file.c 57.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32
#include <linux/marker.h>
33 34 35 36

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
37
#include <asm/spu_info.h>
38 39 40 41
#include <asm/uaccess.h>

#include "spufs.h"

42 43
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
static struct file_operations __fops = {				\
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

158

159 160 161 162
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
163
	struct spu_context *ctx = i->i_ctx;
164

165
	mutex_lock(&ctx->mapping_lock);
166
	file->private_data = ctx;
167 168
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
169
	mutex_unlock(&ctx->mapping_lock);
170 171 172 173 174 175 176 177 178
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

179
	mutex_lock(&ctx->mapping_lock);
180 181
	if (!--i->i_openers)
		ctx->local_store = NULL;
182
	mutex_unlock(&ctx->mapping_lock);
183 184 185
	return 0;
}

186 187 188 189 190 191 192 193 194
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

195 196 197 198
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
199
	struct spu_context *ctx = file->private_data;
200
	ssize_t ret;
201

202 203 204
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
205
	ret = __spufs_mem_read(ctx, buffer, size, pos);
206
	spu_release(ctx);
207

208 209 210 211 212
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
213
					size_t size, loff_t *ppos)
214 215
{
	struct spu_context *ctx = file->private_data;
216
	char *local_store;
217
	loff_t pos = *ppos;
218
	int ret;
219

220 221 222
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
223
		return -EFBIG;
224 225
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
226

227 228 229 230
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

231
	local_store = ctx->ops->get_ls(ctx);
232
	ret = copy_from_user(local_store + pos, buffer, size);
233
	spu_release(ctx);
234 235 236 237 238

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
239 240
}

241 242
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
243
{
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	struct spu_context *ctx	= vma->vm_file->private_data;
	unsigned long pfn, offset, addr0 = address;
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
262

263
	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
264 265 266
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

267 268 269
	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
		 addr0, address, offset);

270 271
	if (spu_acquire(ctx))
		return NOPFN_REFAULT;
272

273 274
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
275
							& ~_PAGE_NO_CACHE);
276
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
277 278
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
279 280
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
281
	}
282
	vm_insert_pfn(vma, address, pfn);
283

284
	spu_release(ctx);
285

286
	return NOPFN_REFAULT;
287 288
}

289

290
static struct vm_operations_struct spufs_mem_mmap_vmops = {
291
	.nopfn = spufs_mem_mmap_nopfn,
292 293
};

294
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
295
{
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

312 313
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
314

315
	vma->vm_flags |= VM_IO | VM_PFNMAP;
316 317 318 319
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
320 321 322
	return 0;
}

323
#ifdef CONFIG_SPU_FS_64K_LS
324 325 326
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

342
static const struct file_operations spufs_mem_fops = {
343 344 345 346 347 348
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
349 350 351
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
352 353
};

354
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
355
				    unsigned long address,
356
				    unsigned long ps_offs,
357
				    unsigned long ps_size)
358 359
{
	struct spu_context *ctx = vma->vm_file->private_data;
360
	unsigned long area, offset = address - vma->vm_start;
361

362 363
	spu_context_nospu_trace(spufs_ps_nopfn__enter, ctx);

364
	offset += vma->vm_pgoff << PAGE_SHIFT;
365
	if (offset >= ps_size)
366
		return NOPFN_SIGBUS;
367

368 369 370 371 372 373 374
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
	 * to return NOPFN_REFAULT because the mappings may have
	 * hanged.
375
	 */
376 377 378
	if (spu_acquire(ctx))
		return NOPFN_REFAULT;

379 380
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
381
		spu_context_nospu_trace(spufs_ps_nopfn__sleep, ctx);
382
		spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
383
		spu_context_trace(spufs_ps_nopfn__wake, ctx, ctx->spu);
384
		down_read(&current->mm->mmap_sem);
385 386 387
	} else {
		area = ctx->spu->problem_phys + ps_offs;
		vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
388
		spu_context_trace(spufs_ps_nopfn__insert, ctx, ctx->spu);
389
	}
390 391

	spu_release(ctx);
392
	return NOPFN_REFAULT;
393 394
}

395
#if SPUFS_MMAP_4K
396 397
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
398
{
399
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
400 401 402
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
403
	.nopfn = spufs_cntl_mmap_nopfn,
404 405 406 407 408 409 410 411 412 413
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

