979 980
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

981
out:
982 983 984 985 986 987 988 989 990 991 992 993 994 995
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	ret = __spufs_signal2_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1012 1013 1014
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1015 1016 1017 1018

	return 4;
}

1019
#if SPUFS_MMAP_4K
1020 1021
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1022
{
1023
#if PAGE_SIZE == 0x1000
1024
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1025 1026 1027 1028
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1029
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1030 1031 1032
#else
#error unsupported page size
#endif
1033 1034 1035
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1036
	.nopfn = spufs_signal2_mmap_nopfn,
1037 1038 1039 1040 1041 1042 1043
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1044
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1045
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1046
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1047 1048 1049 1050

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1051 1052 1053
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1054

1055
static const struct file_operations spufs_signal2_fops = {
1056
	.open = spufs_signal2_open,
1057
	.release = spufs_signal2_release,
1058 1059
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1060
	.mmap = spufs_signal2_mmap,
1061 1062 1063 1064 1065 1066
};

static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1067 1068 1069
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1070 1071
}

1072 1073 1074 1075 1076 1077
static u64 __spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal1_type_get(ctx);
}

1078 1079 1080
static u64 spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
1081 1082 1083
	u64 ret;

	spu_acquire(ctx);
1084
	ret = __spufs_signal1_type_get(data);
1085 1086 1087
	spu_release(ctx);

	return ret;
1088 1089 1090 1091 1092 1093 1094 1095
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
					spufs_signal1_type_set, "%llu");

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1096 1097 1098
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1099 1100
}

1101 1102 1103 1104 1105 1106
static u64 __spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal2_type_get(ctx);
}

1107 1108 1109
static u64 spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
1110 1111 1112
	u64 ret;

	spu_acquire(ctx);
1113
	ret = __spufs_signal2_type_get(data);
1114 1115 1116
	spu_release(ctx);

	return ret;
1117 1118 1119 1120
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
					spufs_signal2_type_set, "%llu");

1121
#if SPUFS_MMAP_4K
1122 1123
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1124
{
1125
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1126 1127 1128
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1129
	.nopfn = spufs_mss_mmap_nopfn,
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1140
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1141
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1142
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1143 1144 1145 1146

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1147 1148 1149
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1150 1151 1152 1153

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1154
	struct spu_context *ctx = i->i_ctx;
1155 1156

	file->private_data = i->i_ctx;
1157

1158
	mutex_lock(&ctx->mapping_lock);
1159 1160
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1161
	mutex_unlock(&ctx->mapping_lock);
1162 1163 1164
	return nonseekable_open(inode, file);
}

1165 1166 1167 1168 1169 1170
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1171
	mutex_lock(&ctx->mapping_lock);
1172 1173
	if (!--i->i_openers)
		ctx->mss = NULL;
1174
	mutex_unlock(&ctx->mapping_lock);
1175 1176 1177
	return 0;
}

1178
static const struct file_operations spufs_mss_fops = {
1179
	.open	 = spufs_mss_open,
1180
	.release = spufs_mss_release,
1181
	.mmap	 = spufs_mss_mmap,
1182 1183
};

1184 1185
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1186
{
1187
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1188 1189 1190
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1191
	.nopfn = spufs_psmap_mmap_nopfn,
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1202
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1213
	struct spu_context *ctx = i->i_ctx;
1214

1215
	mutex_lock(&ctx->mapping_lock);
1216
	file->private_data = i->i_ctx;
1217 1218
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1219
	mutex_unlock(&ctx->mapping_lock);
1220 1221 1222
	return nonseekable_open(inode, file);
}

1223 1224 1225 1226 1227 1228
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1229
	mutex_lock(&ctx->mapping_lock);
1230 1231
	if (!--i->i_openers)
		ctx->psmap = NULL;
1232
	mutex_unlock(&ctx->mapping_lock);
1233 1234 1235
	return 0;
}

1236
static const struct file_operations spufs_psmap_fops = {
1237
	.open	 = spufs_psmap_open,
1238
	.release = spufs_psmap_release,
1239
	.mmap	 = spufs_psmap_mmap,
1240 1241 1242
};