414
	vma->vm_flags |= VM_IO | VM_PFNMAP;
415
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
416
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
417 418 419 420

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
421 422 423
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
424

425
static int spufs_cntl_get(void *data, u64 *val)
426
{
427
	struct spu_context *ctx = data;
428
	int ret;
429

430 431 432
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
433
	*val = ctx->ops->status_read(ctx);
434 435
	spu_release(ctx);

436
	return 0;
437 438
}

439
static int spufs_cntl_set(void *data, u64 val)
440
{
441
	struct spu_context *ctx = data;
442
	int ret;
443

444 445 446
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
447 448
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
449 450

	return 0;
451 452
}

453
static int spufs_cntl_open(struct inode *inode, struct file *file)
454
{
455 456 457
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

458
	mutex_lock(&ctx->mapping_lock);
459
	file->private_data = ctx;
460 461
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
462
	mutex_unlock(&ctx->mapping_lock);
463
	return simple_attr_open(inode, file, spufs_cntl_get,
464
					spufs_cntl_set, "0x%08lx");
465 466
}

467 468 469 470 471 472
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

473
	simple_attr_close(inode, file);
474

475
	mutex_lock(&ctx->mapping_lock);
476 477
	if (!--i->i_openers)
		ctx->cntl = NULL;
478
	mutex_unlock(&ctx->mapping_lock);
479 480 481
	return 0;
}

482
static const struct file_operations spufs_cntl_fops = {
483
	.open = spufs_cntl_open,
484
	.release = spufs_cntl_release,
485 486
	.read = simple_attr_read,
	.write = simple_attr_write,
487 488 489
	.mmap = spufs_cntl_mmap,
};

490 491 492 493 494 495 496 497
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

498 499 500 501 502 503 504 505 506
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

507 508 509 510 511
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
512
	struct spu_context *ctx = file->private_data;
513

514 515 516
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
517
	ret = __spufs_regs_read(ctx, buffer, size, pos);
518
	spu_release_saved(ctx);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

535 536 537
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
538 539 540 541

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

542
	spu_release_saved(ctx);
543 544 545
	return ret;
}

546
static const struct file_operations spufs_regs_fops = {
547 548 549
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
550 551 552
	.llseek  = generic_file_llseek,
};

553 554 555 556 557 558 559 560 561
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

562 563 564 565 566
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
567
	struct spu_context *ctx = file->private_data;
568

569 570 571
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
572
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
573
	spu_release_saved(ctx);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;

589 590 591
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
592

593
	*pos += size;
594 595 596
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

597
	spu_release_saved(ctx);
598 599 600
	return ret;
}

601
static const struct file_operations spufs_fpcr_fops = {
602 603 604 605 606 607
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

608 609 610 611 612 613 614 615 616
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

617 618 619 620 621 622 623 624
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
625 626 627
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
628
	struct spu_context *ctx = file->private_data;
629 630
	u32 mbox_data, __user *udata;
	ssize_t count;
631 632 633 634

	if (len < 4)
		return -EINVAL;

635 636 637 638 639
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

640 641 642 643
	count = spu_acquire(ctx);
	if (count)
		return count;

644
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
662
	spu_release(ctx);
663

664 665
	if (!count)
		count = -EAGAIN;
666

667
	return count;
668 669
}

670
static const struct file_operations spufs_mbox_fops = {
671 672 673 674 675 676 677
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
678
	struct spu_context *ctx = file->private_data;
679
	ssize_t ret;
680 681 682 683 684
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

685 686 687
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
688 689 690 691

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
692 693 694 695 696 697 698

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

699
static const struct file_operations spufs_mbox_stat_fops = {
700 701 702 703 704
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
705
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
706
{
707 708
	return ctx->ops->ibox_read(ctx, data);
}
709

710 711 712
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
713

714
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
715 716
}

717 718
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
719
{
720 721
	struct spu_context *ctx = spu->ctx;

722 723 724
	if (!ctx)
		return;

725 726
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
727 728
}

729 730 731 732 733 734 735 736 737 738 739 740
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
741 742 743
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
744
	struct spu_context *ctx = file->private_data;
745 746
	u32 ibox_data, __user *udata;
	ssize_t count;
747 748 749 750

	if (len < 4)
		return -EINVAL;

751 752 753 754 755
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

756 757 758
	count = spu_acquire(ctx);
	if (count)
		return count;
759

760 761
	/* wait only for the first element */
	count = 0;
762
	if (file->f_flags & O_NONBLOCK) {
763
		if (!spu_ibox_read(ctx, &ibox_data))
764
			count = -EAGAIN;
765
	} else {
766
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
767
	}
768 769
	if (count)
		goto out;
770

771 772 773 774
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
790

791 792
out:
	spu_release(ctx);
793

794
	return count;
795 796 797 798
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
799
	struct spu_context *ctx = file->private_data;
800 801
	unsigned int mask;

802
	poll_wait(file, &ctx->ibox_wq, wait);
803

804 805 806 807 808
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
809 810
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
811 812 813 814

	return mask;
}

815
static const struct file_operations spufs_ibox_fops = {
816 817 818 819 820 821 822 823 824
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
825
	struct spu_context *ctx = file->private_data;
826
	ssize_t ret;
827 828 829 830 831
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

832 833 834
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
835 836
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
837 838 839 840 841 842 843

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

844
static const struct file_operations spufs_ibox_stat_fops = {
845 846 847 848 849
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
850
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
851
{
852 853
	return ctx->ops->wbox_write(ctx, data);
}
854

855 856 857 858
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
859

860
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
861 862 863 864

	return ret;
}

865 866
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
867
{
868 869
	struct spu_context *ctx = spu->ctx;

870 871 872
	if (!ctx)
		return;

873 874
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
875 876
}

877 878 879 880 881 882 883 884 885 886 887 888
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
889 890 891
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
892
	struct spu_context *ctx = file->private_data;
893 894
	u32 wbox_data, __user *udata;
	ssize_t count;
895 896 897 898

	if (len < 4)
		return -EINVAL;

899 900 901 902 903
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
904 905
		return -EFAULT;

906 907 908
	count = spu_acquire(ctx);
	if (count)
		return count;
909

910 911 912 913 914
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
915
	if (file->f_flags & O_NONBLOCK) {
916
		if (!spu_wbox_write(ctx, wbox_data))
917
			count = -EAGAIN;
918
	} else {
919
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
920 921
	}

922 923
	if (count)
		goto out;
924

925
	/* write as much as possible */
926 927 928 929 930 931 932 933 934 935 936 937 938 939
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
940 941 942 943
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
944
	struct spu_context *ctx = file->private_data;
945 946
	unsigned int mask;

947
	poll_wait(file, &ctx->wbox_wq, wait);
948

949 950 951 952 953
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
954 955
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
956 957 958 959

	return mask;
}

960
static const struct file_operations spufs_wbox_fops = {
961 962 963 964 965 966 967 968 969
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
970
	struct spu_context *ctx = file->private_data;
971
	ssize_t ret;
972 973 974 975 976
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

977 978 979
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
980 981
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
982 983 984 985 986 987 988

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

989
static const struct file_operations spufs_wbox_stat_fops = {
990 991 992 993
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

994 995 996 997
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
998

999
	mutex_lock(&ctx->mapping_lock);
1000
	file->private_data = ctx;
1001 1002
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1003
	mutex_unlock(&ctx->mapping_lock);
1004 1005 1006
	return nonseekable_open(inode, file);
}

1007 1008 1009 1010 1011 1012
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1013
	mutex_lock(&ctx->mapping_lock);
1014 1015
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1016
	mutex_unlock(&ctx->mapping_lock);
1017 1018 1019
	return 0;
}

1020
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1021 1022
			size_t len, loff_t *pos)
{
1023
	int ret = 0;
1024 1025 1026 1027 1028
	u32 data;

	if (len < 4)
		return -EINVAL;