1243
#if SPUFS_MMAP_4K
1244 1245
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1246
{
1247
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1248 1249 1250
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1251
	.nopfn = spufs_mfc_mmap_nopfn,
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1262
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1263
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1264
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1265 1266 1267 1268

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1269 1270 1271
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1285
	mutex_lock(&ctx->mapping_lock);
1286
	file->private_data = ctx;
1287 1288
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1289
	mutex_unlock(&ctx->mapping_lock);
1290 1291 1292
	return nonseekable_open(inode, file);
}

1293 1294 1295 1296 1297 1298
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1299
	mutex_lock(&ctx->mapping_lock);
1300 1301
	if (!--i->i_openers)
		ctx->mfc = NULL;
1302
	mutex_unlock(&ctx->mapping_lock);
1303 1304 1305
	return 0;
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1487 1488 1489 1490
	ret = spu_acquire_runnable(ctx, 0);
	if (ret)
		goto out;

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ctx->tagwait |= 1 << cmd.tag;
1506
	ret = size;
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	poll_wait(file, &ctx->mfc_wq, wait);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1538
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1564
	return spufs_mfc_flush(file, NULL);
1565 1566 1567 1568 1569 1570 1571 1572 1573
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1574
static const struct file_operations spufs_mfc_fops = {
1575
	.open	 = spufs_mfc_open,
1576
	.release = spufs_mfc_release,
1577 1578 1579 1580 1581 1582
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1583
	.mmap	 = spufs_mfc_mmap,
1584 1585
};

1586 1587 1588
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1589 1590 1591
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1592 1593 1594 1595 1596 1597
}

static u64 spufs_npc_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;
1598 1599 1600
	spu_acquire(ctx);
	ret = ctx->ops->npc_read(ctx);
	spu_release(ctx);
1601 1602
	return ret;
}
1603 1604
DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
			"0x%llx\n")
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
	spu_release(ctx);
}

1615
static u64 __spufs_decr_get(void *data)
1616 1617 1618
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1619 1620 1621 1622 1623 1624
	return lscsa->decr.slot[0];
}

static u64 spufs_decr_get(void *data)
{
	struct spu_context *ctx = data;
1625 1626
	u64 ret;
	spu_acquire_saved(ctx);
1627
	ret = __spufs_decr_get(data);
1628 1629 1630 1631
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1632
			"0x%llx\n")
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr_status.slot[0] = (u32) val;
	spu_release(ctx);
}

1643
static u64 __spufs_decr_status_get(void *data)
1644 1645 1646
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1647 1648 1649 1650 1651 1652
	return lscsa->decr_status.slot[0];
}

static u64 spufs_decr_status_get(void *data)
{
	struct spu_context *ctx = data;
1653 1654
	u64 ret;
	spu_acquire_saved(ctx);
1655
	ret = __spufs_decr_status_get(data);
1656 1657 1658 1659
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1660
			spufs_decr_status_set, "0x%llx\n")
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
	spu_release(ctx);
}

1671
static u64 __spufs_event_mask_get(void *data)
1672 1673 1674
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1675 1676 1677 1678 1679 1680
	return lscsa->event_mask.slot[0];
}

static u64 spufs_event_mask_get(void *data)
{
	struct spu_context *ctx = data;
1681 1682
	u64 ret;
	spu_acquire_saved(ctx);
1683
	ret = __spufs_event_mask_get(data);
1684 1685 1686 1687
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1688
			spufs_event_mask_set, "0x%llx\n")
1689

1690
static u64 __spufs_event_status_get(void *data)
1691 1692 1693 1694 1695 1696
{
	struct spu_context *ctx = data;
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		return state->spu_chnldata_RW[0];
	return 0;
}

static u64 spufs_event_status_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret = 0;

	spu_acquire_saved(ctx);
	ret = __spufs_event_status_get(data);
1708 1709 1710 1711 1712 1713
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
			NULL, "0x%llx\n")

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_srr0_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->srr0.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1734
			"0x%llx\n")
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
static u64 spufs_id_get(void *data)
{
	struct spu_context *ctx = data;
	u64 num;

	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;
	spu_release(ctx);

	return num;
}
A
Al Viro 已提交
1750
DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1751