1029 1030 1031 1032
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1033

1034 1035 1036
	if (!ret)
		goto out;

1037 1038 1039
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1040 1041
out:
	return ret;
1042 1043
}

1044 1045 1046 1047 1048 1049
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1050 1051 1052
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1053
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1054
	spu_release_saved(ctx);
1055 1056 1057 1058

	return ret;
}

1059 1060 1061 1062
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1063
	ssize_t ret;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1074 1075 1076
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1077 1078
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1079 1080 1081 1082

	return 4;
}

1083 1084
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1085
{
1086
#if PAGE_SIZE == 0x1000
1087
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
1088 1089 1090 1091
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1092
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1093 1094 1095
#else
#error unsupported page size
#endif
1096 1097 1098
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1099
	.nopfn = spufs_signal1_mmap_nopfn,
1100 1101 1102 1103 1104 1105 1106
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1107
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1108
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1109
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1110 1111 1112 1113 1114

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1115
static const struct file_operations spufs_signal1_fops = {
1116
	.open = spufs_signal1_open,
1117
	.release = spufs_signal1_release,
1118 1119
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1120
	.mmap = spufs_signal1_mmap,
1121 1122
};

1123 1124 1125 1126 1127 1128 1129
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1130 1131 1132 1133
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1134

1135
	mutex_lock(&ctx->mapping_lock);
1136
	file->private_data = ctx;
1137 1138
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1139
	mutex_unlock(&ctx->mapping_lock);
1140 1141 1142
	return nonseekable_open(inode, file);
}

1143 1144 1145 1146 1147 1148
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1149
	mutex_lock(&ctx->mapping_lock);
1150 1151
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1152
	mutex_unlock(&ctx->mapping_lock);
1153 1154 1155
	return 0;
}

1156
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1157 1158
			size_t len, loff_t *pos)
{
1159
	int ret = 0;
1160 1161 1162 1163 1164
	u32 data;

	if (len < 4)
		return -EINVAL;

1165 1166 1167 1168
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1169

1170 1171 1172
	if (!ret)
		goto out;

1173 1174 1175
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1176
out:
1177 1178 1179 1180 1181 1182 1183 1184 1185
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1186 1187 1188
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1189
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1190
	spu_release_saved(ctx);
1191 1192

	return ret;
1193 1194 1195 1196 1197 1198
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1199
	ssize_t ret;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1210 1211 1212
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1213 1214
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1215 1216 1217 1218

	return 4;
}

1219
#if SPUFS_MMAP_4K
1220 1221
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1222
{
1223
#if PAGE_SIZE == 0x1000
1224
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1225 1226 1227 1228
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1229
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1230 1231 1232
#else
#error unsupported page size
#endif
1233 1234 1235
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1236
	.nopfn = spufs_signal2_mmap_nopfn,
1237 1238 1239 1240 1241 1242 1243
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1244
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1245
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1246
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1247 1248 1249 1250

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1251 1252 1253
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1254

1255
static const struct file_operations spufs_signal2_fops = {
1256
	.open = spufs_signal2_open,
1257
	.release = spufs_signal2_release,
1258 1259
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1260
	.mmap = spufs_signal2_mmap,
1261 1262
};

1263 1264 1265 1266 1267 1268 1269
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1280
static int __##__get(void *data, u64 *val)				\
1281 1282
{									\
	struct spu_context *ctx = data;					\
1283
	int ret = 0;							\
1284 1285
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1286 1287 1288
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1289
		*val = __get(ctx);					\
1290 1291
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1292 1293 1294
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1295
		*val = __get(ctx);					\
1296 1297
		spu_release_saved(ctx);					\
	} else								\
1298
		*val = __get(ctx);					\
1299
									\
1300
	return 0;							\
1301
}									\
1302
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1303

1304
static int spufs_signal1_type_set(void *data, u64 val)
1305 1306
{
	struct spu_context *ctx = data;
1307
	int ret;
1308

1309 1310 1311
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1312 1313
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1314 1315

	return 0;
1316 1317
}

1318
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1319 1320 1321
{
	return ctx->ops->signal1_type_get(ctx);
}
1322 1323
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
		       spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1324

1325

1326
static int spufs_signal2_type_set(void *data, u64 val)
1327 1328
{
	struct spu_context *ctx = data;
1329
	int ret;
1330

1331 1332 1333
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1334 1335
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1336 1337

	return 0;
1338 1339
}

1340
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1341 1342 1343
{
	return ctx->ops->signal2_type_get(ctx);
}
1344 1345
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
		       spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1346

1347
#if SPUFS_MMAP_4K
1348 1349
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1350
{
1351
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1352 1353 1354
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1355
	.nopfn = spufs_mss_mmap_nopfn,
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1366
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1367
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1368
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1369 1370 1371 1372

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1373 1374 1375
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1376 1377 1378 1379

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1380
	struct spu_context *ctx = i->i_ctx;
1381 1382

	file->private_data = i->i_ctx;
1383

1384
	mutex_lock(&ctx->mapping_lock);
1385 1386
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1387
	mutex_unlock(&ctx->mapping_lock);
1388 1389 1390
	return nonseekable_open(inode, file);
}

1391 1392 1393 1394 1395 1396
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1397
	mutex_lock(&ctx->mapping_lock);
1398 1399
	if (!--i->i_openers)
		ctx->mss = NULL;
1400
	mutex_unlock(&ctx->mapping_lock);
1401 1402 1403
	return 0;
}

1404
static const struct file_operations spufs_mss_fops = {
1405
	.open	 = spufs_mss_open,
1406
	.release = spufs_mss_release,
1407
	.mmap	 = spufs_mss_mmap,
1408 1409
};

1410 1411
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1412
{
1413
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1414 1415 1416
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1417
	.nopfn = spufs_psmap_mmap_nopfn,
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1428
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1439
	struct spu_context *ctx = i->i_ctx;
1440

1441
	mutex_lock(&ctx->mapping_lock);
1442
	file->private_data = i->i_ctx;
1443 1444
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1445
	mutex_unlock(&ctx->mapping_lock);
1446 1447 1448
	return nonseekable_open(inode, file);
}

1449 1450 1451 1452 1453 1454
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1455
	mutex_lock(&ctx->mapping_lock);
1456 1457
	if (!--i->i_openers)
		ctx->psmap = NULL;
1458
	mutex_unlock(&ctx->mapping_lock);
1459 1460 1461
	return 0;
}

1462
static const struct file_operations spufs_psmap_fops = {
1463
	.open	 = spufs_psmap_open,
1464
	.release = spufs_psmap_release,
1465
	.mmap	 = spufs_psmap_mmap,
1466 1467 1468
};


1469
#if SPUFS_MMAP_4K
1470 1471
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1472
{
1473
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1474 1475 1476
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1477
	.nopfn = spufs_mfc_mmap_nopfn,
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1488
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1489
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1490
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1491 1492 1493 1494

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1495 1496 1497
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1511
	mutex_lock(&ctx->mapping_lock);
1512
	file->private_data = ctx;
1513 1514
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1515
	mutex_unlock(&ctx->mapping_lock);
1516 1517 1518
	return nonseekable_open(inode, file);
}

1519 1520 1521 1522 1523 1524
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1525
	mutex_lock(&ctx->mapping_lock);
1526 1527
	if (!--i->i_openers)
		ctx->mfc = NULL;
1528
	mutex_unlock(&ctx->mapping_lock);
1529 1530 1531
	return 0;
}

1532 1533 1534 1535 1536
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1537 1538 1539
	if (!ctx)
		return;

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1586 1587 1588 1589 1590
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1591 1592 1593 1594 1595
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1596
			/* XXX(hch): shouldn't we clear ret here? */
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1721 1722 1723 1724
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1725
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1726 1727 1728
	if (ret)
		goto out;

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}

	if (ret)
1740
		goto out_unlock;
1741 1742

	ctx->tagwait |= 1 << cmd.tag;
1743
	ret = size;
1744

1745 1746
out_unlock:
	spu_release(ctx);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1757 1758
	poll_wait(file, &ctx->mfc_wq, wait);