1752
static u64 __spufs_object_id_get(void *data)
1753 1754 1755 1756 1757
{
	struct spu_context *ctx = data;
	return ctx->object_id;
}

1758 1759 1760 1761 1762 1763
static u64 spufs_object_id_get(void *data)
{
	/* FIXME: Should there really be no locking here? */
	return __spufs_object_id_get(data);
}

1764 1765 1766 1767 1768 1769 1770 1771 1772
static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		spufs_object_id_set, "0x%llx\n");

1773 1774 1775 1776 1777 1778
static u64 __spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->csa.priv2.spu_lslr_RW;
}

1779 1780 1781 1782 1783 1784
static u64 spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;

	spu_acquire_saved(ctx);
1785
	ret = __spufs_lslr_get(data);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	spu_release(ctx);

	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 mbox_stat;
	u32 data;

	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1814 1815 1816
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
1817
	int ret;
1818 1819 1820 1821 1822 1823 1824
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1825
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1826 1827 1828
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1829
	return ret;
1830 1831
}

1832
static const struct file_operations spufs_mbox_info_fops = {
1833 1834 1835 1836 1837
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 ibox_stat;
	u32 data;

	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1852 1853 1854 1855
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
1856
	int ret;
1857 1858 1859 1860 1861 1862

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1863
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1864 1865 1866
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1867
	return ret;
1868 1869
}

1870
static const struct file_operations spufs_ibox_info_fops = {
1871 1872 1873 1874 1875
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

1876 1877
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1878 1879 1880 1881 1882
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1899 1900 1901 1902 1903
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1904
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1905 1906 1907
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1908
	return ret;
1909 1910
}

1911
static const struct file_operations spufs_wbox_info_fops = {
1912 1913 1914 1915 1916
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1917 1918
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

1961
static const struct file_operations spufs_dma_info_fops = {
1962 1963 1964 1965
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

1966 1967
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1968 1969 1970
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
1971
	int ret = sizeof info;
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2006 2007 2008 2009 2010 2011
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

2012
static const struct file_operations spufs_proxydma_info_fops = {
2013 2014 2015 2016
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2017 2018
struct tree_descr spufs_dir_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
2019
	{ "regs", &spufs_regs_fops,  0666, },
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2030
	{ "cntl", &spufs_cntl_fops,  0666, },
2031
	{ "fpcr", &spufs_fpcr_fops, 0666, },
2032 2033 2034 2035 2036
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2037 2038 2039
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2040
	{ "event_status", &spufs_event_status_ops, 0444, },
2041
	{ "psmap", &spufs_psmap_fops, 0666, },
2042 2043
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2044 2045 2046
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2047 2048
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2049 2050
	{},
};
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

struct tree_descr spufs_dir_nosched_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
	{},
};
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

struct spufs_coredump_reader spufs_coredump_read[] = {
	{ "regs", __spufs_regs_read, NULL, 128 * 16 },
	{ "fpcr", __spufs_fpcr_read, NULL, 16 },
	{ "lslr", NULL, __spufs_lslr_get, 11 },
	{ "decr", NULL, __spufs_decr_get, 11 },
	{ "decr_status", NULL, __spufs_decr_status_get, 11 },
	{ "mem", __spufs_mem_read, NULL, 256 * 1024, },
	{ "signal1", __spufs_signal1_read, NULL, 4 },
	{ "signal1_type", NULL, __spufs_signal1_type_get, 2 },
	{ "signal2", __spufs_signal2_read, NULL, 4 },
	{ "signal2_type", NULL, __spufs_signal2_type_get, 2 },
	{ "event_mask", NULL, __spufs_event_mask_get, 8 },
	{ "event_status", NULL, __spufs_event_status_get, 8 },
	{ "mbox_info", __spufs_mbox_info_read, NULL, 4 },
	{ "ibox_info", __spufs_ibox_info_read, NULL, 4 },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 16 },
	{ "dma_info", __spufs_dma_info_read, NULL, 69 * 8 },
	{ "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 },
	{ "object-id", NULL, __spufs_object_id_get, 19 },
	{ },
};
int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;