1759 1760 1761 1762 1763
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1781
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1782 1783 1784 1785
{
	struct spu_context *ctx = file->private_data;
	int ret;

1786 1787 1788
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1809
	return spufs_mfc_flush(file, NULL);
1810 1811 1812 1813 1814 1815 1816 1817 1818
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1819
static const struct file_operations spufs_mfc_fops = {
1820
	.open	 = spufs_mfc_open,
1821
	.release = spufs_mfc_release,
1822 1823 1824 1825 1826 1827
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1828
	.mmap	 = spufs_mfc_mmap,
1829 1830
};

1831
static int spufs_npc_set(void *data, u64 val)
1832 1833
{
	struct spu_context *ctx = data;
1834 1835 1836 1837 1838
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1839 1840
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1841 1842

	return 0;
1843 1844
}

1845
static u64 spufs_npc_get(struct spu_context *ctx)
1846 1847 1848
{
	return ctx->ops->npc_read(ctx);
}
1849 1850
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1851

1852
static int spufs_decr_set(void *data, u64 val)
1853 1854 1855
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1856 1857 1858 1859 1860
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1861
	lscsa->decr.slot[0] = (u32) val;
1862
	spu_release_saved(ctx);
1863 1864

	return 0;
1865 1866
}

1867
static u64 spufs_decr_get(struct spu_context *ctx)
1868 1869
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1870 1871
	return lscsa->decr.slot[0];
}
1872 1873
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1874

1875
static int spufs_decr_status_set(void *data, u64 val)
1876 1877
{
	struct spu_context *ctx = data;
1878 1879 1880 1881 1882
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1883 1884 1885 1886
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1887
	spu_release_saved(ctx);
1888 1889

	return 0;
1890 1891
}

1892
static u64 spufs_decr_status_get(struct spu_context *ctx)
1893
{
1894 1895 1896 1897
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1898
}
1899 1900 1901
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1902

1903
static int spufs_event_mask_set(void *data, u64 val)
1904 1905 1906
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1907 1908 1909 1910 1911
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1912
	lscsa->event_mask.slot[0] = (u32) val;
1913
	spu_release_saved(ctx);
1914 1915

	return 0;
1916 1917
}

1918
static u64 spufs_event_mask_get(struct spu_context *ctx)
1919 1920
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1921 1922 1923
	return lscsa->event_mask.slot[0];
}

1924 1925 1926
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1927

1928
static u64 spufs_event_status_get(struct spu_context *ctx)
1929 1930 1931 1932 1933
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1934 1935 1936
		return state->spu_chnldata_RW[0];
	return 0;
}
1937 1938
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1939

1940
static int spufs_srr0_set(void *data, u64 val)
1941 1942 1943
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1944 1945 1946 1947 1948
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1949
	lscsa->srr0.slot[0] = (u32) val;
1950
	spu_release_saved(ctx);
1951 1952

	return 0;
1953 1954
}

1955
static u64 spufs_srr0_get(struct spu_context *ctx)
1956 1957
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1958
	return lscsa->srr0.slot[0];
1959
}
1960 1961
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1962

1963
static u64 spufs_id_get(struct spu_context *ctx)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
1974 1975
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
1976

1977
static u64 spufs_object_id_get(struct spu_context *ctx)
1978 1979
{
	/* FIXME: Should there really be no locking here? */
1980
	return ctx->object_id;
1981 1982
}

1983
static int spufs_object_id_set(void *data, u64 id)
1984 1985 1986
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
1987 1988

	return 0;
1989 1990
}

1991 1992
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1993

1994
static u64 spufs_lslr_get(struct spu_context *ctx)
1995 1996 1997
{
	return ctx->csa.priv2.spu_lslr_RW;
}
1998 1999
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2000 2001 2002 2003 2004 2005 2006 2007 2008

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2032 2033 2034 2035 2036
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2037 2038 2039 2040 2041
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2042 2043 2044 2045

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2046 2047 2048
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2049
	int ret;
2050 2051 2052 2053 2054
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2055 2056 2057
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2058
	spin_lock(&ctx->csa.register_lock);
2059
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2060
	spin_unlock(&ctx->csa.register_lock);
2061
	spu_release_saved(ctx);
2062

2063
	return ret;
2064 2065
}

2066
static const struct file_operations spufs_mbox_info_fops = {
2067 2068 2069 2070 2071
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2072 2073 2074 2075 2076
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2077 2078 2079 2080 2081
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2082 2083 2084 2085

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2086 2087 2088 2089
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2090
	int ret;
2091 2092 2093 2094

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2095 2096 2097
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2098
	spin_lock(&ctx->csa.register_lock);
2099
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2100
	spin_unlock(&ctx->csa.register_lock);
2101
	spu_release_saved(ctx);
2102

2103
	return ret;
2104 2105
}

2106
static const struct file_operations spufs_ibox_info_fops = {
2107 2108 2109 2110 2111
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2112 2113
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2114 2115 2116 2117 2118
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2135 2136 2137
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2138 2139 2140
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2141
	spin_lock(&ctx->csa.register_lock);
2142
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2143
	spin_unlock(&ctx->csa.register_lock);
2144
	spu_release_saved(ctx);
2145

2146
	return ret;
2147 2148
}

2149
static const struct file_operations spufs_wbox_info_fops = {
2150 2151 2152 2153 2154
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2155 2156
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2181 2182 2183 2184 2185 2186 2187 2188 2189
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2190 2191 2192
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2193 2194 2195
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2196
	spu_release_saved(ctx);
2197 2198 2199 2200

	return ret;
}

2201
static const struct file_operations spufs_dma_info_fops = {
2202 2203 2204 2205
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2206 2207
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2208 2209 2210
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2211
	int ret = sizeof info;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2243 2244 2245
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2246 2247
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2248
	spin_unlock(&ctx->csa.register_lock);
2249
	spu_release_saved(ctx);
2250 2251 2252 2253

	return ret;
}

2254
static const struct file_operations spufs_proxydma_info_fops = {
2255 2256 2257 2258
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2279 2280 2281 2282 2283
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2284
		enum spu_utilization_state state)
2285
{
2286 2287
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2302

2303
	return time / NSEC_PER_MSEC;
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2334 2335 2336 2337 2338
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2339 2340 2341

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2342 2343 2344 2345 2346
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


2372
struct tree_descr spufs_dir_contents[] = {
2373
	{ "capabilities", &spufs_caps_fops, 0444, },
2374
	{ "mem",  &spufs_mem_fops,  0666, },
2375
	{ "regs", &spufs_regs_fops,  0666, },
2376 2377 2378 2379 2380 2381
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2382 2383
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2384 2385
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2386
	{ "cntl", &spufs_cntl_fops,  0666, },
2387
	{ "fpcr", &spufs_fpcr_fops, 0666, },
2388 2389 2390 2391 2392
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2393 2394 2395
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2396
	{ "event_status", &spufs_event_status_ops, 0444, },
2397
	{ "psmap", &spufs_psmap_fops, 0666, },
2398 2399
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2400 2401 2402
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2403 2404
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2405
	{ "tid", &spufs_tid_fops, 0444, },
2406
	{ "stat", &spufs_stat_fops, 0444, },
2407 2408
	{},
};
2409 2410

struct tree_descr spufs_dir_nosched_contents[] = {
2411
	{ "capabilities", &spufs_caps_fops, 0444, },
2412 2413 2414 2415 2416 2417 2418
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2419 2420
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2421 2422 2423 2424 2425 2426 2427 2428 2429
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2430
	{ "tid", &spufs_tid_fops, 0444, },
2431
	{ "stat", &spufs_stat_fops, 0444, },
2432 2433
	{},
};
2434 2435

struct spufs_coredump_reader spufs_coredump_read[] = {
2436 2437
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2438 2439 2440
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2441 2442
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2443
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2444
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2445 2446 2447
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2448 2449 2450 2451 2452 2453
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2454 2455
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2456
	{ NULL },
2457
};